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Abstract

Human cryptosporidiosis, caused primarily by Cryptosporidium hominis and a subset of

Cryptosporidium parvum, is a major cause of moderate-to-severe diarrhea in children

under 5 years of age in developing countries and can lead to nutritional stunting and

death. Cryptosporidiosis is particularly severe and potentially lethal in immunocom-

promised hosts. Biological and technical challenges have impeded traditional vaccinol-

ogy approaches to identify novel targets for the development of vaccines against

C. hominis, the predominant species associated with human disease. We deemed that

the existence of genomic resources for multiple species in the genus, including a much-

improved genome assembly and annotation for C. hominis, makes a reverse vaccinology

approach feasible. To this end, we sought to generate a searchable online resource,

termed C. hominis gene catalog, which registers all C. hominis genes and their proper-

ties relevant for the identification and prioritization of candidate vaccine antigens, includ-

ing physical attributes, properties related to antigenic potential and expression data.
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Using bioinformatic approaches, we identified �400 C. hominis genes containing proper-

ties typical of surface-exposed antigens, such as predicted glycosylphosphatidylinositol

(GPI)-anchor motifs, multiple transmembrane motifs and/or signal peptides targeting the

encoded protein to the secretory pathway. This set can be narrowed further, e.g. by

focusing on potential GPI-anchored proteins lacking homologs in the human genome,

but with homologs in the other Cryptosporidium species for which genomic data are

available, and with low amino acid polymorphism. Additional selection criteria related to

recombinant expression and purification include minimizing predicted post-translation

modifications and potential disulfide bonds. Forty proteins satisfying these criteria were

selected from 3745 proteins in the updated C. hominis annotation. The immunogenic po-

tential of a few of these is currently being tested.

Database URL: http://cryptogc.igs.umaryland.edu

Introduction

Although young child mortality has dropped impressively

since the millennium, almost six million deaths still occur an-

nually in developing countries, with diarrheal diseases re-

maining the second most common cause of death after

pneumonia (1). The Global Enteric Multicenter Study

(GEMS), an enormous case-control study that investigated

the burden, etiology and consequences of moderate-to-serve

diarrhea (MSD) in children< 5 years of age in four sites in

sub-Saharan Africa and three in South Asia (global regions

where collectively 80% of young child diarrhea deaths

occur) incriminated Cryptosporidium as one of the four pre-

dominant pathogens overall associated with MSD and as the

second most common pathogen during the first 2 years of

life, after rotavirus (2). GEMS also found that

Cryptosporidium MSD was associated with linear growth

stunting the �60 days following the acute MSD episode and

increased by 8.5-fold the risk of death over the �60-day

follow-up compared with matched control children.

Although Cryptosporidium, a chlorine-resistant pathogen,

also occurs in association with sporadic and outbreak water-

related transmission in industrialized countries, it is to ad-

dress the burden of disease in developing countries that there

have been calls to undertake vaccine development efforts.

Two main species of the apicomplexan genus

Cryptosporidium are associated with human disease. GEMS

revealed that 80% of Cryptosporidium associated with cases

were human-restricted Cryptosporidium hominis, while the

Cryptosporidium parvum strains were also mainly anthropo-

notic genotypes. The majority of human infections in non-

GEMS developing countries is attributed to C. hominis and,

to a lesser degree, C. parvum (3–6). Other Cryptosporidium

species are found in all vertebrate groups, with a few occa-

sionally isolated from humans with diarrhea (3).

Vaccination remains one of the most successful and

cost-effective methods of preventing the occurrence and

spread of serious infectious diseases. The fact that only one

parasitic vaccine has been licensed for human use

(Mosquirix against Plasmodium falciparum malaria,

approved only in 2015, for use in targeted groups) reflects

the challenges associated with the design and development

of effective anti-protozoal vaccines. Among the factors lim-

iting the understanding of C. hominis biology and the de-

velopment of anti-cryptosporidial vaccines has been the

lack of a robust axenic in vitro culture system (7), although

successful in vitro cultivation of C. parvum has recently

been demonstrated (8).

