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Abstract
Aim: Area thresholds, at which the form of the species–area relationship (SAR) 
changes abruptly, have played an important role in the theoretical framework of 
conservation biogeography and biodiversity research. The application of piecewise 
regressions has been advocated as a rigorous statistical technique to identify such 
thresholds within SARs, but a large variety of piecewise models remains untested. 
We explore the prevalence and number of thresholds in SARs and examine whether 
the currently widely used method for detecting the small island effect (SIE) is robust.
Location: Global.
Taxon: We consider all multicellular taxa based on the criteria of datasets selection.
Methods: We apply 15 regression models, including linear regression and piece-
wise regressions with two and three segments to 68 global island datasets that are 
sourced from the literature.
Results: The number of area thresholds in SARs varied among groups and correlated 
positively with area range of a studied system. Under the AIC or AICc criterion, three‐
segment piecewise models were more prevalent, whereas under the BIC criterion, 
two‐segment piecewise models were more prevalent. From the results of Aegean 
Sea isopods, West Indies herpetofauna, and Australian Islands mammals, we found 
evidence that the traditional criteria for detection of SIEs are not robust.
Main conclusions: Our study demonstrates that (a) to detect an SIE, the comparison 
should use as many models as possible, including not only variants with and without 
a left‐horizontal part, but also those with two and more segments; (b) naive use of the 
traditional two‐segment piecewise regressions may cause poor estimations of both 
slope and breakpoint values; (c) the number of thresholds increases with the area 
range of a studied system; (d) conservation biologists and applied ecologists should 
determine the number of area thresholds when estimating the precise species–area 
patterns and making management strategies in fragmented landscapes.
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1  | INTRODUC TION

The species–area relationship (SAR), fundamental to the develop-
ment of MacArthur and Wilson's (1963, 1967) equilibrium theory 
and island biogeography, has great utility for assessing species di-
versity and conservation needs (Ladle & Whittaker, 2011; Lomolino, 
2000). Insights from SARs have been applied in optimal reserve 
design (Neigel, 2003), identifying biodiversity hotspots (Fattorini, 
2007), and assessing the impact that habitat fragmentation exerts 
on diversity (Harcourt & Doherty, 2005). However, debate continues 
as to the applicability of island biogeographic theory in the context 
of habitat fragmentation (Laurance, 2008), because as species–area 
studies began to accumulate, scholars have found evidence for non-
linearity of log‐transformed SARs.

Some studies showing thresholds in SARs depict a steep–
shallow relationship, with an initially rapid increase in richness 
with area until a threshold is reached beyond which a slow rate 
of increase applies (Drinnan, 2005; Fahrig, 2001; Matthews, 
Steinbauer, Tzirkalli, Triantis, & Whittaker, 2014). Others depict 
a shallow–steep relationship, showing an initially slow rate of (or 
no) increase in richness with increasing area, followed by a steeper 
phase beyond a threshold, often named the small island effect (SIE; 
Morrison, 2014; Triantis et al., 2006; Wang, Chen, & Millien, 2018; 
Wang, Millien, & Ding, 2016). Although around 20 functions have 
been described for fitting SARs (Triantis, Guilhaumon, & Whittaker, 
2012), piecewise regression has been advocated as a rigorous sta-
tistical technique suitable for identifying area thresholds (Ficetola 
& Denoёl, 2009).

Currently, four piecewise regression functions are found in the 
literature: (a) continuous left‐horizontal function [Y = c + (log A > T) 
z (log A − T) (Lomolino & Weiser, 2001)]; (b) continuous two‐slope 
function [Y  =  c + (log A  ≤ T) z1 log A + (log A  >  T) [z1 T  +  z2 (log 
A − T)] (Dengler, 2010; Morrison & Spiller, 2008)]; (c) discontinuous 
two‐slope function [Y = (log A ≤ T) (c1 + z1 log A) + (log A > T) (c2 + z2 
log A) (Gentile & Argano, 2005)]; and (d) continuous right‐horizontal 
function [Y = c + (log A ≤ T) z log A + (log A > T) z T (Dengler, 2010)]. 
Several shortcomings in the applications of piecewise models per-
sist, however.

First, it is conceivable that discontinuous relationships with dis-
connected SAR segments may exist in nature (Gentile & Argano, 
2005; Maron et al., 2012), and their detection in a few datasets 
most likely signifies important roles for confounding variables that 
were not included in the models, such as isolation or matrix effects 
(Crowe, 1979; Levenson, 1981; Matthews et al., 2014). However, 
discontinuous function is only allowed in the two‐slope method, 
where two linear segments are fitted onto the data (Gentile & 
Argano, 2005).

