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Abstract
Aim: Area	 thresholds,	 at	 which	 the	 form	 of	 the	 species–area	 relationship	 (SAR)	
changes	 abruptly,	 have	 played	 an	 important	 role	 in	 the	 theoretical	 framework	 of	
conservation	biogeography	and	biodiversity	research.	The	application	of	piecewise	
regressions	has	been	advocated	as	a	rigorous	statistical	technique	to	identify	such	
thresholds	within	SARs,	but	a	 large	variety	of	piecewise	models	remains	untested.	
We	explore	the	prevalence	and	number	of	thresholds	in	SARs	and	examine	whether	
the	currently	widely	used	method	for	detecting	the	small	island	effect	(SIE)	is	robust.
Location: Global.
Taxon: We	consider	all	multicellular	taxa	based	on	the	criteria	of	datasets	selection.
Methods: We	 apply	 15	 regression	 models,	 including	 linear	 regression	 and	 piece-
wise	regressions	with	two	and	three	segments	to	68	global	island	datasets	that	are	
sourced	from	the	literature.
Results: The	number	of	area	thresholds	in	SARs	varied	among	groups	and	correlated	
positively	with	area	range	of	a	studied	system.	Under	the	AIC	or	AICc	criterion,	three‐
segment	piecewise	models	were	more	prevalent,	whereas	under	the	BIC	criterion,	
two‐segment	piecewise	models	were	more	prevalent.	 From	 the	 results	of	Aegean	
Sea	isopods,	West	Indies	herpetofauna,	and	Australian	Islands	mammals,	we	found	
evidence	that	the	traditional	criteria	for	detection	of	SIEs	are	not	robust.
Main conclusions: Our	study	demonstrates	that	(a)	to	detect	an	SIE,	the	comparison	
should	use	as	many	models	as	possible,	including	not	only	variants	with	and	without	
a	left‐horizontal	part,	but	also	those	with	two	and	more	segments;	(b)	naive	use	of	the	
traditional	two‐segment	piecewise	regressions	may	cause	poor	estimations	of	both	
slope	and	breakpoint	values;	 (c)	 the	number	of	 thresholds	 increases	with	 the	area	
range	of	a	studied	system;	(d)	conservation	biologists	and	applied	ecologists	should	
determine	the	number	of	area	thresholds	when	estimating	the	precise	species–area	
patterns	and	making	management	strategies	in	fragmented	landscapes.
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1  | INTRODUC TION

The	 species–area	 relationship	 (SAR),	 fundamental	 to	 the	 develop-
ment	 of	MacArthur	 and	Wilson's	 (1963,	 1967)	 equilibrium	 theory	
and	 island	biogeography,	has	great	utility	 for	 assessing	 species	di-
versity	and	conservation	needs	(Ladle	&	Whittaker,	2011;	Lomolino,	
2000).	 Insights	 from	 SARs	 have	 been	 applied	 in	 optimal	 reserve	
design	 (Neigel,	 2003),	 identifying	 biodiversity	 hotspots	 (Fattorini,	
2007),	and	assessing	 the	 impact	 that	habitat	 fragmentation	exerts	
on	diversity	(Harcourt	&	Doherty,	2005).	However,	debate	continues	
as	to	the	applicability	of	island	biogeographic	theory	in	the	context	
of	habitat	fragmentation	(Laurance,	2008),	because	as	species–area	
studies	began	to	accumulate,	scholars	have	found	evidence	for	non-
linearity	of	log‐transformed	SARs.

Some	 studies	 showing	 thresholds	 in	 SARs	 depict	 a	 steep–
shallow	 relationship,	 with	 an	 initially	 rapid	 increase	 in	 richness	
with	 area	 until	 a	 threshold	 is	 reached	 beyond	which	 a	 slow	 rate	
of	 increase	 applies	 (Drinnan,	 2005;	 Fahrig,	 2001;	 Matthews,	
Steinbauer,	 Tzirkalli,	 Triantis,	 &	Whittaker,	 2014).	 Others	 depict	
a	shallow–steep	relationship,	showing	an	 initially	slow	rate	of	 (or	
no)	increase	in	richness	with	increasing	area,	followed	by	a	steeper	
phase	beyond	a	threshold,	often	named	the	small	island	effect	(SIE;	
Morrison,	2014;	Triantis	et	al.,	2006;	Wang,	Chen,	&	Millien,	2018;	
Wang,	Millien,	&	Ding,	2016).	Although	around	20	functions	have	
been	described	for	fitting	SARs	(Triantis,	Guilhaumon,	&	Whittaker,	
2012),	piecewise	regression	has	been	advocated	as	a	rigorous	sta-
tistical	technique	suitable	for	identifying	area	thresholds	(Ficetola	
&	Denoёl,	2009).

Currently,	four	piecewise	regression	functions	are	found	in	the	
literature:	(a)	continuous	left‐horizontal	function	[Y = c	+	(log	A > T)	
z	 (log	A	−	T)	 (Lomolino	&	Weiser,	2001)];	 (b)	continuous	two‐slope	
function	 [Y = c	 +	 (log	A	 ≤	T)	 z1 log A	 +	 (log	A > T)	 [z1 T + z2	 (log	
A	−	T)]	(Dengler,	2010;	Morrison	&	Spiller,	2008)];	(c)	discontinuous	
two‐slope	function	[Y	=	(log	A	≤	T)	(c1 + z1 log A)	+	(log	A > T)	(c2 + z2 
log A)	(Gentile	&	Argano,	2005)];	and	(d)	continuous	right‐horizontal	
function	[Y = c	+	(log	A	≤	T)	z log A	+	(log	A > T)	z T	(Dengler,	2010)].	
Several	 shortcomings	 in	 the	applications	of	piecewise	models	per-
sist,	however.

First,	it	is	conceivable	that	discontinuous	relationships	with	dis-
connected	 SAR	 segments	may	 exist	 in	 nature	 (Gentile	&	Argano,	
2005;	Maron	 et	 al.,	 2012),	 and	 their	 detection	 in	 a	 few	 datasets	
most	likely	signifies	important	roles	for	confounding	variables	that	
were	not	included	in	the	models,	such	as	isolation	or	matrix	effects	
(Crowe,	 1979;	 Levenson,	 1981;	Matthews	 et	 al.,	 2014).	However,	
discontinuous	 function	 is	 only	 allowed	 in	 the	 two‐slope	method,	
where	 two	 linear	 segments	 are	 fitted	 onto	 the	 data	 (Gentile	 &	
Argano,	2005).