Reverse vaccinology takes advantage of annotated

pathogen genomes to identify genes encoding proteins with

properties predicted to induce a host immune response

against the pathogen. This approach permits the rational

selection of vaccine components which can be subse-

quently validated experimentally to determine if they elicit

immune responses and confer protection (9–11). The re-

verse vaccinology approach was first used to successfully

identify the four components of the Neisseria meningitidis

B vaccine (Bexsero) (12–14), wherein the genome sequence

of a virulent isolate (MC58) was used to predict candidate

surface-exposed or exported proteins. Following a similar

approach, Maione et al. (15) identified four potential vac-

cine antigens against Group B streptococcus and demon-

strated that a multivalent vaccine formulation using these

antigens can confer broad serotype-independent protec-

tion. Reverse vaccinology is also being applied to other

pathogens for which not licensed vaccines or other mature

candidates exist, including Porphyromonas gingivalis and

Chlamydia pneumoniae (16). The reverse vaccinology ap-

proach is particularly promising for organisms that, like

Cryptosporidium, are difficult to maintain under routine

laboratory conditions (13, 15, 17, 18).

Advances in sequencing technologies and genome as-

sembly and annotation methodologies have facilitated the
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generation of genomics resources for multiple species of

Cryptosporidium (19). Cryptosporidium parvum (isolate

IOWA II) was the first species with a published genome

(20). The genome was found to be 9.1 Mbp in length, and

its eight chromosomes assembled into 13 supercontigs,

containing 3807 predicted protein-coding genes with an

average length of 1795 base pairs (bp). At about the same

time the genome of C. hominis (isolate TU502) was pub-

lished (21). It was sequenced to a much lower depth of

coverage because of limitations of biological material and

technology available at the time. For example, the lack of

conventional animal models to propagate this species lim-

ited the amount of DNA that could be generated for

sequencing. Consequently, this assembly is comparatively

more fragmented, with the likely eight chromosomes split

among 1413 contigs, grouped into �240 scaffolds.

Recently, we generated a much-improved annotated gen-

ome assembly for C. hominis, isolate TU502_2012 (22).

Herein, we report a comprehensive functional annotation,

and targeted manual structural validation, of this new C.

hominis TU502_2012 gene set, with a view to generate a

complete list of genes predicted to potentially be sporozo-

ite, and most likely merozoite, surface-expressed. In add-

ition, we developed a searchable online catalog of all

C. hominis genes and their characteristics of interest in the

context of vaccine development, including physical attri-

butes, properties related to antigenic potential and expres-

sion data (Figure 1). As an example of this approach, we

identified a multitude of proteins that could be evaluated

as protective immunogens.

Figure 1. Cryptosporidium hominis gene catalog (ChGC). The landing page includes an overview of ChGC and links to related information and re-

sources. Several data subsets are readily available for download (right hand bar), and the full dataset can be further queried with user-selected crite-

ria (bottom button). Direct links to the definition of each criterion, as well as related publications, are also available (top right).
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Materials and Methods

Genomic and transcriptomic data

This study relied on the use of the following genomics

data:

• Cryptosporidium hominis TU502: whole genome

sequence data (AAEL00000000); assembly and annota-

tion (GCA_000006425.1) (21)

• Cryptosporidium hominis TU502_2012: whole genome

sequence data (JIBM00000000); assembly (submitted;

requested public release); RNASeq data (SRX481527)

• Cryptosporidium hominis UKH1: whole genome

sequence data (JIBN00000000); assembly (submitted; re-

quested public release);

• Cryptosporidium parvum Iowa II: whole genome

sequence data (AAEE01000000); assembly and annota-

tion (GCA_000165345.1) (20). Note: this genome was

recently re-annotated (23) but at the time of this study

the updated annotation was not publicly available. Thus,

all references to C. parvum Iowa II are based on the ori-

ginal annotation.

• Cryptosporidium baileyi TAMU-09Q1: whole genome

sequence data (JIBL00000000); assembly (submitted; re-

quested public release);

• Cryptosporidium meleagridis UKMEL1: whole genome

sequence data (JIBK00000000); assembly (submitted; re-

quested public release);

• Cryptosporidium muris RN66: whole genome sequence

data (AAZY02000000); assembly and annotation

(GCA_000006515.1);

• Homo sapiens: year 2014 (GRCh38.p1); assembly and

annotation (GCA_000001405.16) (24).