Second, the current continuous models include one segment 
obtained by regression and the other one obtained by nonregres-
sion: slope iteration for the continuous two‐slope function (Dengler, 
2010; Morrison & Spiller, 2008) or direct inheritance for the contin-
uous left‐horizontal (Lomolino & Weiser, 2001) and the continuous 

right‐horizontal (Dengler, 2010) functions. However, either segment 
could be obtained by regression, that is, if the upper segment is the 
regression part, the lower segment will be the nonregression one, 
and vice versa. So, each method actually has two possible expres-
sion and calculation forms rather than one, which is neglected in the 
literature.

Third, piecewise models with two segments have been widely 
used in previous studies (e.g., Dengler, 2010; Lomolino & Weiser, 
2001; Wang et al., 2016). However, Lomolino and Weiser (2001) and 
Rosenzweig (2004) proposed three biological scales of species–area 
curves with three corresponding dominant processes of species ad-
dition: (a) stochastic extinction forces structure insular communities 
on small islands; (b) more deterministic, ecological factors associated 
with habitat diversity, carrying capacity and extinction/immigration 
dynamics as envisioned by MacArthur and Wilson (1967) on islands 
of intermediate size; and (c) in situ speciation on relatively large is-
lands. Therefore, limiting our attention to just one or two species–
area patterns is unreasonable.

In recent work on detecting the SIE of herpetofauna of the West 
Indies, Gao and Perry (2016a) showed that piecewise regressions 
with three segments performed better than those of two segments, 
suggesting piecewise models with more than two segments should 
be considered. Dengler (2010) proposed that model comparisons 
should include at least one variant without an SIE, one with a left‐
horizontal function, and one with a two‐slope function. And there-
after, datasets fitted best by the left‐horizontal function are thought 
to provide stronger evidence for an SIE than those fitted best by the 
two‐slope function (Morrison, 2014; Wang et al., 2016). However, 
Dengler's (2010) proposal is based on currently incomprehensive 
piecewise models, which are restricted to a maximum of two slopes, 
so we question the reliability of the method for detecting the SIE.

The aim of this paper was thus twofold. First, we provide an up-
dated synthetic analysis of piecewise models to the SARs of 68 island 
datasets, representing different geographic regions, taxa, and size 
ranges. We discuss whether the currently widely used method for 
detecting the SIE is robust when other piecewise models are taken 
into account. Second, we examine whether larger sample size range 
and larger species range lead to detection of more area thresholds.

2  | METHODS

2.1 | Data collection

Between May 2015 and July 2017, we searched for true and 
habitat island studies and relevant datasets within four main ab-
stracting databases (JSTOR, ISI Web of Knowledge, and BIOSIS 
Biological Abstracts) using the keywords “species richness,” “frag-
ments,” “small island effect,” and “islands” in different combina-
tions. Cross‐referenced papers derived from the reference lists of 
sourced papers were also included. More than a thousand journal 
papers, books, reports, online databases, and unpublished re-
sources were screened. To increase the statistical power for the 



     |  8353GAO et al.

robustness of piecewise models, however, we only included data-
sets that met the following criteria: (a) islands constituted discrete 
patches of habitat surrounded by contrasting habitat; (b) there 
were at least 40 islands within each dataset; (c) the area and spe-
cies richness of each island were accessible either in the source 
publication or from the authors of the source papers; and (d) the 
dataset derived from a source did not overlap with those from any 
other sources (data for different taxa within the same study sys-
tem were accepted).

For Aegean Sea isopods, we removed the largest island from the 
dataset and formed a new dataset to facilitate further comparison. 
Finally, 68 datasets from 38 sources (see Appendix S1 in Supporting 
Information) were retained for further analyses.

2.2 | Statistical analyses

We fitted a linear model (Equation 1) alongside 14 piecewise models 
(Equations 2–15; Figure 1) to each dataset.

