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INTRODUCTION

Electroencephalogram (EEG) is a record obtained by amplifying and recording the electrical
activity, produced by electrical flows in the brain, from the human scalp (Zandi et al., 2011; Larson
and Taulu, 2018). EEG is a widely used medium in brain imaging science and plays an important
role in the research of the brain–computer interface (BCI; Gao et al., 2021). BCI is an online
computerized system that converts brain signals into useful commands. To date, different types
brain signals have been employed to develop BCI systems. Because of its convenience and low cost,
EEG signal has become the main medium in BCI systems. However, it has been proved in practice
that the acquisition of EEG signal is easily disturbed by various types of noises due to the weak
energy of EEG signals. In order to extract useful information from noisy EEG signals (Shad et al.,
2020), various signal processing methods are investigated in EEG signal analysis.

In the analysis of brain signals, improving the signal to noise ratio is an important preprocessing
step. Traditionally, it is completed using Fast Fourier Transform (FFT) (Wahab et al., 2021). In
BCI, FFT is also utilized to implement salient feature extraction from EEG signals. The short-
time Fourier transform is an enhancement of FFT and it can generate two-dimensional spectral
representation of EEG (Ha and Jeong, 2019). However, the main drawback of STFT is that
its frequency resolution is not tunable. Huang proposed a methodology, combining STFT and
convolutional neural networks for biomedical signal classification (Huang et al., 2019). In addition,
the digital filters based on Fourier analysis is also an important tool for EEG signal denoising (Hsia
and Kraft, 1983). Their applications include noisy artifact removal, feature selection at specific
frequency bands. Although new techniques for EEG filtering are still emerging recently, the filtering
technique is not important focus of BCI research. Shortcomings of digital filters are also reported
in related studies (Alhammadi and Mahmoud, 2016).

During the past decades, with the increase of computing power, many more advanced signal
processing methods have been invented and put into practice. Upadhyay put forward a novel
technique, by integration of S transform and independent component analysis, for artifact removal
and noise suppression in EEG signals (Upadhyay et al., 2016). Djemili utilized empirical mode
decomposition to decompose EEG signal into intrinsic mode functions and achieved intelligent
classification of normal and epileptic EEG features (Djemili et al., 2016). In the study by Jiang,
a multi-dictionary based sparse representation approach is proposed for automatic detection
of epileptic EEG spikes (Jiang et al., 2020). Dora applied variational mode decomposition for
correcting artifacts in EEGmeasurements (Dora and Biswal, 2020). Chen proposed a sparse Fourier
transform and applied it in power-line artifact removal (Chen et al., 2021b).
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Although there are a lot of tools for EEG signal analysis,
there is still a need to select practical tools to study and
improve their performance. We believe that a good EEG signal
processing method should have three advantages. Firstly, the
method should have a rigorous mathematical basis and can be
easily improved theoretically. Secondly, the method has been
widely used in clinical practice, and some mature and practical
technical solutions have been formed. Thirdly, the method
should be computationally efficient and can be deployed quickly
with conventional hardware.

JOINT OF WT AND ARTIFICIAL
INTELLIGENCE FOR INTELLIGENT
ANALYSIS OF EEG

Considering the above three feasible merits of a practical EEG
signal analyzing tool, wavelet transform (WT) has become the
most commonly used tool for EEG signal analysis. Wavelet
transform is a modern development of Fourier analysis.
WT can not only extract high-dimensional features from
EEG, but also has high computational efficiency (Khatkar
and Kumar, 2015). During the past two decades, WT has
been successfully applied in EEG feature extraction and
noisy reduction. Sartoretto detected features associated with
epileptiform activity from EEG signals via discrete wavelet
analysis (Sartoretto and Ermani, 1999). Mamun explored the
utilization of wavelet denoising in physiological noise removal
of EEG (Mamun et al., 2013). Ma proposed a method for
coherence analysis, between EEG and EMG, based on wavelet
decomposition (Ma et al., 2014). Asadpour designed a 4-layer
Symmlet-8 wavelet transform structure for EEG signals, and
effectively decomposed δ, θ, α, and β brain rhythm waves
into different subspaces (Asadpour et al., 2018). Li employed
wavelet packet transform (WPT) to decompose the non-
stationary measurement signal in time and frequency domain,
and selects the frequency band information related to the
imagination task to reconstruct the EEG signal features (Li
et al., 2021). Obukhov utilized ridges of wavelet spectra for
automatic diagnose of epileptic seizure (Obukhov et al., 2021).
It can be seen that the classical wavelet transform is mainly
used to decompose EEG signals in the literature, and there is
no in-depth study on the impact of wavelet transform on the
decomposition results.

