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Abstract

Neurofibrillary tangles (NFTs), are shared between progressive supranuclear palsy (PSP) and Alzheimer disease (AD).
Histological distinction of PSP and AD is possible based on the distribution of NFTs. However, neuropathologists may
encounter diagnostic difficulty with comorbidity of PSP and AD. In this study, we tried to circumvent this difficulty by
analyzing five autopsied brains harboring both PSP and AD pathology. Tau-positive lesions were sorted based on their
cell type (neuron versus glia), and tau isoforms: three-repeat (3R) versus four-repeat (4R) tau. 16 regions were selected
to map these lesions throughout the brain. 4R-tau lesions were present in all areas examined. Among them, 3R-tau
lesions were absent in some areas. These 4R selective (4R+/3R-) areas dictate prototypic distribution of PSP, not usually
found in AD, such as pontine nucleus, red nucleus, inferior olivary nucleus, dentate nucleus, globus pallidus and
putamen, each contained both glial and neuronal lesions. In contrast, additional 3R-tau lesions were found in
hippocampal formation to neocortex, where 3R immunoreactivity (IR) was predominant over the 4R counterpart
mainly in neurons as found in AD but not in PSP. Although tau lesions in central grey matter, substantia nigra and
locus coeruleus are found in both AD and PSP, 4R-selectivity with glial component suggests PSP origin. Even if the
presence of 3 R IR in these areas suggests AD pathology, it does not exclude the involvement of PSP-type lesion
because distinction of 4R IR into PSP or AD is not yet possible. Further demixing may be possible if biochemical
difference of 4R tau between PSP and AD is identified.
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Introduction
Alzheimer disease (AD) and progressive supranuclear
palsy (PSP) are characterized by deposition of tau in the
brain. Initially, histological definitions were based on the
disease-specific distribution of argyrophilic neurofibrillary
tangles (NFTs), which are quite distinct between AD [1]
and PSP [31]. Another histological hallmark of PSP is
tuft-shaped astrocytes (TAs) [15], which are essentially
not found in pure AD. Because clinicopathological spectra
of PSP and of AD are still expanding [10, 30], accurate
clinical diagnosis is more and more complex and difficult.

This diagnostic difficulty is much enhanced in aged popu-
lation, where cormorbid pathologies, such as AD or Lewy
pathology, may be encountered. [10, 30]. Such comorbid-
ity is challenging to neuropathologists; how to discrimin-
ate different types of pathology in the same brain. This is
particularly problematic when a brain harbors AD-type
pathology and PSP-type pathology because both are char-
acterized by tau deposits [3, 11]. Furthermore, it is not yet
known whether these two types of pathology are inde-
pendent or mutually related. In this study, we selected aut-
opsy samples carrying histological diagnoses of both AD
and PSP. We tried to extract disease-specific features from
these brains with AD and PSP for possible discrimination,
based on the distribution of TAs and that of NFTs and im-
munohistochemistry for phosphorylated tau (AT8) [24],
three-repeat (3R) and four-repeat (4R) tau [9]. This hybrid
approach was quite successful in discriminating most, but

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: uchihara-ts@igakuken.or.jp
1Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of
Medical Science, Tokyo, Japan
5Neurology Clinic with Neuromorphomics laboratory, Nitobe-Memorial
Nakano General Hospital, Tokyo, Japan
Full list of author information is available at the end of the article

Ebashi et al. Acta Neuropathologica Communications            (2019) 7:71 
https://doi.org/10.1186/s40478-019-0708-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-019-0708-4&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:uchihara-ts@igakuken.or.jp


not all, of tau-positive lesions, suggesting that AD-type
pathology and PSP-type pathology are independent with-
out significant interaction even when coexistent in the
same brain.

Patients and methods
Among one hundred and eighty autopsy cases archived
at Laboratory of Structural Neuropathology, Tokyo
Metropolitan Institute of Medical Science from 1999 to
2013, we picked up 5 cases (3 cases from Nitobe
Memorial Nakano General Hospital and 2 cases from
Yokufukai hospital) with comorbid pathologies with
PSP [15] and AD [5]. Written consent from the pa-
tient’s family was obtained at autopsy and this study

was approved at the ethics review committee of the
Tokyo Metropolitan Institute of Medical Science
(authorization number 16–25).
Demographic data are summarized in Table 1.

Median age was 85 years (range 80–94 years) and male
female ratio was 4:1. Brain weight was 1260 g on aver-
age (range 1205–1395 g), Braak NFT stage [5] had me-
dian V (range II-VI), and Braak Amyloid stage [5] had
median B (range 0 - C).
Sixteen regions, selected to map PSP-specific or

AD-specific lesions [2, 4–6, 14, 18, 22, 34, 40] throughout
the brain include primary motor cortex (PC), putamen
(PU), external segment of globus pallidus (GPE), internal
segment of globus pallidus (GPI), subthalamic nucleus
(STN), hippocampal formation (HF), substantia nigra

Table 1 Demographic data on 5 patients with neuropathological diagnosis of AD and PSP.