Second,	 the	 current	 continuous	 models	 include	 one	 segment	
obtained	by	 regression	and	 the	other	one	obtained	by	nonregres-
sion:	slope	iteration	for	the	continuous	two‐slope	function	(Dengler,	
2010;	Morrison	&	Spiller,	2008)	or	direct	inheritance	for	the	contin-
uous	left‐horizontal	(Lomolino	&	Weiser,	2001)	and	the	continuous	

right‐horizontal	(Dengler,	2010)	functions.	However,	either	segment	
could	be	obtained	by	regression,	that	is,	if	the	upper	segment	is	the	
regression	part,	 the	 lower	segment	will	be	 the	nonregression	one,	
and	vice	versa.	So,	each	method	actually	has	two	possible	expres-
sion	and	calculation	forms	rather	than	one,	which	is	neglected	in	the	
literature.

Third,	 piecewise	models	with	 two	 segments	 have	been	widely	
used	 in	 previous	 studies	 (e.g.,	 Dengler,	 2010;	 Lomolino	&	Weiser,	
2001;	Wang	et	al.,	2016).	However,	Lomolino	and	Weiser	(2001)	and	
Rosenzweig	(2004)	proposed	three	biological	scales	of	species–area	
curves	with	three	corresponding	dominant	processes	of	species	ad-
dition:	(a)	stochastic	extinction	forces	structure	insular	communities	
on	small	islands;	(b)	more	deterministic,	ecological	factors	associated	
with	habitat	diversity,	carrying	capacity	and	extinction/immigration	
dynamics	as	envisioned	by	MacArthur	and	Wilson	(1967)	on	islands	
of	intermediate	size;	and	(c)	in	situ	speciation	on	relatively	large	is-
lands.	Therefore,	limiting	our	attention	to	just	one	or	two	species–
area	patterns	is	unreasonable.

In	recent	work	on	detecting	the	SIE	of	herpetofauna	of	the	West	
Indies,	 Gao	 and	 Perry	 (2016a)	 showed	 that	 piecewise	 regressions	
with	three	segments	performed	better	than	those	of	two	segments,	
suggesting	piecewise	models	with	more	than	two	segments	should	
be	 considered.	 Dengler	 (2010)	 proposed	 that	 model	 comparisons	
should	include	at	 least	one	variant	without	an	SIE,	one	with	a	left‐
horizontal	function,	and	one	with	a	two‐slope	function.	And	there-
after,	datasets	fitted	best	by	the	left‐horizontal	function	are	thought	
to	provide	stronger	evidence	for	an	SIE	than	those	fitted	best	by	the	
two‐slope	 function	 (Morrison,	2014;	Wang	et	al.,	2016).	However,	
Dengler's	 (2010)	 proposal	 is	 based	 on	 currently	 incomprehensive	
piecewise	models,	which	are	restricted	to	a	maximum	of	two	slopes,	
so	we	question	the	reliability	of	the	method	for	detecting	the	SIE.

The	aim	of	this	paper	was	thus	twofold.	First,	we	provide	an	up-
dated	synthetic	analysis	of	piecewise	models	to	the	SARs	of	68	island	
datasets,	 representing	different	 geographic	 regions,	 taxa,	 and	 size	
ranges.	We	discuss	whether	the	currently	widely	used	method	for	
detecting	the	SIE	is	robust	when	other	piecewise	models	are	taken	
into	account.	Second,	we	examine	whether	larger	sample	size	range	
and	larger	species	range	lead	to	detection	of	more	area	thresholds.

2  | METHODS

2.1 | Data collection

Between	 May	 2015	 and	 July	 2017,	 we	 searched	 for	 true	 and	
habitat	 island	studies	and	relevant	datasets	within	four	main	ab-
stracting	 databases	 (JSTOR,	 ISI	Web	 of	 Knowledge,	 and	 BIOSIS	
Biological	Abstracts)	using	the	keywords	“species	richness,”	“frag-
ments,”	 “small	 island	 effect,”	 and	 “islands”	 in	 different	 combina-
tions.	Cross‐referenced	papers	derived	from	the	reference	lists	of	
sourced	papers	were	also	included.	More	than	a	thousand	journal	
papers,	 books,	 reports,	 online	 databases,	 and	 unpublished	 re-
sources	were	screened.	To	 increase	 the	statistical	power	 for	 the	



     |  8353GAO et Al.

robustness	of	piecewise	models,	however,	we	only	included	data-
sets	that	met	the	following	criteria:	(a)	islands	constituted	discrete	
patches	 of	 habitat	 surrounded	 by	 contrasting	 habitat;	 (b)	 there	
were	at	least	40	islands	within	each	dataset;	(c)	the	area	and	spe-
cies	 richness	of	 each	 island	were	accessible	either	 in	 the	 source	
publication	or	from	the	authors	of	the	source	papers;	and	(d)	the	
dataset	derived	from	a	source	did	not	overlap	with	those	from	any	
other	sources	(data	for	different	taxa	within	the	same	study	sys-
tem	were	accepted).

For	Aegean	Sea	isopods,	we	removed	the	largest	island	from	the	
dataset	and	formed	a	new	dataset	to	facilitate	further	comparison.	
Finally,	68	datasets	from	38	sources	(see	Appendix	S1	in	Supporting	
Information)	were	retained	for	further	analyses.

2.2 | Statistical analyses

We	fitted	a	linear	model	(Equation	1)	alongside	14	piecewise	models	
(Equations	2–15;	Figure	1)	to	each	dataset.