The wide application of wavelet transform in EEG signal
analysis is not only reflected in the signal decomposition,
but also in the information extraction of the decomposed
subspaces. A most immediate way is to carry out statistical
analysis on the decomposed wavelet subspace to obtain the
corresponding statistical feature space. For example, Liu utilized
many statistical indicators from selected wavelet subspaces
to implement automatic seizure detection (Liu et al., 2012).
In recent years, with the deepening of research, many
features with physical significance have been designed and
used in EEG signal classification. Zhang used sliding window
technology to extract wavelet entropy, sample entropy and
peak-peak value, and effectively identifies four States of

driver fatigue: normal state, mild fatigue, emotional fluctuation
and excessive fatigue (Zhang et al., 2014). Hadjileontiadis
studied higher order spectral features in the wavelet subspaces,
and proposed a novel methodology for characterization of
tonic cold pain (Hadjileontiadis, 2015). Peng explored the
indicator of wavelet entropy of EEG in fatigue detection,
and found it provides better performance compared with
FFT based indicators (Peng et al., 2021). Zarei explored
nonlinear features in wavelet subspaces to improve the
accuracies of automatic seizure detection (Zarei and Asl,
2021).

Although wavelet transform can reveal the time-frequency
characteristics of EEG, it will take a lot of time to identify and
classify themmanually. This is becoming increasingly impossible
in the era of medical big data. Therefore, as an important tool for
feature extraction, wavelet transform also needs to be combined
with artificial intelligence to achieve intelligent analysis results
(Cao et al., 2019). Sharma combined wavelet subspace features
and support vector machine for EEG driven epilepsy diagnosis
(Sharma et al., 2020). Albaqami studied the automatic EEG
signal classification using WPT and gradient boosting decision
tree (Albaqami et al., 2021). Movahed employed a special
orthogonal wavelet filter-bank for EEG decomposition and
combined it with machine learning for diagnose the disease
of major depressive disorder (Movahed et al., 2021). Shahabi
studied drug responses of major depressive disorder using a
technique that applied deep transfer learning on wavelet-based
features from EEG (Shahabi et al., 2021). In the literature, a
large number of research results show that wavelet transform
is an indispensable pre-processing tool for artificial intelligence
recognition of EEG signals.

STATE-OF-THE-ART DEVELOPMENT OF
OVERCOMPLETE WAVELET FRAME
EXPANSIONS AND ITS POTENTIAL
APPLICATIONS IN EEG ANALYSIS

The above materials show that the discrete wavelet transform
is more commonly used in EEG analysis in clinical practice
because of its computational efficiency. The use of wavelet
transform has also been shown to be beneficial because its
association with artificial intelligence can significantly improve
the accuracy of clinical distortion diagnosis. Among the various
types of discrete wavelet transform, classical wavelet transform
and wavelet packet transform are most commonly used. They
enjoy the highest computational efficiency because they are
conventional linear expansions. However, both of the two signal
decomposition tools have some significant shortcomings in
theory. These shortcomings include translation sensitivity in
wavelet subspaces (Bayram and Selesnck, 2008), fixed frequency-
scale pavement (Chen et al., 2021a), and difficulties of wavelet
basis information fusion.

To a large extent, the reason for these shortcomings is that
the classical wavelet transform is a basis transform. For basis
transformation, the number of linearly independent vectors in
the basis is the same as the length of the input signal (Figure 1A).
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FIGURE 1 | (A) Fundamentals of overcomplete wavelet frame expansion, where N is the number of samples in the input signal and M is the number of samples in the

output signal; and (B) A framework to illustrate the enhancement of wavelet decomposition for EEG-based information mining.