The first version of the annotation of the genomes of C.

hominis TU502_2012, C. hominis UKH1, C. baileyi

TAMU-09Q1 and C. meleagridis UKMEL1 will be

released soon (22).

Functional annotation

The structural and functional attributes of the 3745

protein-coding genes in the updated C. hominis assembly

were identified using a variety of approaches. These in-

clude BlastP (25) searches against the proteome of other

Apicomplexa, using the weight matrix BLOSUM62 and an

E-value cutoff of 1e�5, HMMer version 3.0 (26) searches

against the PFAM and TIGRfam databases of functional

protein domains (27) and searches against the InterPro

(28) and CDD (29) databases. Results from these analyses

were then parsed using a custom script to assign product

names, gene symbols, enzyme commission numbers and

Gene Ontology terms, where available.

Characterization of surface-expressed or secreted

proteins and epitope identification

The targets of protective antibodies on microbial pathogens

are typically associated with the surface of the pathogen or

the infected host cell. Accordingly, TargetP (30, 31) was

used to identify proteins predicted to be targeted to the se-

cretory pathway with high reliability (reliability Classes 1 or

2). Proteins were predicted to be glycosylphosphatidylinosi-

tol (GPI)-anchored using GPI-SOM (32), PredGPI (33) and

FragAnchor (34). The presence of five or more transmem-

brane helices is a strong indicator of a transmembrane pro-

tein; the presence of these transmembrane motifs was

determined with TMHMM (35, 36). Prediction of antigens

that may constitute robust immunogens was done by ana-

lysis of potential Major Histocompatibility Complex

(MHC) Class I and MHC Class II epitopes with

NetMHCpan and NetMHCIIpan, respectively (37–39).

Manual curation of gene structure

Gene structure was manually validated for all genes predicted

to be secreted or membrane-associated (determined by the

presence of predicted GPI anchors or of at least five transmem-

brane motifs). The manually curated gene structural compo-

nents included the location of the methionine start codon and

the location of all intron–exon boundaries. The following data

was used as evidence: C. hominis strand-specific RNAseq data

generated from the oocyst stage (GenBank: SRX481527),

‘TopHat junctions’ [the set of reads predicted by TopHat (40)

to span introns], homologous proteins from other

Cryptosporidium species aligned against the C. hominis as-

sembly using GMAP (41) and CEGMA proteins, a set of

highly conserved eukaryotic genes (42). Manual validation

consisted of visual inspection of each gene model, comparison

against all available evidence and editing when necessary to

conform to that evidence. Web Apollo (43) was used to visual-

ize all evidence tracks and to modify gene models as necessary.

Protein physical attributes

The proteins were characterized according to several phys-

ical properties, including predicted isoelectric point (44),

molecular weight (44), numbers of cysteine residues

(assumed to reflect potential disulfide bonds) or of potential

glycosylation sites. We predicted two types of glycosylation

sites, O-glycosylation and N-glycosylation sites, by use of

the software NetNGlyc, NetOGlyc and GlycoEP (45–47).

Homology searches

C. parvum and human homologs were identified by run-

ning a BlastP search of C. hominis TU502_2012 proteins
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against the proteomes of C. parvum Iowa II (20) and

human (48), respectively, with parameter values as

described earlier. The presence of homologs of genes of

interest was also determined in four other

Cryptosporidium genomes, namely, C. parvum Iowa II, C.

baileyi TAMU-09Q1, C. meleagridis UKMEL1 and C.

muris RN66. We computed homology clusters of

Cryptosporidium proteins using the pipeline described by

Crabtree and collaborators (49), and used the Sybil com-

parative platform (49) to visualize and analyse the results.