(1)Y= c1+z1 logA

(2)Y= c1+ ( logA≤T1)z1 logA+ ( logA>T1)[z1T1+z2( logA−T1)]

(3)Y= c1+ ( logA≤T1)[z1 logA+ (z2−z1)T1]+ ( logA>T1)z2 logA

(4)Y= ( logA≤T1)(c1+z1 logA)+ ( logA>T1)(c2+z2 logA)

(5)Y= c1+ ( logA>T1)z1( logA−T1)

(6)Y= c1+ ( logA≤T1)z1T1+ ( logA>T1)z1 logA

(7)Y= ( logA≤T1)c1+ ( logA>T1)(c2+z1 logA)

(8)Y= c1+ ( logA≤T1)z1 logA+ ( logA>T1)z1T1

(9)Y= c1+ ( logA≤T1)z1( logA−T1)

(10)Y= ( logA≤T1)(c1+z1 logA)+ ( logA>T1)c2

(11)
Y= ( logA≤T2)[c1+ ( logA≤T1)z1T1+ ( logA>T1)z1 logA]

+( logA>T2)(c2+z2 logA)

(12)
Y= ( logA≤T1)c1 + ( logA>T1AND logA≤T2)(c2+z1 logA)+

( logA>T2)(c3+z2 logA)

(13)
Y= ( logA≤T1)(c1+z1 logA)+ ( logA>T1AND logA≤T2)(c2+z2 logA)

+( logA>T2)(c3+z3 logA)

F I G U R E  1  Schematic	illustration	of	the	function	and	derivation	of	each	segment	in	each	model.	Red	line	signifies	the	segment	is	
obtained	by	regression;	green	line	signifies	segment	is	obtained	by	slope	iteration;	and	black	line	signifies	the	segment	is	obtained	by	direct	
inheritance.	The	illustrated	slope	of	each	segment	(excluding	the	horizontal	segment)	in	each	model	does	not	imply	the	actual	relative	
shallowness	or	steepness	in	data	analysis.	We	denote	the	x‐axis	as	log	(A)	(km2),	and	the	y‐axis	as	Y,	which	stands	for	species	richness	S or log 
S	for	semi‐log	and	log–log	versions	of	the	model,	respectively
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In	 these	equations,	Y	 stands	for	species	richness	S or log S	 for	
semi‐log	and	log–log	versions	of	the	model,	respectively,	A	for	area	
(in	the	unit	of	km2),	while	ci	(intercept),	zi	(slope),	and	Ti	(breakpoint)	
are	fitted	parameters.	The	logical	AND	operator	combines	two	logi-
cal	operands	that	have	a	value	true	or	false.	The	expression	combined	
by	logical	AND	evaluates	to	true	if	both	operands	log	A > T1 and log 
A	≤	T2	evaluate	to	true;	if	either	or	both	of	the	operands	for	the	logi-
cal	AND	operator	are	false,	the	result	of	the	expression	is	false.	The	
logical	expressions	in	brackets	return	value	1	if	they	are	true	and	0	if	
they	are	false.	Islands	that	have	no	species	recorded	were	involved	
in	multiple	datasets	(see	Table	S1	in	Appendix	S1).	In	some	datasets,	
there	were	lots	of	small	islands,	very	few	large	ones,	and	a	large	gap	
in	between.	To	improve	statistical	rigor	and	avoid	outlier	effects,	all	
datasets,	with	the	exception	of	the	three	large	datasets	mentioned	
below,	were	analyzed	with	the	log–log	versions	of	the	model.	Since	
removing	observations	 is	not	 favored	 (Williamson,	1981),	we	used	
the	traditional	log	(S	+	1)	for	the	datasets	that	includes	empty	islands,	
which	 is	 consistent	with	 the	 treatment	 applied	 by	 Suarez,	 Bolger,	
and	Case	(1998),	Lavin	et	al.	(2001),	and	Gao	and	Perry	(2016a).	For	
Aegean	Sea	isopods,	Aegean	Sea	centipedes,	and	Italian	islands	cen-
tipedes	(see	Table	S1	in	Appendix	S1),	we	used	S	rather	than	log	S 
based	on	two	considerations:	 (a)	Species	richness	values	distribute	
pretty	continuously,	and	 log	transformation	 is	unnecessary	and	(b)	
both	 Sfenthourakis	 and	 Triantis	 (2009)	 and	 Dengler	 (2010)	 have	
used	the	untransformed	version	in	their	analyses,	so	we	follow	this	
to	facilitate	the	comparison	among	our	results	as	well	as	to	those	of	
Dengler	(2010).

Equations	2–10	are	the	comprehensive	possible	function	forms	
for	 the	 two‐segment	piecewise	method,	 in	which	Equations	2	and	
3	 comprise	 a	 regression	 segment	 and	 a	 slope‐iteration	 segment;	
Equation	 4	 comprises	 two	 regression	 segments;	 Equations	 5	 and	
9	 comprise	 a	 zero‐slope	 regression	 segment	 and	 a	 slope‐iteration	
segment;	 Equations	 7	 and	 10	 comprise	 a	 regression	 segment	 and	
a	 zero‐slope	 regression	 segment;	 and	Equations	6	and	8	comprise	
a	 regression	 segment	 and	 a	 direct‐inheritance	 segment	 (Figure	 1).	
Equations	 2–4,	 5–7,	 and	8–10	 are	 the	 two‐slope,	 the	 left‐horizon-
tal,	 and	 the	 right‐horizontal	 variants,	 respectively,	 under	 the	 two‐
segment	condition.	As	for	the	three‐segment	condition,	due	to	the	
option	of	continuity	or	discontinuity	at	each	breakpoint	and	perfor-
mance	 (regression/slope	 iteration/direct	 inheritance)	 of	 each	 seg-
ment,	there	will	be	many	more	possible	forms	than	the	two‐segment	
condition.	So,	here,	we	just	randomly	choose	five	forms	(Equations	
11–15)	based	on	the	consideration	of	computational	load.	Equations	

12–14	comprise	 three	 regression	segments,	 in	which,	 a	 zero‐slope	
regression	segment	constitutes	Equations	12	and	14;	Equations	11	
and	15	comprise	two	regression	segments	and	a	direct‐inheritance	
segment	(Figure	1).