(1)Y= c1+z1 logA

(2)Y= c1+ ( logA≤T1)z1 logA+ ( logA>T1)[z1T1+z2( logA−T1)]

(3)Y= c1+ ( logA≤T1)[z1 logA+ (z2−z1)T1]+ ( logA>T1)z2 logA

(4)Y= ( logA≤T1)(c1+z1 logA)+ ( logA>T1)(c2+z2 logA)

(5)Y= c1+ ( logA>T1)z1( logA−T1)

(6)Y= c1+ ( logA≤T1)z1T1+ ( logA>T1)z1 logA

(7)Y= ( logA≤T1)c1+ ( logA>T1)(c2+z1 logA)

(8)Y= c1+ ( logA≤T1)z1 logA+ ( logA>T1)z1T1

(9)Y= c1+ ( logA≤T1)z1( logA−T1)

(10)Y= ( logA≤T1)(c1+z1 logA)+ ( logA>T1)c2

(11)
Y= ( logA≤T2)[c1+ ( logA≤T1)z1T1+ ( logA>T1)z1 logA]

+( logA>T2)(c2+z2 logA)

(12)
Y= ( logA≤T1)c1 + ( logA>T1AND logA≤T2)(c2+z1 logA)+

( logA>T2)(c3+z2 logA)

(13)
Y= ( logA≤T1)(c1+z1 logA)+ ( logA>T1AND logA≤T2)(c2+z2 logA)

+( logA>T2)(c3+z3 logA)

F I G U R E  1  Schematic illustration of the function and derivation of each segment in each model. Red line signifies the segment is 
obtained by regression; green line signifies segment is obtained by slope iteration; and black line signifies the segment is obtained by direct 
inheritance. The illustrated slope of each segment (excluding the horizontal segment) in each model does not imply the actual relative 
shallowness or steepness in data analysis. We denote the x‐axis as log (A) (km2), and the y‐axis as Y, which stands for species richness S or log 
S for semi‐log and log–log versions of the model, respectively
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In these equations, Y stands for species richness S or log S for 
semi‐log and log–log versions of the model, respectively, A for area 
(in the unit of km2), while ci (intercept), zi (slope), and Ti (breakpoint) 
are fitted parameters. The logical AND operator combines two logi-
cal operands that have a value true or false. The expression combined 
by logical AND evaluates to true if both operands log A > T1 and log 
A ≤ T2 evaluate to true; if either or both of the operands for the logi-
cal AND operator are false, the result of the expression is false. The 
logical expressions in brackets return value 1 if they are true and 0 if 
they are false. Islands that have no species recorded were involved 
in multiple datasets (see Table S1 in Appendix S1). In some datasets, 
there were lots of small islands, very few large ones, and a large gap 
in between. To improve statistical rigor and avoid outlier effects, all 
datasets, with the exception of the three large datasets mentioned 
below, were analyzed with the log–log versions of the model. Since 
removing observations is not favored (Williamson, 1981), we used 
the traditional log (S + 1) for the datasets that includes empty islands, 
which is consistent with the treatment applied by Suarez, Bolger, 
and Case (1998), Lavin et al. (2001), and Gao and Perry (2016a). For 
Aegean Sea isopods, Aegean Sea centipedes, and Italian islands cen-
tipedes (see Table S1 in Appendix S1), we used S rather than log S 
based on two considerations: (a) Species richness values distribute 
pretty continuously, and log transformation is unnecessary and (b) 
both Sfenthourakis and Triantis (2009) and Dengler (2010) have 
used the untransformed version in their analyses, so we follow this 
to facilitate the comparison among our results as well as to those of 
Dengler (2010).

Equations 2–10 are the comprehensive possible function forms 
for the two‐segment piecewise method, in which Equations 2 and 
3 comprise a regression segment and a slope‐iteration segment; 
Equation 4 comprises two regression segments; Equations 5 and 
9 comprise a zero‐slope regression segment and a slope‐iteration 
segment; Equations 7 and 10 comprise a regression segment and 
a zero‐slope regression segment; and Equations 6 and 8 comprise 
a regression segment and a direct‐inheritance segment (Figure 1). 
Equations 2–4, 5–7, and 8–10 are the two‐slope, the left‐horizon-
tal, and the right‐horizontal variants, respectively, under the two‐
segment condition. As for the three‐segment condition, due to the 
option of continuity or discontinuity at each breakpoint and perfor-
mance (regression/slope iteration/direct inheritance) of each seg-
ment, there will be many more possible forms than the two‐segment 
condition. So, here, we just randomly choose five forms (Equations 
11–15) based on the consideration of computational load. Equations 

12–14 comprise three regression segments, in which, a zero‐slope 
regression segment constitutes Equations 12 and 14; Equations 11 
and 15 comprise two regression segments and a direct‐inheritance 
segment (Figure 1).