Identification of SNPs and small insertions/

deletions (indels)

Sequence variants, in particular single nucleotide polymorph-

isms (SNPs) and small indels in C. hominis were identified

based on the comparison of two strains: C. hominis

TU502_2012 and C. hominis UKH1. In this case, the se-

quence reads of C. hominis UKH1 (SUB482088) were

aligned to the new assembly of C. hominis, ChTU502_2012,

using BWA (50). Sequence data was formatted using SAM

tools (51) and Picard tools v.1.79 (http://broadinstitute.

github.io/picard), and SNP variant calling and filtering using

the Genome Analysis Toolkit GATK v2.2.5 (52). Identified

variants were filtered according to the following parameter

values: (DP< 12) k (QUAL< 50) k (SB>�0.10) k
{MQ0� 2 && [MQ0/(1.0 � DP)]>0.1}. SNPs that passed

the filter were attributed to non-coding or coding regions

using VCFannotator (http://sourceforge.net/projects/vcfanno

tator) using as reference the annotation of ChTU502_2012.

Expression dataset

Given the lack of C. hominis sporozoite RNAseq data, we

used transcriptomic data from C. parvum. From CryptoDB

(19), we extracted expression data representing transcrip-

tomes of freshly excysted C. parvum sporozoites, as well as

data for parasites collected 48- and 96-h post-infection in

HCT-8 cells. These data were generated using SOLiD,

paired end, strand-specific RNA sequencing (Hehl

AB et al., unpublished data). In addition, we utilized amino

acid data representing excysted sporozoite proteomes.

These data originated from solubilized protein prepar-

ations analysed by 2D electrophoresis LC-MS/MS (53).

Results

Generation of a comprehensive set of putative

antigens

We recently completed the sequencing, assembly and anno-

tation of the genome of C. hominis genome isolate TU502

from a DNA sample generated in 2012 at Tufts University,

named C. hominis TU502_2012. The isolate is believed to

be the same that was sequenced in 2004 (21), except for the

fact that it has been maintained by serial propagation in

pigs for an additional 8 years. This effort resulted in a

much-improved draft genome assembly for C. hominis. The

C. hominis TU502_2012 genome assembly, with 119 con-

tigs, is much less fragmented than the 1413-contig 2004 as-

sembly (21), with the largest contig now the length of a

chromosome. In this more comprehensive genome assem-

bly, the average length of protein-coding genes is 500 bp

longer than in the original annotation (22). The additional

gene length resulted in a 25% increase in the fraction of the

genome that encodes for proteins (Table 1). Based on this

new gene set, we identified potential vaccine proteins using

two bioinformatic approaches (Figure 2). In one approach,

candidate antigens in C. hominis or C. parvum were identi-

fied from the literature (54–66), and their homologs were

identified in the new C. hominis annotation. In a comple-

mentary approach, we used the complete C. hominis gene

set to identify novel candidate antigens. The structure of all

genes identified through either approach was manually vali-

dated (see Materials and Methods).

Identification of putative antigens by homology to

‘known’ antigens

The first approach we took was to manually curate the

gene structure of all C. hominis TU502_2012 genes with

homology to known or proposed surface antigens (Figure

2). Potential antigens were identified from the literature.

Using reverse vaccinology strategies to analyse the C.

hominis TU502 (2004) genome (21), Manque et al. (66)

identified potential antigens by focusing on proteins associ-

ated with the parasite surface, including those possessing

multiple transmembrane motifs, signal peptides, GPI signal

anchors and similarities with known pathogenic factors.

Table 1. Summary of assembly and annotation statistics for Cryptosporidium species. The data for the newly generated C. hom-

inis TU502_2012 isolate (bold) show a significantly improved assembly and gene structural annotation for this species.

Species Isolate Assembly length (bp) No. contigs Largest contig (bp) No. protein-coding genes Average gene length (bp) % coding

C. hominis TU502 (2004) 8 743 570 1413 90 444 3886 1360 60.4

C. hominis TU502_2012 9 107 739 119 1 270 815 3745 1847 75.9

C. parvum Iowa 9 103 320 13 1 278 458 3807 1795 75.3
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Other studies have identified Cryptosporidium virulence

factors using immunological and molecular methods.