If	a	piecewise	model	is	discontinuous,	the	model	expression	will	
be	relatively	easier,	and	each	segment	can	be	depicted	as	(Y = c)	for	
a	zero‐slope	regression	or	(Y = c + z log A)	for	a	normal	regression.	
However,	 if	 a	 piecewise	model	 is	 continuous,	 the	model	 expres-
sion	will	be	more	complicated,	as	the	right	end	of	a	lower	segment	
has	 to	 be	 connected	 to	 the	 left	 end	 of	 an	 upper	 segment.	 And	
thus,	 to	unify	 the	expressions,	we	give	priority	 to	 the	expression	
of	 regression	 segments	 and	denote	 (Y = c)	 for	 zero‐slope	 regres-
sion	segments	and	(Y = c + z log A)	for	linear	regression	segments.	
Therefore,	Model	6	 (Figure	2;	expressed	as	 [Y = c	+	 (log	A > T)	z 
(log	A	−	T)	(Lomolino	&	Weiser,	2001)])	is	denoted	here	as	[Y = c1 + 
(log	A	≤	T1)	z1 T1	+	(log	A > T1)	z1 log A],	because,	in	this	way,	Y = c1 
+ z1 T1 when log A	≤	T1 and Y = c1 + z1 log A when log A > T1,	and	
it	can	be	clearly	seen	that	the	upper,	rather	than	the	lower,	part	is	
a	regression	segment.	Instead,	the	function	provided	by	Lomolino	
and	Weiser	 (2001)	 is	consistent	with	Equation	5	here,	denoting	a	
lower	zero‐slope	regression	segment	and	an	upper	slope‐iteration	
segment	(Figure	1).

We	used	a	minimum	residual	sum	of	squares	(RSS)	method	(Gao	
&	 Perry,	 2016a)	 to	 estimate	 the	 threshold	 values.	 For	 Equations	
2–15,	the	parameters	were	estimated	by	using	nonlinear	estimation	
procedures	based	on	iteration.	If	a	piecewise	model	is	continuous	at	
a	breakpoint,	then	the	breakpoint	lying	between	two	adjacent	data	
points	will	influence	the	RSS	value	of	the	model,	we	incremented	such	
breakpoint	values	(T)	by	0.001;	however,	if	a	piecewise	model	is	dis-
continuous	at	a	breakpoint,	then	the	breakpoint	lying	between	two	
adjacent	data	points	will	not	influence	the	RSS	value	of	the	model,	
so	we	assigned	the	breakpoint	values	(T)	to	the	log‐transformed	area	
values	 of	 each	 island	 (see	 Fig.	 S2–S10	 in	Appendix	 S2).	 Equations	
12–14	are	discontinuous,	so	we	assigned	the	first	breakpoint	values	
(T1)	to	the	log‐transformed	area	values	of	each	island,	and	at	any	par-
ticular	value	of	T1,	T2	was	assigned	to	the	log‐transformed	area	val-
ues	between	T1	and	the	maximum	log‐transformed	area	value.	We	
recorded	the	minimum	RSS	value	produced	by	the	iteration	of	T2	for	
each	particular	value	of	T1,	so	that	the	first	breakpoint	(T1)	was	deter-
mined	prior	to	the	second	one	(T2).	After	T1	was	determined,	we	run	
iteration	of	T2	again	to	look	for	the	T2	that	produced	the	minimum	
RSS	value	(see	Fig.	S12–S14	in	Appendix	S2).	For	Equations	11	and	
15,	we	assigned	the	second	breakpoint	values	(T2)	to	the	log‐trans-
formed	area	values	of	each	 island	or	 incremented	T2	 by	0.001	 for	
Equations	11	and	15,	respectively.	And	T1	was	incremented	from	the	
minimum	log‐transformed	area	value	to	T2	by	0.001.	We	recorded	
the	minimum	RSS	value	produced	by	the	iteration	of	T1	for	each	par-
ticular	value	of	T2,	so	that	the	second	breakpoint	(T2)	was	determined	
prior	to	the	first	one	(T1).	After	T2	was	determined,	we	run	iteration	

(14)

Y= ( logA≤T1)(c1+z1 logA) + ( logA>T1AND logA≤T2)(c2+z2 logA)

+ ( logA>T2)c3

(15)

Y= ( logA≤T1)(c1+z1 logA)+ ( logA>T1AND logA≤T2)

[(c1−c2+z1T1−z2T2)( logA−T1)∕(T1−T2)+c1

+z1T1]+ ( logA>T2)(c2+z2 logA)

F I G U R E  2  Results	of	model	selection	for	six	sample	datasets:	(a)	Solomon	Islands	birds	(sea‐level	species)	by	BIC,	(b)	Austria	semi‐natural	
grassland	Orthoptera	species	by	BIC,	(c)	Australian	Islands	mammals	by	AICc,	(d)	and	(e)	Aegean	Sea	isopods	by	AICc,	and	(f)	West	Indies	
herpetofauna	by	AIC.	We	analyzed	Aegean	Sea	isopods	for	both	with	(d)	and	without	(e)	the	largest	island
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of	T1	again	to	look	for	the	T1	that	produced	the	minimum	RSS	value	
(see	Fig.	S11;	Fig.	S15	in	Appendix	S2).

Both	the	Akaike's	information	criterion	(AIC;	AIC	was	applied	for	
Worldwide	 terrestrial	 mammals	 and	West	 Indies	 herpetofauna	 and	
Akaike's	information	criterion	corrected	(AICc)	for	the	other	taxonomic	
groups;	Burnham	&	Anderson,	2002)	and	the	Bayesian	information	cri-
terion	 (BIC)	were	applied,	 respectively,	 for	each	taxonomic	group	as	
criterions	for	model	selection	(Burnham	&	Anderson,	2002).	For	each	
model	in	each	taxonomic	group,	we	calculated	the	log‐likelihood	(log	
L),	which	was	used	to	determine	AIC	or	AICc	(hereafter	referred	to	as	
AIC(c)	 for	brevity),	 and	BIC,	 respectively.	We	also	calculated	 the	dif-
ference	in	AIC(c)	(∆AIC(c))	and	BIC	(∆BIC)	for	the	model	selection.	The	
model	with	 lower	AIC(c)	or	BIC	 (hereafter	referred	to	as	 IC	for	brev-
ity)	value	indicates	stronger	evidence	for	being	better	over	the	others.	
Models	with	ICs	less	than	two	apart	(∆IC	≤	2)	are	more	or	less	equiva-
lent	(equally	supported);	those	with	ICs	four	to	seven	apart	are	clearly	
distinguishable;	and	models	with	ICs	more	than	10	apart	are	definitely	
different	(Burnham	&	Anderson,	2002).