If a piecewise model is discontinuous, the model expression will 
be relatively easier, and each segment can be depicted as (Y = c) for 
a zero‐slope regression or (Y = c + z log A) for a normal regression. 
However, if a piecewise model is continuous, the model expres-
sion will be more complicated, as the right end of a lower segment 
has to be connected to the left end of an upper segment. And 
thus, to unify the expressions, we give priority to the expression 
of regression segments and denote (Y  =  c) for zero‐slope regres-
sion segments and (Y = c + z log A) for linear regression segments. 
Therefore, Model 6 (Figure 2; expressed as [Y = c + (log A > T) z 
(log A − T) (Lomolino & Weiser, 2001)]) is denoted here as [Y = c1 + 
(log A ≤ T1) z1 T1 + (log A > T1) z1 log A], because, in this way, Y = c1 
+ z1 T1 when log A ≤ T1 and Y = c1 + z1 log A when log A > T1, and 
it can be clearly seen that the upper, rather than the lower, part is 
a regression segment. Instead, the function provided by Lomolino 
and Weiser (2001) is consistent with Equation 5 here, denoting a 
lower zero‐slope regression segment and an upper slope‐iteration 
segment (Figure 1).

We used a minimum residual sum of squares (RSS) method (Gao 
& Perry, 2016a) to estimate the threshold values. For Equations 
2–15, the parameters were estimated by using nonlinear estimation 
procedures based on iteration. If a piecewise model is continuous at 
a breakpoint, then the breakpoint lying between two adjacent data 
points will influence the RSS value of the model, we incremented such 
breakpoint values (T) by 0.001; however, if a piecewise model is dis-
continuous at a breakpoint, then the breakpoint lying between two 
adjacent data points will not influence the RSS value of the model, 
so we assigned the breakpoint values (T) to the log‐transformed area 
values of each island (see Fig. S2–S10 in Appendix S2). Equations 
12–14 are discontinuous, so we assigned the first breakpoint values 
(T1) to the log‐transformed area values of each island, and at any par-
ticular value of T1, T2 was assigned to the log‐transformed area val-
ues between T1 and the maximum log‐transformed area value. We 
recorded the minimum RSS value produced by the iteration of T2 for 
each particular value of T1, so that the first breakpoint (T1) was deter-
mined prior to the second one (T2). After T1 was determined, we run 
iteration of T2 again to look for the T2 that produced the minimum 
RSS value (see Fig. S12–S14 in Appendix S2). For Equations 11 and 
15, we assigned the second breakpoint values (T2) to the log‐trans-
formed area values of each island or incremented T2 by 0.001 for 
Equations 11 and 15, respectively. And T1 was incremented from the 
minimum log‐transformed area value to T2 by 0.001. We recorded 
the minimum RSS value produced by the iteration of T1 for each par-
ticular value of T2, so that the second breakpoint (T2) was determined 
prior to the first one (T1). After T2 was determined, we run iteration 

(14)

Y= ( logA≤T1)(c1+z1 logA) + ( logA>T1AND logA≤T2)(c2+z2 logA)

+ ( logA>T2)c3

(15)

Y= ( logA≤T1)(c1+z1 logA)+ ( logA>T1AND logA≤T2)

[(c1−c2+z1T1−z2T2)( logA−T1)∕(T1−T2)+c1

+z1T1]+ ( logA>T2)(c2+z2 logA)

F I G U R E  2  Results of model selection for six sample datasets: (a) Solomon Islands birds (sea‐level species) by BIC, (b) Austria semi‐natural 
grassland Orthoptera species by BIC, (c) Australian Islands mammals by AICc, (d) and (e) Aegean Sea isopods by AICc, and (f) West Indies 
herpetofauna by AIC. We analyzed Aegean Sea isopods for both with (d) and without (e) the largest island
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of T1 again to look for the T1 that produced the minimum RSS value 
(see Fig. S11; Fig. S15 in Appendix S2).

Both the Akaike's information criterion (AIC; AIC was applied for 
Worldwide terrestrial mammals and West Indies herpetofauna and 
Akaike's information criterion corrected (AICc) for the other taxonomic 
groups; Burnham & Anderson, 2002) and the Bayesian information cri-
terion (BIC) were applied, respectively, for each taxonomic group as 
criterions for model selection (Burnham & Anderson, 2002). For each 
model in each taxonomic group, we calculated the log‐likelihood (log 
L), which was used to determine AIC or AICc (hereafter referred to as 
AIC(c) for brevity), and BIC, respectively. We also calculated the dif-
ference in AIC(c) (∆AIC(c)) and BIC (∆BIC) for the model selection. The 
model with lower AIC(c) or BIC (hereafter referred to as IC for brev-
ity) value indicates stronger evidence for being better over the others. 
Models with ICs less than two apart (∆IC ≤ 2) are more or less equiva-
lent (equally supported); those with ICs four to seven apart are clearly 
distinguishable; and models with ICs more than 10 apart are definitely 
different (Burnham & Anderson, 2002).