These virulence factors are predicted to be involved in

processes such as adhesion, excystation, locomotion, inva-

sion, membrane integrity, fatty acid metabolism and stress

protection (54). Finally, some Cryptosporidium antigens

were identified through a text search for ‘antigen’ in the

CryptoDB database (www.cryptodb.org) (19). A total of

302 potential antigens were identified from these refer-

ences. Of these, 132 proteins (44%) were reported as se-

creted, 185 (61%) as containing five or more

transmembrane domains and 74 (24%) as containing GPI-

anchor motifs, with a few proteins possessing more than

one of these attributes. We re-evaluated these assignments

with new or improved methods and found that only 52 of

the 74 genes are now predicted to have GPI-anchored do-

mains. We manually curated the structure of all 302 genes

in the new C. hominis genome assembly (Materials and

Methods). In total, 94 of these genes needed to be cor-

rected, resulting in more accurate gene structures than

those published in 2004.

Identification of novel vaccine candidates

Vaccines that elicit antibody-mediated immunity are based

on secreted proteins, including toxins, and/or on highly ex-

pressed, surface-exposed or membrane-associated proteins

(13, 15, 67). We sought to complement the gene set above

by utilizing a variety of bioinformatics tools to identify

additional genes encoding proteins with these properties,

and which might have been missed in previous studies due

to incorrect or missing gene models in the 2004 annotation

properties (Figure 2B). Among the complete set of 3745

protein-coding genes from the improved semi-automated

annotation of C. hominis (Table 1), we identified 105 new

antigen candidates, 41 of which have five or more trans-

membrane domains, 37 with GPI-anchor motifs and 29

that are targeted to the secretory pathway. We confirmed

that, relative to the original assembly, these 105 genes are

either newly identified, genes with a considerably altered

structure or genes newly predicted using new software.

The structure of these 105 new candidates was manually

curated as described earlier.

Figure 2. Approaches used for antigen identification. (A) Genes homologous to previously proposed C. hominis (Ch) or C. parvum antigens (purple)

were identified among the gene set from the new C. hominis TU502_2012 genome assembly. The structural annotation of these genes was then

manually curated, and targeted analyses were conducted to identify genes encoding proteins with the desired properties. (B) The structural annota-

tion of C. hominis TU502_2012 was improved using information from related species and several of gene finders. The resulting gene set was as-

signed functional annotation. This gene set was then screened from desired properties. The gene structure of antigen candidates was manually

curated.
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A total of 407 potential antigens were identified using

at least one approach: 209 of the 302 previously identified

putative antigens were also detected using our bioinfor-

matic screen (Figure 3A); of the remaining 93 genes, ap-

proximately one-half have altered gene structures that may

change the region containing signal peptides, which likely

explains why they are no longer selected according to the

criteria used in our screen.

Rational selection of candidate vaccine proteins

The two combined approaches resulted in a set of 407 manu-

ally curated, potential antigens. To prioritize these genes, we

characterized them according to relevant polymorphic and

physicochemical properties. These properties include the pos-

sibility that the encoded protein will undergo post-

translational modifications, suggestive of an intricate process

of protein folding. In addition, we considered homology in-

formation, both across the Cryptosporidium genus and rela-

tive to the human proteome as cross-reactive antigens may

produce undesired adverse effects upon vaccination.

Antigens often evolve rapidly, as a result of the selective

pressure imposed by the host’s immune system (68, 69).

Therefore, a relatively high rate of non-synonymous poly-

morphism and evidence of balancing selection have been

used as criteria to identify new vaccine antigens (70, 71).

However, evidence is now mounting that high rate of poly-

morphism in vaccine antigens contributes to vaccine eva-

sion (72–74). To identify, and possibly eliminate,

polymorphic loci from the pool of potential vaccine candi-

dates, we estimated the number of SNPs between publicly

available C. hominis isolates TU502_2014 and UKH1. A

total of 230 protein-encoding genes have amino acid poly-

morphisms between these two isolates. In addition, we

made use of publicly available gene expression data for C.

parvum, to determine which genes are expressed during

the sporozoite stage, since neutralizing antibodies are likely

to target proteins expressed during this stage of develop-

ment. Of the 3745 predicted protein-coding genes, 3597

are predicted to be expressed in the sporozoite stage, even

though transcript abundance varies widely among genes.

Several additional selection filters were created based

on homology information. All proteins with detectable

homology to the human proteome were identified. In add-

ition, we determined the taxonomic distribution of each

C. hominis gene across the genus. These filters allow the

elimination of potential antigens that may induce cross-

reactions with human genes, and the rapid assessment of

the potential taxonomic breadth of specific antigens.