Case Age at
death

Sex Clinical
diagnosis

Dementia Parkinsonism Duration of illness
(year)

Neuropathological
findings

Brain
weight (g)

Braak NFT
stage

Braak Amyloid
stage

1 86 F CHF – – N. A PSP, AD 1205 II 0

2 94 M possible DLB + + 3 LB pathology,
PSP, AD, AGD

1260 III A

3 81 M AD + – 9 PSP, AD 1230 V C

4 85 M pneumonia N. A N. A N. A PSP, AD, CAA 1395 V C

5 80 M possible PSP + + 8 PSP, AD, AGD 1210 VI C

AD Alzheimer disease, AG argyrophilic grain disease, CAA cerebral amyloid angiopathy, CHF congestive heart failure, DLB dementia with Lewy body, N. A not
available, NFT neurofibrillary tangle, PSP progressive supranuclear palsy

Table 2 Regional distribution of AT8 positive lesions.
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(SN), red nucleus (RN), central grey matter (CGM), teg-
mentum of midbrain (mainly superior coliculli, excluding
CGM;M-TEG), locus coeruleus (LC), raphe nucleus
(RPN), pontine nucleus (PN), tegmentum of pons (exclud-
ing LC and RPN;P-TEG), inferior olivary nucleus (ION)
and dentate nucleus (DN). Six micron-thick sections were
obtained from the formalin-fixed, paraffin-embedded
blocks from these 16 regions. Deparaffinized sections were
subjected to Hematoxylin-Eosin (HE) stain, Klüver-Barrera

(KB) stain, Gallyas silver impregnation and Campbell silver
impregnation [36]. Isoform-specific antibodies directed
against 3R or 4R tau [9] were used [37, 41]. Briefly, depar-
affinized sections were treated for 15 min with 0.25%
potassium permanganate (KMnO4), for 3 min with 2%
oxalic acid (OA), for 30 min with > 99% formic acid
(FA) and for 20 min autoclaved at 121 °C in 0.05M
citrate buffer [16, 38]. After intrinsic peroxidases were
inactivated by 1% hydrogen peroxide (H2O2) for 15

Fig. 1 Separation of tau-positive lesions into progressive supranuclear palsy (PSP) and Alzheimer disease (AD) based on their distribution and
cytopathology. Tau-positive lesions of PSP shown in green (left column, a-e), typically include primary motor cortex (PC), putamen (PU), globus
pallidus (GP), subthalamic nucleus (STN), central grey matter (CGM), substantia nigra (SN), red nucleus (RN), tegmentum (M-TEG), locus coeruleus
(LC), pontine nucleus (PN) and tegmentum (P-TEG), inferior olivary nucleus (ION) and dentate nucleus (DN) in the cerebellum. Tau-positive lesions
of Alzheimer disease (AD), shown in grey (right column A-C), are more restricted to CGM, SN and LC in the brainstem while more extended in
the hippocampal formation (HF) and cerebral cortex (CC). In the five comorbid cases with PSP and AD (PSP + AD in the mid column), these tau-
positive lesions are partly overlapping. Regions with neurofibrillary tangles (NFTs) with tuft-shaped astrocytes (TAs) are labeled in italics, which
replicate of PSP-type distribution (left column). Those with NFTs without TAs are labeled in Bold face (HF, LC and PN), which replicate AD-type
distribution. Cerebral left hemisphere (coronal), b: Midbrain (axial), c: Pons (axial), d: Medulla oblongata (axial), e: Cerebellum.
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min, sections were incubated first with 5% horse
serum in 0.01M phosphate-buffered saline containing
0.03% polyoxyethylene (10) octylephenyl ether (Triton
X-100, Wako, Tokyo, Japan; PBST). They were then
incubated with either 3R tau-specific antibody (RD3
1:3000, Merck Millipore, Germany) or 4R tau-specific
antibody (RD4 1:1000, Merck Millipore, Germany) di-
luted in the same buffer for 2 days at 4 °C [9]. They
were then incubated with biotinylated secondary anti-
body against mouse IgG (1:1000, ABC Elite, Vector,
Burlingame, CA) diluted in the same buffer for 2 h at
room temperature. They were then incubated with
avidin-biotin-peroxidase complex (1:1000, ABC Elite,
Vector) for 1 h and visualized with diaminobenzidine
and nickel ammonium chloride [38]. 4R or 3R immu-
noreactivity (IR) in each of 16 regions was separately
evaluated semiquatitatively as none: 0, mild (1 to 5):
+; moderate (6 to 10): ++; severe (> 10): +++, (le-
sions/visual field with × 20 objective).
In some areas, where both 3R and 4R tau immunore-