We evaluated the existence of an SIE within an island system 
by comparing the fit of a linear model (Equation 1) with the other 
Equations (2–15). When either of Equations 2–15 were supported as 
the best model (∆IC ≤ 2), an SIE was considered to be present (Lomolino 
& Weiser, 2001). Equations 5, 6, 7 11, and 12 being the best model is 
considered to provide stronger support for the SIE than Equations 2, 
3, 4, 13, 14, and 15 (Morrison, 2014; Wang et al., 2016). We evaluated 
the existence of a steep–shallow area threshold by comparing the fit of 
a linear model (Equation 1) with Equations 8, 9, 10, and 14. If Equations 
8, 9, 10, or 14 are supported (∆IC ≤ 2), the evidence of a steep–shal-
low area threshold is found (Matthews et al., 2014). We evaluated 
the threshold number of a dataset by comparing all the equations. 
Equation 1 has zero threshold, Equations 2–10 one threshold, and 
Equations 11–15 two thresholds. We depicted the threshold number 
of a dataset as the average number of thresholds represented by all 
corresponding models that had equal support (∆IC ≤ 2). For example, if 
Equation 1 is supported, the threshold number is calculated as 0/1 = 0; 
if Equations 1, 2, and 11 are supported, the threshold number is cal-
culated as (0 + 1+2)/3 = 1. We calculated area range as log A(max) − log 
A(min), which reflected how many orders of magnitude that island size 
varies across a studied system. We applied the log‐transformed ver-
sion of species range, calculated as log (S(max) − S(min)), to avoid outlier 

effects and improve linearity. Last, we ran linear regression to show 
the relationship between threshold number and area range as well as 
the relationship between threshold number and species range, using 
AIC(c) and BIC for model selection, respectively. We performed all anal-
yses using R 3.1.1 (R Development Core Team, 2014).

3  | RESULTS

Among the 68 global island datasets, SIE thresholds were detected 
in 58 cases (85%) and 46 cases (68%) using AIC(c) and BIC, respec-
tively, whereas steep–shallow thresholds were detected in 31 cases 
(46%) and 19 cases (28%) using AIC(c) and BIC, respectively (Table 1). 
Among the 58 cases in which SIE thresholds were detected, two‐
segment piecewise models were supported in 35 cases (60%) and 
three‐segment piecewise models were supported in 42 cases (72%) 
under AIC(c) criterion, whereas under BIC criterion, two‐segment 
piecewise models were supported in 36 cases (78%) and three‐seg-
ment piecewise models were supported in 16 cases (35%) among 
the 46 cases in which SIE thresholds were detected (Table 1). 
Among the 31 cases in which steep–shallow thresholds were de-
tected, two‐segment piecewise models were supported in 11 cases 
(35%) and three‐segment piecewise models were supported in 26 
cases (84%) under AIC(c) criterion, whereas under BIC criterion, 
two‐segment piecewise models were supported in 13 cases (68%) 
and three‐segment piecewise models were supported in six cases 
(32%) among the 19 cases in which steep–shallow thresholds were 
detected (Table 1).

The number of area thresholds in SARs varied among groups 
(Figure 2; Table S2 in Appendix S1). Model selection based on BIC 
identified Equation 1 as the most parsimonious model for Solomon 
Islands birds (sea‐level species; Figure 2a); Equations 8 and 9 as 
equally the most parsimonious models for Austria semi‐natural 
grassland Orthoptera species (Figure 2b). Model selection based 
on AIC(c) identified Equations 2, 3, 5, and 6 as the most parsimoni-
ous model for Australian Islands mammals (Figure 2c); and Equation 
13 as the most parsimonious model for Aegean Sea isopods 
(Figure 2d) and West Indies herpetofauna (Figure 2f). Moreover, 
different groups showed different forms of the SAR with increas-
ing area: steep–shallow, shallow–steep, shallow–steep–shallow, and 