We	 evaluated	 the	 existence	 of	 an	 SIE	 within	 an	 island	 system	
by	 comparing	 the	 fit	 of	 a	 linear	 model	 (Equation	 1)	 with	 the	 other	
Equations	(2–15).	When	either	of	Equations	2–15	were	supported	as	
the	best	model	(∆IC	≤	2),	an	SIE	was	considered	to	be	present	(Lomolino	
&	Weiser,	2001).	Equations	5,	6,	7	11,	and	12	being	the	best	model	is	
considered	to	provide	stronger	support	for	the	SIE	than	Equations	2,	
3,	4,	13,	14,	and	15	(Morrison,	2014;	Wang	et	al.,	2016).	We	evaluated	
the	existence	of	a	steep–shallow	area	threshold	by	comparing	the	fit	of	
a	linear	model	(Equation	1)	with	Equations	8,	9,	10,	and	14.	If	Equations	
8,	9,	10,	or	14	are	supported	(∆IC	≤	2),	the	evidence	of	a	steep–shal-
low	 area	 threshold	 is	 found	 (Matthews	 et	 al.,	 2014).	We	 evaluated	
the	 threshold	 number	 of	 a	 dataset	 by	 comparing	 all	 the	 equations.	
Equation	 1	 has	 zero	 threshold,	 Equations	 2–10	 one	 threshold,	 and	
Equations	11–15	two	thresholds.	We	depicted	the	threshold	number	
of	a	dataset	as	the	average	number	of	thresholds	represented	by	all	
corresponding	models	that	had	equal	support	(∆IC	≤	2).	For	example,	if	
Equation	1	is	supported,	the	threshold	number	is	calculated	as	0/1	=	0;	
if	Equations	1,	2,	and	11	are	supported,	the	threshold	number	is	cal-
culated	as	(0	+	1+2)/3	=	1.	We	calculated	area	range	as	log	A(max)	−	log	
A(min),	which	reflected	how	many	orders	of	magnitude	that	island	size	
varies	across	a	studied	system.	We	applied	the	 log‐transformed	ver-
sion	of	species	range,	calculated	as	log	(S(max)	−	S(min)),	to	avoid	outlier	

effects	and	 improve	 linearity.	Last,	we	ran	 linear	regression	to	show	
the	relationship	between	threshold	number	and	area	range	as	well	as	
the	relationship	between	threshold	number	and	species	range,	using	
AIC(c)	and	BIC	for	model	selection,	respectively.	We	performed	all	anal-
yses	using	R	3.1.1	(R	Development	Core	Team,	2014).

3  | RESULTS

Among	the	68	global	island	datasets,	SIE	thresholds	were	detected	
in	58	cases	(85%)	and	46	cases	(68%)	using	AIC(c)	and	BIC,	respec-
tively,	whereas	steep–shallow	thresholds	were	detected	in	31	cases	
(46%)	and	19	cases	(28%)	using	AIC(c)	and	BIC,	respectively	(Table	1).	
Among	the	58	cases	 in	which	SIE	 thresholds	were	detected,	 two‐
segment	piecewise	models	were	supported	 in	35	cases	 (60%)	and	
three‐segment	piecewise	models	were	supported	in	42	cases	(72%)	
under	 AIC(c)	 criterion,	 whereas	 under	 BIC	 criterion,	 two‐segment	
piecewise	models	were	supported	in	36	cases	(78%)	and	three‐seg-
ment	piecewise	models	were	 supported	 in	16	 cases	 (35%)	 among	
the	 46	 cases	 in	 which	 SIE	 thresholds	 were	 detected	 (Table	 1).	
Among	 the	31	 cases	 in	which	 steep–shallow	 thresholds	were	 de-
tected,	two‐segment	piecewise	models	were	supported	in	11	cases	
(35%)	and	 three‐segment	piecewise	models	were	supported	 in	26	
cases	 (84%)	 under	 AIC(c)	 criterion,	 whereas	 under	 BIC	 criterion,	
two‐segment	piecewise	models	were	supported	 in	13	cases	 (68%)	
and	 three‐segment	piecewise	models	were	supported	 in	 six	cases	
(32%)	among	the	19	cases	in	which	steep–shallow	thresholds	were	
detected	(Table	1).

The	 number	 of	 area	 thresholds	 in	 SARs	 varied	 among	 groups	
(Figure	2;	Table	S2	in	Appendix	S1).	Model	selection	based	on	BIC	
identified	Equation	1	as	the	most	parsimonious	model	for	Solomon	
Islands	 birds	 (sea‐level	 species;	 Figure	 2a);	 Equations	 8	 and	 9	 as	
equally	 the	 most	 parsimonious	 models	 for	 Austria	 semi‐natural	
grassland	 Orthoptera	 species	 (Figure	 2b).	 Model	 selection	 based	
on	AIC(c)	 identified	Equations	2,	3,	5,	and	6	as	the	most	parsimoni-
ous	model	for	Australian	Islands	mammals	(Figure	2c);	and	Equation	
13	 as	 the	 most	 parsimonious	 model	 for	 Aegean	 Sea	 isopods	
(Figure	 2d)	 and	 West	 Indies	 herpetofauna	 (Figure	 2f).	 Moreover,	
different	 groups	 showed	different	 forms	of	 the	SAR	with	 increas-
ing	area:	steep–shallow,	shallow–steep,	shallow–steep–shallow,	and	

TA B L E  1  The	distribution	of	occurrence	frequency	across	model	segments	and	threshold	forms	determined	under	AIC(c)	and	BIC	model	
selection	criterions,	respectively,	for	the	68	global	datasets.	In	our	study,	models	with	∆IC	≤2	were	equally	supported,	and	therefore,	the	
sum	of	the	numbers	did	not	equal	68	(total	sample	size)

Model segments

AIC(c) BIC

SIE threshold
Steep–shallow 
threshold None threshold SIE threshold

Steep–shallow 
threshold None threshold

Linear	model — — 12 — — 31

Two‐segment	models 35 11 — 36 13 —

Three‐segment	models 42 26 — 16 6 —

Total	cases 58 31 12 46 19 31
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shallow–steep–steeper	relationships	for	Austria	semi‐natural	grass-
land	 Orthoptera	 species	 (Figure	 2b),	 Australian	 Islands	 mammals	
(Figure	2c),	Aegean	Sea	isopods	(Figure	2d),	and	West	Indies	herpe-
tofauna	(Figure	2f),	respectively.