Since proteins are often expressed in bacterial systems,

the number and type of post-translational modifications

are important considerations when choosing adequate vac-

cine candidates. Glycosylation is a type of post-transla-

tional modification resulting from the addition of N- and

O-linked oligosaccharides to proteins. It assists in protein

structural folding, transport and other functions (75, 76).

Studies indicate that N-glycosylation of proteins is a rare

event in apicomplexan parasites, even though it is an im-

portant post-translational modification in other eukaryotic

phyla (77–81). For the full set of proteins, the median num-

ber of predicted N- and O-glycosylation sites per protein

was 5 and 8, respectively, but both distributions were

Figure 3. Selection of potential of Cryptosporidium vaccine candidates. (A) Overlap between set of potential antigens, one collected from the litera-

ture (purple) and the other generated using a bioinformatic screen for genes with predicted GPI-anchor motifs, secretion signals or at least five trans-

membrane motifs (orange). Of the total 407 potential antigens, roughly one-half were identified with both approaches. (B) Down-selection of genes to

be used in immunogenicity experiments. The complete gene complement was first reduced by 90% to 407 candidates from (A), and a further 90% re-

duction resulted from the use of stricter criteria.
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highly skewed, with maximum values� 100. For the sub-

set of 407 potential antigens, the median number of pre-

dicted N- and O-glycosylation sites per protein was 5 and

3, respectively. The median number of cysteine residues

per protein, which can also be modified post-translation,

was 7, with a maximum number of 227. For the subset of

407 selected genes, the median number of cysteine residues

was nine per protein with a maximum number of 151. In

most cases, the properties significant for the selection of

candidate antigens have a higher rate of occurrence in the

subset of 407 genes predicted to encode potential antigens

compared with the full dataset (Table 2). Of these 407

genes, 33 were found to have amino acid polymorphism

between the two C. hominis genomes and 216 had human

homologs. Eliminating these, and further selecting genes

with at most two predicted transmembrane motifs and

genes predicted to be GPI-anchored, resulted in a list of 40

potential antigens, 39 of which have C. parvum homologs,

that can be considered for further investigation as vaccine

candidates (Figure 3). These can be further down-selected

based on properties relevant for protein expression and

with consideration of the chosen expression system, such

as optimal isoelectric point for biochemical purification or

optimal molecular weight for expression.

Cryptosporidium gene catalog

We created a C. hominis gene catalog based on all the

properties described earlier. The catalog is freely available

online (http://cryptogc.igs.umaryland.edu). It contains all

C. hominis genes and their characteristics, including phys-

ical attributes, properties related to antigenic potential and

expression data (Figure 4). Users can sort or filter the genes

based on each characteristic. For example, a query for pro-

teins targeted to the secretory pathway, with no human

homologs and at most 10 cysteine residues results in 14

hits (Figure 5). A quick query also shows that the estimated

molecular weight for C. hominis proteins varies between 6.

Table 2. Distribution of properties significant for the selection

of candidate antigens in the full dataset and subset of candi-

date antigens

Desired properties Full dataset

(3745) (%)

Candidate

antigens

(407) (%)

Cellular localization: secreted 1 9

Predicted GPI-anchored 2 16

� 5 transmembrane motifs 6 56

� 6 cysteine residues 44 34

No. N-glycosylation sitesa 11 9

No. O-glycosylation sitesa 19 32

No. SNPs (strains TU502_

2012 vs. UKH1)

94 92

No. human homolog 52 54

Conserved in C. hominis,

C. meleagridis, C. parvum

60 65

aUsing NetNGlyc, NetOGlyc, respectively.

Figure 4. Properties stored in the C. hominis Gene Catalog (ChGC). The database contains a variety of searchable properties for each gene, including

physicochemical properties, gene expression data, presence of potential T-cell epitopes and distribution of detectable homologs across the

Cryptosporidium genus and in the human genome.
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12 and 991.2 kDa, equivalent to 55–8756 amino acid

residues.