TA B L E  1  The distribution of occurrence frequency across model segments and threshold forms determined under AIC(c) and BIC model 
selection criterions, respectively, for the 68 global datasets. In our study, models with ∆IC ≤2 were equally supported, and therefore, the 
sum of the numbers did not equal 68 (total sample size)

Model segments

AIC(c) BIC

SIE threshold
Steep–shallow 
threshold None threshold SIE threshold

Steep–shallow 
threshold None threshold

Linear model — — 12 — — 31

Two‐segment models 35 11 — 36 13 —

Three‐segment models 42 26 — 16 6 —

Total cases 58 31 12 46 19 31
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shallow–steep–steeper relationships for Austria semi‐natural grass-
land Orthoptera species (Figure 2b), Australian Islands mammals 
(Figure 2c), Aegean Sea isopods (Figure 2d), and West Indies herpe-
tofauna (Figure 2f), respectively.

We compared the first breakpoint value (T1) between the best 
performing three‐segment method and the best performing two‐
segment method for Aegean Sea isopods and West Indies herpe-
tofauna, and found Equations 2, 3, and 4 were equally the most 
parsimonious models (mutual ∆AIC(c) ≤2) for the two‐segment 
method; moreover, T1 estimated by Equations 2, 3, and 4 were 
larger than by Equation 13 for Aegean Sea isopods (0.227–0.914 vs. 
−0.301; Figure 2d; Table S2 in Appendix S1) but smaller for West 

Indies herpetofauna (−0.603–‐0.111 vs. −0.022; Figure 2f; Table S2 
in Appendix S1).

We examined whether the traditional method of detecting the 
SIE is still robust here for Australian Islands mammals, Aegean Sea 
isopods, and West Indies herpetofauna using AIC(c) as the crite-
rion for model selection, which is widely used in other SIE studies 
(e.g., Morrison, 2014; Wang et al., 2016). For Aegean Sea isopods 
and West Indies herpetofauna, any choice of Equations 2, 3, 4 
(one threshold without a left‐horizontal segment) were better than 
Equations 5, 6, 7 (one threshold with a left‐horizontal segment) 
but worse than Equation 11 (two thresholds with a left‐horizontal 
segment); however, Equation 11 was worse than Equation 13 (two 

F I G U R E  3  Linear regression, showing the relationship between threshold number and log10‐transformed area range (a and b) and species 
range (c and d) of a studied system, using AIC(c) and BIC for model selection, respectively
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thresholds without a left‐horizontal segment; Table S2 in Appendix 
S1). For Australian Islands mammals, if we compare Equation 4 with 
Equation 5 or 6, no slope for the SIE will be the conclusion; how-
ever, if we compare Equation 2 or 3 with Equation 5, 6, or 7, it is 
ambiguous to say whether there is a slope (Table S2 in Appendix S1). 
Thereby, the traditional method of detecting the SIE is not robust, 
and different choices of model comparison can lead to totally differ-
ent conclusions.

From the result of linear regressions conducted by using 68 is-
land datasets, a significant positive relationship was found between 
threshold number and area range under both AIC(c) (p < 0.01) crite-
rion and BIC criterion (p < 0.05; Figure 3). This result suggests more 
species–area patterns could be detected as the area distributions of 
sampled islands get broader. However, no obvious relationship was 
found between threshold number and species range (Figure 3).

4  | DISCUSSION

Our results imply both SIE thresholds (58 cases, 85% and 46 cases, 
68% under AIC(c) and BIC criterions, respectively) and steep–shallow 
thresholds (31 cases, 46% and 19 cases, 28% under AIC(c) and BIC 
criterions, respectively) are common in nature. Under AIC(c) crite-
rion, three‐segment piecewise models are more prevalent (42 cases, 
72% and 26 cases, 84% in detecting SIE and steep–shallow thresh-
olds, respectively), whereas under BIC criterion, two‐segment piece-
wise models are more prevalent (36 cases, 78% and 13 cases, 68% in 
detecting SIE and steep–shallow thresholds, respectively). Two‐seg-
ment piecewise models have been widely used in previous studies 
(e.g., Lomolino & Weiser, 2001; Dengler, 2010; Wang et al., 2016); 
however, three‐segment piecewise models, despite their prevalent 
existence, have long been neglected.