We	compared	 the	 first	breakpoint	value	 (T1)	between	 the	best	
performing	 three‐segment	method	 and	 the	 best	 performing	 two‐
segment	method	 for	Aegean	 Sea	 isopods	 and	West	 Indies	 herpe-
tofauna,	 and	 found	 Equations	 2,	 3,	 and	 4	 were	 equally	 the	 most	
parsimonious	 models	 (mutual	 ∆AIC(c)	 ≤2)	 for	 the	 two‐segment	
method;	 moreover,	 T1	 estimated	 by	 Equations	 2,	 3,	 and	 4	 were	
larger	than	by	Equation	13	for	Aegean	Sea	isopods	(0.227–0.914	vs.	
−0.301;	Figure	2d;	Table	S2	 in	Appendix	S1)	 but	 smaller	 for	West	

Indies	herpetofauna	(−0.603–‐0.111	vs.	−0.022;	Figure	2f;	Table	S2	
in	Appendix	S1).

We	examined	whether	the	traditional	method	of	detecting	the	
SIE	is	still	robust	here	for	Australian	Islands	mammals,	Aegean	Sea	
isopods,	 and	 West	 Indies	 herpetofauna	 using	 AIC(c)	 as	 the	 crite-
rion	for	model	selection,	which	 is	widely	used	 in	other	SIE	studies	
(e.g.,	Morrison,	2014;	Wang	et	 al.,	 2016).	 For	Aegean	Sea	 isopods	
and	 West	 Indies	 herpetofauna,	 any	 choice	 of	 Equations	 2,	 3,	 4	
(one	threshold	without	a	left‐horizontal	segment)	were	better	than	
Equations	 5,	 6,	 7	 (one	 threshold	 with	 a	 left‐horizontal	 segment)	
but	worse	 than	Equation	11	 (two	 thresholds	with	a	 left‐horizontal	
segment);	however,	Equation	11	was	worse	than	Equation	13	(two	

F I G U R E  3  Linear	regression,	showing	the	relationship	between	threshold	number	and	log10‐transformed	area	range	(a	and	b)	and	species	
range	(c	and	d)	of	a	studied	system,	using	AIC(c)	and	BIC	for	model	selection,	respectively
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thresholds	without	a	left‐horizontal	segment;	Table	S2	in	Appendix	
S1).	For	Australian	Islands	mammals,	if	we	compare	Equation	4	with	
Equation	5	or	6,	no	slope	 for	 the	SIE	will	be	 the	conclusion;	how-
ever,	 if	we	compare	Equation	2	or	3	with	Equation	5,	6,	or	7,	 it	 is	
ambiguous	to	say	whether	there	is	a	slope	(Table	S2	in	Appendix	S1).	
Thereby,	the	traditional	method	of	detecting	the	SIE	is	not	robust,	
and	different	choices	of	model	comparison	can	lead	to	totally	differ-
ent	conclusions.

From	the	result	of	 linear	regressions	conducted	by	using	68	is-
land	datasets,	a	significant	positive	relationship	was	found	between	
threshold	number	and	area	range	under	both	AIC(c)	(p	<	0.01)	crite-
rion	and	BIC	criterion	(p	<	0.05;	Figure	3).	This	result	suggests	more	
species–area	patterns	could	be	detected	as	the	area	distributions	of	
sampled	islands	get	broader.	However,	no	obvious	relationship	was	
found	between	threshold	number	and	species	range	(Figure	3).

4  | DISCUSSION

Our	results	imply	both	SIE	thresholds	(58	cases,	85%	and	46	cases,	
68%	under	AIC(c)	and	BIC	criterions,	respectively)	and	steep–shallow	
thresholds	(31	cases,	46%	and	19	cases,	28%	under	AIC(c)	and	BIC	
criterions,	 respectively)	 are	 common	 in	 nature.	Under	AIC(c)	 crite-
rion,	three‐segment	piecewise	models	are	more	prevalent	(42	cases,	
72%	and	26	cases,	84%	in	detecting	SIE	and	steep–shallow	thresh-
olds,	respectively),	whereas	under	BIC	criterion,	two‐segment	piece-
wise	models	are	more	prevalent	(36	cases,	78%	and	13	cases,	68%	in	
detecting	SIE	and	steep–shallow	thresholds,	respectively).	Two‐seg-
ment	piecewise	models	have	been	widely	used	in	previous	studies	
(e.g.,	Lomolino	&	Weiser,	2001;	Dengler,	2010;	Wang	et	al.,	2016);	
however,	 three‐segment	piecewise	models,	despite	their	prevalent	
existence,	have	long	been	neglected.

The	 shallow–steep–shallow	 relationship	 for	 Aegean	 Sea	 iso-
pods	 (Figure	2d)	 is	 inconsistent	with	 the	 result	of	Dengler	 (2010)	
who	 detected	 only	 two	 segments;	 however,	 the	 three‐segment	
models	have	 lower	AICc	 values	 than	 those	of	 two‐segment	mod-
els.	The	first	two	SAR	patterns	(shallow–steep)	are	similar	to	those	
of	Australian	Islands	mammals,	and	two	possible	reasons	may	ex-
plain	 the	 last	pattern	 (shallow).	First,	 larger	 islands	normally	pos-
sess	larger	human	population	and	richer	natural	resources,	so	that	
a	more	advanced	economic	development	could	be	expected	(Gao	
&	Perry,	2016b;	Helmus,	Mahler,	&	Losos,	2014).	Thus,	human‐me-
diated	dispersal	among	those	large	islands	could	be	facilitated	and	
thereby	 lowering	 the	 slope	 of	 SAR.	 Second,	 species	 richness	 of	
isopods	might	be	 seriously	underestimated	 for	 the	 largest	 island,	
because	if	the	largest	island	is	removed,	a	shallow–steep–steeper	
relationship	 is	 obtained	 (Figure	 2e).	 The	 shallow–steep–steeper	
relationships	 of	Aegean	 Sea	 isopods	 (the	 largest	 island	 removed;	
Figure	 2e)	 and	West	 Indies	 herpetofauna	 are	 in	 accordance	with	
the	proposal	that	put	forward	by	Lomolino	and	Weiser	(2001)	and	
Rosenzweig	(2004),	which	states	three	biological	scales	of	species–
area	curve	with	 three	corresponding	dominant	processes	of	 spe-
cies	addition	and	slope	ranges.