While, for overcomplete expansion, a set of linearly dependent
vectors, whose number is greater than the length of the input
signal, is utilized to represent the input signal (Figure 1A). This
set of linearly dependent vectors is often called a dictionary. By
introducing the development of frame theory, these problems
can be properly resolved (Kovacevic and Chebira, 2007a,b).
A framework for achieving these demands can be found in

Figure 1B. Scholars have tried to improve the properties of
wavelet transform from three aspects. One is to improve the
translation invariance of signal expansion, the other is to adjust
the “frequency-scale” pavements, and the third is to try to
introduce multiple wavelet functions (Chen, 2014).

Translation sensitivity is caused by down-sampling operations
in implementation of wavelet filter-bank. Although the property
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of perfect reconstruction can be guaranteed for the input original
signal, the side effect of feature distortion in wavelet subspaces
may be very serious. To address this problem, one direct and
simplemethod is to eliminate the down-sampling operator on the
filter bank, but this will significantly increase the computational
complexity of the discrete wavelet analysis (Li et al., 2012). Due
to the addition of redundancy, other construction constraints can
be added to the construction of the wavelet bases. The constraint
of Hilbert transform pair can generate approximate translation
invariance with relatively small increase in calculation (Huang
et al., 2021).

The property of fixed frequency-scale pavement leads to
inflexible analysis results, especially when the EEG features are
located in the transition region of the classical discrete wavelet
passing band. Therefore, inappropriate use of classical WT
and WPT will cause serious distortion of the features in the
EEG decomposition results. There are two available solutions
to the address this problem in the theory of overcomplete
frame expansion. One is to add more wavelet functions to the
wavelet base to change the basic time-frequency characteristics
of the wavelet base (Selesnick, 2004). In this case, the dilation
factor of the wavelet transform and the basic structure of
the filter bank remain unchanged. Its disadvantage is that the
effect of adjusting the frequency-scale pavement is limited,
and sometimes it cannot meet the analysis requirements. The
other method is to construct the wavelet time-frequency atom
completely in the frequency domain by using the analytical
expression (Gilles, 2013). In this case, a highly flexible dilation
factor can be chosen. Its disadvantage is that there are a large
number of parameters to be determined in the construction
process. In recent years, some researchers have tried to use the
wavelet transform with adjustable dilation factor to decompose
EEG signals.

The most difficult problem is the information fusion
of multiple wavelet bases with different time-frequency
characteristics (He et al., 2017). With the development of
sparse representation theory, wavelet bases can be used as the
dictionary of signal sparse decomposition, so the information
fusion becomes possible. However, the relevant decomposition
models are still very limited, so they cannot be well-applied to
EEG signal analysis. A more promising solution is to combine
the multiple wavelet dictionaries with composite deep learning
networks to achieve deep fusion of information through
neural networks.

SUMMARY

The classical discrete wavelet transform is widely used in EEG
signal analysis. The combination of wavelet transform and
artificial intelligence can significantly improve the accuracy of
clinical disease diagnosis. However, the influence of wavelet
transform on the feature space of EEG signal decomposition
is often neglected. At present, with the advancement of
wavelet analysis theory, the feature space can be enhanced
by using the overcomplete wavelet frame decomposition with
better performance. The construction of wavelet bases and the
redundancy of filter-banks can be combined with other useful
construction constraints to improve the shortcomings of classical
discrete wavelet transform. At present, there have been effective
solutions to the property of translation sensitivity and the fixed
“frequency-scale” pavement. The combination of overcomplete
wavelet frame expansion and composite deep learning network
can significantly promote the deep fusion of information. We
recommend the use of overcomplete wavelet frame expansion
in the feature extraction and signal classification of EEG, and
suggest that further researches should be carried out. It should
be pointed out that although overcomplete frame expansion can
provide more flexible time-frequency analysis expansions, it also
requires higher computational requirements. Its computation
time is usually several times to tens of times that of the classical
wavelet transform. Due to the increase of computing resources
and the enhancement of computing power in recent years, such
demands can be well-satisfied.
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