The shallow–steep–shallow relationship for Aegean Sea iso-
pods (Figure 2d) is inconsistent with the result of Dengler (2010) 
who detected only two segments; however, the three‐segment 
models have lower AICc values than those of two‐segment mod-
els. The first two SAR patterns (shallow–steep) are similar to those 
of Australian Islands mammals, and two possible reasons may ex-
plain the last pattern (shallow). First, larger islands normally pos-
sess larger human population and richer natural resources, so that 
a more advanced economic development could be expected (Gao 
& Perry, 2016b; Helmus, Mahler, & Losos, 2014). Thus, human‐me-
diated dispersal among those large islands could be facilitated and 
thereby lowering the slope of SAR. Second, species richness of 
isopods might be seriously underestimated for the largest island, 
because if the largest island is removed, a shallow–steep–steeper 
relationship is obtained (Figure 2e). The shallow–steep–steeper 
relationships of Aegean Sea isopods (the largest island removed; 
Figure 2e) and West Indies herpetofauna are in accordance with 
the proposal that put forward by Lomolino and Weiser (2001) and 
Rosenzweig (2004), which states three biological scales of species–
area curve with three corresponding dominant processes of spe-
cies addition and slope ranges.

Besides, other factors such as regional biogeographical setting 
(Gerstner, Dormann, Václavík, Kreft, & Seppelt, 2014), historical 
events (Hewitt, 2000; Kisel, McInnes, Toomey, & Orme, 2011), cli-
mate change (Lewis, 2006), human activities (Corlett, 2015; Gao & 
Perry, 2016b), and fire and other ecological disturbances (Blondel & 
Vigne, 1993) may also be responsible for the variation among organ-
isms in their response to a particular physical setting, sensitivity to 
barriers to dispersal, and habitat extent requirement for prolifera-
tion and diversification (Blondel & Vigne, 1993; Reyjol et al., 2007). 
All these factors, acting either additively or synergistically, may in-
fluence the proposed species–area patterns across portion or the 
whole scale. Thereby, the larger size range with a larger number of 
sampled islands, the more detailed factors shaping the patterns could 
be depicted, and the more kind of SARs might be detected. Thus, the 
number of thresholds is positively correlated with the area range of 
a studied system, which is consistent with Matthews, Triantis, et al. 
(2016) and Wang et al. (2016). In contrast, species range received 
considerably less support in determining the number of thresholds. 
The main reason for the weak relationships is probably that species 
range is less effective in determining the limits of the SIE and evolu-
tionary processes considering different taxonomic group, island age, 
and human influence among the studied systems and is less likely to 
correlate to area range.

The currently widely used method for detecting the SIE is not 
robust. First, although a two‐segment left‐horizontal function 
performs better than a two‐slope function, it may be worse than 
a three‐slope function; and/or although a two‐slope function per-
forms better than a two‐segment left‐horizontal function, it may be 
worse than a three‐segment left‐horizontal function (e.g., Aegean 
Sea isopods; West Indies herpetofauna). Second, even if under the 
two‐segment circumstances, different choices of comparison be-
tween two models with and without a left‐horizontal part may lead 
to totally different conclusions (e.g., Australian Islands mammals). It 
implies that the currently available but incomprehensive piecewise 
models may provide a biased result in detecting the SIE. Therefore, 
we suggest previous SIE detection works conducted using an incom-
prehensive set of piecewise models, while ignoring the possibility 
of three segments need to be reanalyzed. It is very important to do 
so because the threshold value, where the slope changes, may be 
important for a successful application of island theory to conserva-
tion biogeography (Triantis & Bhagwat, 2011). However, the incom-
prehensive set of piecewise models may provide a misleading result 
on the existence of an SIE; moreover, the traditional two‐segment 
method may cause poor estimations for both slope and threshold 
value of an SIE. In order to improve the method for detecting the 
SIE, we suggest that it is essential to determine the number of area 
thresholds and apply a comprehensive set of piecewise models 
rather than just as few as two. We agree with the suggestions that a 
large sample size and small or even empty islands should be included 
in analyzing the SAR of a system (Matthews et al., 2014; Wang et 
al., 2016). For instance, if some more large islands (e.g., Australia) 
were included into Australian Islands mammals, a third species–area 
pattern with a higher slope might appear; and if some more small 
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empty islands were included into Austrian semi‐natural grassland 
Orthoptera species, an SIE might appear. Besides, more precise 
threshold values could be obtained if a complete sampling effort was 
taken and a large sample size was included.