Besides,	other	 factors	such	as	 regional	biogeographical	 setting	
(Gerstner,	 Dormann,	 Václavík,	 Kreft,	 &	 Seppelt,	 2014),	 historical	
events	(Hewitt,	2000;	Kisel,	McInnes,	Toomey,	&	Orme,	2011),	cli-
mate	change	(Lewis,	2006),	human	activities	(Corlett,	2015;	Gao	&	
Perry,	2016b),	and	fire	and	other	ecological	disturbances	(Blondel	&	
Vigne,	1993)	may	also	be	responsible	for	the	variation	among	organ-
isms	in	their	response	to	a	particular	physical	setting,	sensitivity	to	
barriers	 to	dispersal,	 and	habitat	extent	 requirement	 for	prolifera-
tion	and	diversification	(Blondel	&	Vigne,	1993;	Reyjol	et	al.,	2007).	
All	these	factors,	acting	either	additively	or	synergistically,	may	in-
fluence	 the	 proposed	 species–area	 patterns	 across	 portion	 or	 the	
whole	scale.	Thereby,	the	larger	size	range	with	a	larger	number	of	
sampled	islands,	the	more	detailed	factors	shaping	the	patterns	could	
be	depicted,	and	the	more	kind	of	SARs	might	be	detected.	Thus,	the	
number	of	thresholds	is	positively	correlated	with	the	area	range	of	
a	studied	system,	which	is	consistent	with	Matthews,	Triantis,	et	al.	
(2016)	 and	Wang	et	 al.	 (2016).	 In	 contrast,	 species	 range	 received	
considerably	less	support	in	determining	the	number	of	thresholds.	
The	main	reason	for	the	weak	relationships	is	probably	that	species	
range	is	less	effective	in	determining	the	limits	of	the	SIE	and	evolu-
tionary	processes	considering	different	taxonomic	group,	island	age,	
and	human	influence	among	the	studied	systems	and	is	less	likely	to	
correlate	to	area	range.

The	currently	widely	used	method	 for	detecting	 the	SIE	 is	not	
robust.	 First,	 although	 a	 two‐segment	 left‐horizontal	 function	
performs	 better	 than	 a	 two‐slope	 function,	 it	may	 be	worse	 than	
a	 three‐slope	 function;	 and/or	although	a	 two‐slope	 function	per-
forms	better	than	a	two‐segment	left‐horizontal	function,	it	may	be	
worse	 than	 a	 three‐segment	 left‐horizontal	 function	 (e.g.,	 Aegean	
Sea	isopods;	West	Indies	herpetofauna).	Second,	even	if	under	the	
two‐segment	 circumstances,	 different	 choices	 of	 comparison	 be-
tween	two	models	with	and	without	a	left‐horizontal	part	may	lead	
to	totally	different	conclusions	(e.g.,	Australian	Islands	mammals).	It	
implies	that	the	currently	available	but	incomprehensive	piecewise	
models	may	provide	a	biased	result	in	detecting	the	SIE.	Therefore,	
we	suggest	previous	SIE	detection	works	conducted	using	an	incom-
prehensive	 set	 of	 piecewise	models,	while	 ignoring	 the	 possibility	
of	three	segments	need	to	be	reanalyzed.	It	is	very	important	to	do	
so	because	 the	 threshold	value,	where	 the	slope	changes,	may	be	
important	for	a	successful	application	of	island	theory	to	conserva-
tion	biogeography	(Triantis	&	Bhagwat,	2011).	However,	the	incom-
prehensive	set	of	piecewise	models	may	provide	a	misleading	result	
on	the	existence	of	an	SIE;	moreover,	 the	traditional	 two‐segment	
method	may	 cause	poor	estimations	 for	both	 slope	and	 threshold	
value	of	an	SIE.	 In	order	 to	 improve	 the	method	for	detecting	 the	
SIE,	we	suggest	that	it	is	essential	to	determine	the	number	of	area	
thresholds	 and	 apply	 a	 comprehensive	 set	 of	 piecewise	 models	
rather	than	just	as	few	as	two.	We	agree	with	the	suggestions	that	a	
large	sample	size	and	small	or	even	empty	islands	should	be	included	
in	analyzing	the	SAR	of	a	system	 (Matthews	et	al.,	2014;	Wang	et	
al.,	 2016).	 For	 instance,	 if	 some	more	 large	 islands	 (e.g.,	Australia)	
were	included	into	Australian	Islands	mammals,	a	third	species–area	
pattern	with	a	higher	 slope	might	appear;	 and	 if	 some	more	 small	
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empty	 islands	 were	 included	 into	 Austrian	 semi‐natural	 grassland	
Orthoptera	 species,	 an	 SIE	 might	 appear.	 Besides,	 more	 precise	
threshold	values	could	be	obtained	if	a	complete	sampling	effort	was	
taken	and	a	large	sample	size	was	included.