Three sets of genes readily available for download, both

in nucleotide and amino acid sequence fasta format in-

clude: all genes, genes that encode predicted GPI-anchored

proteins or those whose products are predicted to be se-

creted. In addition, users can download the nucleotide and

amino acid sequences of genes that meet specific user-

defined criteria (Figure 5). The table of properties for all or

a subset of filtered genes can also be downloaded in excel

or comma separated values (CSV) format.

Discussion

The GEMS (2) was designed to measure the burden, identify

the major etiologic agents and assess the consequences of

moderate-to-severe diarrhea (MSD) in children< age 5 years

in the developing world. One conclusion of the study was the

recognition that targeting the top 4–5 ranked diarrheal patho-

gens with effective interventions could reduce considerably

the global morbidity and mortality burden of MSD.

Surprising to many was the finding that Cryptosporidium

ranked second as the most important attributable pathogen

associated with MSD in children below the age of 2 years.

Whereas vaccines against the other three major pathogens ei-

ther exist (rotavirus) or are undergoing clinical evaluation

(enterotoxigenic Escherichia coli and shigellosis), efforts to

develop a vaccine to protect humans against cryptosporidiosis

have made little progress and no candidate has entered clin-

ical trials. The advent of antiretroviral therapy and its wide-

spread use in sub-Saharan Africa has markedly diminished

the number of HIV-infected individuals that manifest overt

immunodeficiency and as a result the frequency of crypto-

sporidiosis has in turn diminished along with interest and

funding to combat this infection. GEMS’ revelation of the im-

portance of Cryptosporidium has renewed interest in de-

veloping preventive as well as improved therapeutic measures

to control in infants and toddlers in developing countries,

including advocacy for developing vaccines. Given the prac-

tical obstacles associated with laboratory study of this para-

site (7), reverse vaccinology is an attractive option to identify

and prioritize antigens that may prove useful for the develop-

ment of a well-tolerated and effective vaccine to prevent

cryptosporidiosis.

With this in mind, our team has recently re-sequenced

the TU502 isolate of C. hominis, assembled and annotated

Figure 5. The ChGC interface. Key elements: (a) ‘Help’ button; (b) click on a column header to sort by that column; (c) ‘columns’ menu available in the

drop-down menu on any column header is used to add hidden, or remove visible, columns; (d) ‘Sort/Filter’: multiple columns can be filtered to gener-

ate customized datasets of interest; (e) filtered datasets can be downloaded as an Excel or a CSV file, using these buttons.
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the genome, now designated TU502_2012 (22). The im-

proved gene set, consisting of 3745 protein-coding genes,

should provide the opportunity for new in silico analyses

to identify potential immunogens. We are making this gen-

omic database publicly available, with a view to stimulate

additional investigators with expertise in reverse vaccinol-

ogy to undertake research to develop Cryptosporidium vac-

cine candidates. Once C. hominis antigens of interest are

identified, various vaccinology approaches can be adapted

to assess their immunogenicity. Examples include assess-

ment of the immune responses elicited in animal models or

humans following immunization with protozoal antigens

expressed in bacterial (82–84) or viral vectors (85–87), as

virus-like particles (88, 89), as nanoparticles (90) or fused

to carrier proteins, as has been done with P. falciparum and

Leishmania proteins (82–90). Since Cryptosporidium is an

intestinal protozoan, oral as well as parenteral routes of ad-

ministration of the candidate vaccines should be studied,

with and without adjuvants. Recent progress with a well-

tolerated adjuvant for orally administered vaccines in-

creases interest in a mucosal vaccine strategy (91).

Recently, genome sequences of additional isolates of C.

parvum and C. hominis have become publicly available in

CryptoDB (19). As annotation information for these gen-

omes becomes available, a comparative analysis among

Cryptosporidium species and isolates may help identify

new antigens that will prove to have diagnostic value, since

species identification currently entirely depends on cum-

bersome molecular genetic tools. The database may also

help in the development of improved diagnostics of

Cryptosporidium infection that may allow immunoassays

that can identify the prevalent Cryptosporidium species in

populations and geographic areas. Improved assays for

species and sub-species differentiation can help elucidate

the reservoirs of Cryptosporidium, likely modes of trans-

mission and geographic spread, all of which can help for-

mulate specific control measures.
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