Although the three‐segment piecewise regressions could display 
two area thresholds proposed by Lomolino and Weiser (2001) and 
Rosenzweig (2004) and may provide better estimations for slope 
and threshold value within an SIE, they incorporate more parame-
ters into the models, which in turn will decrease the statistical power 
for the robustness as compared with the two‐segment regressions 
using the same data size. Therefore, a larger number of surveyed 
islands in the dataset are required for the applicability of three‐seg-
ment approach. To ensure an adequate island number incorporated 
in the dataset, we suggest, first, empty islands from a smaller spatial 
scale are welcomed to be collected because the effect of empty 
islands in generating SIEs is prevalent (Wang et al., 2016). Second, 
an incomplete sampling effort is usually taken, leaving many other 
islands in the studied system uninvestigated (e.g., Davies & Smith, 
1998; Panitsa, Tzanoudakis, Triantis, & Sfenthourakis, 2006; Wang, 
Bao, Yu, Xu, & Ding, 2010). However, the applicability of compli-
cated models declines from relatively complete island lists to ex-
tremely incomplete ones, so we suggest island collection is ought 
to be complete at the current studied spatial scale to allow more 
complex models tested. Third, sometimes a surveyed location is 
involved in a larger‐scale system, for instance, Bahamas, where 
Morrison (2014) studied the SIE of plants, is actually a portion of the 
whole West Indies region. The regional SAR patterns could give in-
sight into the causes of local patterns (Schrader, Moeljono, Keppel, 
& Kreft, 2019), so islands collected from a larger spatial scale are 
also suggested.

Determining the number of area thresholds in a system is crit-
ical to estimating the precise species–area patterns. Thus, we sug-
gest previous piecewise regression and SIE detection works need 
to be reanalyzed. Two thresholds rather than one shine new light 
on conservation biogeography: First, it offers opportunity to assess 
variables such as habitat diversity, productivity, island age, energy, 
and environmental heterogeneity (Anderson & Wait, 2001; Tjørve & 
Tjørve, 2011; Whitehead & Jones, 1969) within the limits of the first 
threshold value; second, speciation may be the dominant process 
adding to the species richness of assemblages beyond the limits of 
the second threshold value (Losos & Schluter, 2000); third, habitat 
diversity, carrying capacity, and extinction/immigration dynamics 
as envisioned by MacArthur and Wilson (1967) may govern species 
richness between the first and second threshold values; fourth, it ap-
preciates other factors, such as historical events (Hewitt, 2000; Kisel 
et al., 2011), climate change (Lewis, 2006), human activities (Corlett, 
2015; Gao & Perry, 2016b), and so on, to exert their influence across 
portion or the whole scale; and last, the rate of biodiversity loss from 
habitat loss varies among three area intervals, and thus, two thresh-
olds can effectively facilitate the establishment of protection prior-
ity level among islands and maximize the diversity saved in a system 
with limited funds for conservation. We conclude that conservation 
biologists and applied ecologists should determine the number of 

area thresholds when estimating the precise species–area patterns 
and making management strategies in fragmented landscapes.

Despite the widespread use of the AIC, some believe that it is too 
liberal and tends to select overly complex models (Kass & Raftery, 
1995). As compared to the AIC, the BIC is more conservative, insisting 
on a greater improvement in fit before it will accept a more complex 
model (Link & Barker, 2006). That is the reason why in our results 
three‐segment piecewise models are more prevalent under AIC(c) cri-
terion in finding SIE and steep–shallow thresholds, as well as the lower 
slope and less significant p‐value of the relationship between thresh-
old number and area range under BIC criterion. However, the merits 
and debits of AIC and BIC remain controversial, and a formal compari-
son in terms of performance between AIC and BIC is very difficult (cf. 
Burnham & Anderson, 2002, pp. 293–305, for a pro‐AIC account, and 
Kass & Raftery, 1995, for a pro‐BIC account), so we used both criteria 
rather than one. To date, although there are a number of species–area 
pattern studies, the AIC was dominantly applied. Our study is among 
the first attempt to apply both criterions for model selection in this 
field. Besides, previous studies concerning SARs and SIEs comprised a 
large portion of island‐poor (<20 islands) archipelagoes in the analyses 
(e.g., Matthews, Guilhaumon, Triantis, Borregaard, & Whittaker, 2016; 
Triantis et al., 2012; Wang et al., 2016). Instead, to meet the complex-
ity of the piecewise regression models, we selected island datasets 
with > 40 islands in each case. Our study on piecewise models and 
species–area patterns thus provide reliable results, contributing to the 
recent heated disputes on the SIE theory and expanding our horizons 
on SAR thresholds at different spatial scales.
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