Although	the	three‐segment	piecewise	regressions	could	display	
two	area	thresholds	proposed	by	Lomolino	and	Weiser	(2001)	and	
Rosenzweig	 (2004)	 and	may	 provide	 better	 estimations	 for	 slope	
and	threshold	value	within	an	SIE,	they	incorporate	more	parame-
ters	into	the	models,	which	in	turn	will	decrease	the	statistical	power	
for	the	robustness	as	compared	with	the	two‐segment	regressions	
using	 the	same	data	size.	Therefore,	a	 larger	number	of	 surveyed	
islands	in	the	dataset	are	required	for	the	applicability	of	three‐seg-
ment	approach.	To	ensure	an	adequate	island	number	incorporated	
in	the	dataset,	we	suggest,	first,	empty	islands	from	a	smaller	spatial	
scale	 are	welcomed	 to	 be	 collected	 because	 the	 effect	 of	 empty	
islands	in	generating	SIEs	is	prevalent	(Wang	et	al.,	2016).	Second,	
an	incomplete	sampling	effort	is	usually	taken,	leaving	many	other	
islands	in	the	studied	system	uninvestigated	(e.g.,	Davies	&	Smith,	
1998;	Panitsa,	Tzanoudakis,	Triantis,	&	Sfenthourakis,	2006;	Wang,	
Bao,	Yu,	Xu,	&	Ding,	2010).	However,	 the	 applicability	of	 compli-
cated	models	 declines	 from	 relatively	 complete	 island	 lists	 to	 ex-
tremely	 incomplete	ones,	so	we	suggest	 island	collection	 is	ought	
to	be	complete	at	 the	current	 studied	spatial	 scale	 to	allow	more	
complex	 models	 tested.	 Third,	 sometimes	 a	 surveyed	 location	 is	
involved	 in	 a	 larger‐scale	 system,	 for	 instance,	 Bahamas,	 where	
Morrison	(2014)	studied	the	SIE	of	plants,	is	actually	a	portion	of	the	
whole	West	Indies	region.	The	regional	SAR	patterns	could	give	in-
sight	into	the	causes	of	local	patterns	(Schrader,	Moeljono,	Keppel,	
&	Kreft,	2019),	 so	 islands	collected	 from	a	 larger	spatial	 scale	are	
also	suggested.

Determining	the	number	of	area	thresholds	 in	a	system	 is	crit-
ical	to	estimating	the	precise	species–area	patterns.	Thus,	we	sug-
gest	 previous	 piecewise	 regression	 and	 SIE	 detection	works	 need	
to	be	 reanalyzed.	 Two	 thresholds	 rather	 than	one	 shine	new	 light	
on	conservation	biogeography:	First,	it	offers	opportunity	to	assess	
variables	such	as	habitat	diversity,	productivity,	 island	age,	energy,	
and	environmental	heterogeneity	(Anderson	&	Wait,	2001;	Tjørve	&	
Tjørve,	2011;	Whitehead	&	Jones,	1969)	within	the	limits	of	the	first	
threshold	 value;	 second,	 speciation	may	 be	 the	 dominant	 process	
adding	to	the	species	richness	of	assemblages	beyond	the	limits	of	
the	second	threshold	value	(Losos	&	Schluter,	2000);	third,	habitat	
diversity,	 carrying	 capacity,	 and	 extinction/immigration	 dynamics	
as	envisioned	by	MacArthur	and	Wilson	(1967)	may	govern	species	
richness	between	the	first	and	second	threshold	values;	fourth,	it	ap-
preciates	other	factors,	such	as	historical	events	(Hewitt,	2000;	Kisel	
et	al.,	2011),	climate	change	(Lewis,	2006),	human	activities	(Corlett,	
2015;	Gao	&	Perry,	2016b),	and	so	on,	to	exert	their	influence	across	
portion	or	the	whole	scale;	and	last,	the	rate	of	biodiversity	loss	from	
habitat	loss	varies	among	three	area	intervals,	and	thus,	two	thresh-
olds	can	effectively	facilitate	the	establishment	of	protection	prior-
ity	level	among	islands	and	maximize	the	diversity	saved	in	a	system	
with	limited	funds	for	conservation.	We	conclude	that	conservation	
biologists	 and	 applied	 ecologists	 should	 determine	 the	 number	 of	

area	thresholds	when	estimating	the	precise	species–area	patterns	
and	making	management	strategies	in	fragmented	landscapes.

Despite	the	widespread	use	of	the	AIC,	some	believe	that	it	is	too	
liberal	 and	 tends	 to	 select	 overly	 complex	models	 (Kass	&	Raftery,	
1995).	As	compared	to	the	AIC,	the	BIC	is	more	conservative,	insisting	
on	a	greater	improvement	in	fit	before	it	will	accept	a	more	complex	
model	 (Link	&	Barker,	 2006).	 That	 is	 the	 reason	why	 in	 our	 results	
three‐segment	piecewise	models	are	more	prevalent	under	AIC(c) cri-
terion	in	finding	SIE	and	steep–shallow	thresholds,	as	well	as	the	lower	
slope	and	less	significant	p‐value	of	the	relationship	between	thresh-
old	number	and	area	range	under	BIC	criterion.	However,	the	merits	
and	debits	of	AIC	and	BIC	remain	controversial,	and	a	formal	compari-
son	in	terms	of	performance	between	AIC	and	BIC	is	very	difficult	(cf.	
Burnham	&	Anderson,	2002,	pp.	293–305,	for	a	pro‐AIC	account,	and	
Kass	&	Raftery,	1995,	for	a	pro‐BIC	account),	so	we	used	both	criteria	
rather	than	one.	To	date,	although	there	are	a	number	of	species–area	
pattern	studies,	the	AIC	was	dominantly	applied.	Our	study	is	among	
the	first	attempt	to	apply	both	criterions	for	model	selection	in	this	
field.	Besides,	previous	studies	concerning	SARs	and	SIEs	comprised	a	
large	portion	of	island‐poor	(<20	islands)	archipelagoes	in	the	analyses	
(e.g.,	Matthews,	Guilhaumon,	Triantis,	Borregaard,	&	Whittaker,	2016;	
Triantis	et	al.,	2012;	Wang	et	al.,	2016).	Instead,	to	meet	the	complex-
ity	of	 the	piecewise	 regression	models,	we	selected	 island	datasets	
with	>	40	 islands	 in	each	case.	Our	study	on	piecewise	models	and	
species–area	patterns	thus	provide	reliable	results,	contributing	to	the	
recent	heated	disputes	on	the	SIE	theory	and	expanding	our	horizons	
on	SAR	thresholds	at	different	spatial	scales.
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