activities (IR) were coexistent, double immunofluorola-
beling was performed as described previously. The 6-μm
thick sections were deparaffinized for double immuno-
fluorolabeling with antibodies against isoform-specific
anti-4R tau antibody (rabbit polyclonal, Cosmo Bio Co,
Tokyo, Japan), raised against amino acids 275–291 of
human 4R tau, which is deaminated at N279 [8], and the
anti-3R tau antibody (RD3) [9]. Sections were washed

with PBST, blocked for 30 min in 5% normal goat
serum/0.05% sodium azide /PBS and incubated with the
polyclonal anti-4R-tau antibody (1:3000) and RD3
(1:300), diluted in the blocking buffer at 4 °C for 4 days.
To reduce autofluorescence of lipofuscin, sections were
treated with Sudan Black B [28]. These primary anti-
bodies were labeled with Alexa 488 conjugated with
anti-rabbit IgG (Molecular Probes, Oregon, USA, 1:200)
and Alexa 568 conjugated with anti-mouse IgG
(Molecular Probes, Oregon, USA, 1:200), respectively,
diluted in PBS with 0.03% Triton X-100 overnight in the
dark. Sections were mounted with buffered glycerol con-
taining 0.1%p-phenylenediamine. Fluorescent signals
were separately captured on a confocal system (Leica
SP8; Leica Microsystems GmbH, Heidelberg, Germany)
through a 63 x objective (NA 1.45).

Results
Tau-positive lesions detected by AT8 were sorted into TA
and NFT and semiquantitatively mapped in 16 regions as
shown in Table 2. The distribution of tau-positive lesions in
these 5 comorbid cases was schematized in Fig. 1 (center
column). Comparison with that of PSP (Fig. 1, left column)
and that of AD (Fig. 1, right column) demonstrated that
the overall tau distribution in these five comorbid cases
(Fig. 1, center column) was compatible with the summation
of PSP (Fig. 1, left column) and AD (Fig. 1, right column).
However, distribution of TA and that of NFT were not

Table 3 Regional distribution of 3R tau lesions and 4R tau lesions.
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similar. Both TA and NFT were detected in RN, ION, DN,
GPI, GPE and PU (Tab. 2, italics), where tau-positive lesions
are rare in pure AD. These regions containing both TA and
NFT replicated the distribution of pure PSP (Fig. 1, left
column), suggesting that these PSP-like tau lesions are not
influenced by the copresence of AD pathology (Fig. 1, right
column). However, both TA and NFT were found in PC,
M-TEG, CGM, P-TEG and SN, where tau-positive lesions
were found in pure AD as well (Tab. 2, Fig. 1).
To distinguish PSP-type and AD-type tau pathologies in

these comorbid cases, tau-positive lesions, already sorted
into NFT/TA (Tab. 2, Fig. 1), were further distinguished

by 3R and 4R IR as shown with their relative amount in
Table 3. Their immunohistochemical profiles are displayed
in Fig. 2, where 4R-selective regions (Fig. 2, a-l, left: con-
taining 4R+/3R- tau lesions) are contrasted with 4R + 3R
regions (Fig. 2, m-x right: containing both 3R and
4R-positive lesions). TAs were positive only for 4R tau and
found in every area examined except for LC, HF, PN. 3R
tau-positive TAs were absent even when 3R-positive NFT
pathology was prominent as in LC (Fig. 2w).
4R-selective regions were GPI, RN, PN, ION, DN

(Fig. 2 a-l, Table 3, regions in green box), where NFTs
were positive only for 4R (Fig. 2 a-l, left), while STN

Fig. 2 Tau isoform-oriented mapping into four repeat only (4R+/3R-) regions for PSP type and three and four repeat (3R+/4R+) regions for AD
type distribution. Representative immunostaining for four-repeat (4R) tau (RD4, green) and three-repeat (3R) tau (RD3, red) in these twelve
regions. The left set columns demonstrated 4R specific immunoreactivity (IR) without 3R IR in GPI (a, g), STN (b, h), RN (c, i), PN (d, j), ION (e, k)
and DN (f, l), which replicates PSP-type distribution with glial involvement (arrows). In contrast, the right set columns demonstrated both 4R and
3R tau IR in PC (m, s), HF (n, t), CGM (o, u), SN (p, v), LC (q, w) and RPN (r, x), which replicates AD-type distribution. Glial lesions are exclusively
positive for RD4 (arrows) but negative for RD3. Bars: 100 μm
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contained a few NFTs positive for 3R. In contrast, NFTs
positive for 4R and 3R tau were found in 4R + 3R regions,
including PC (Case 5 only), HF, CGM, SN, LC, RPN,
M-TEG and P-TEG. (Fig. 2 m-x, Tab. 3, regions in yellow
box). Among these 4R + 3R regions, HF and LC were char-
acterized by dominant 3R IR in NFTs over 4R IR and lack
of 4R-positive glia (Tab. 3). NFTs in PC of case 5 (Braak
NFT stage VI) exhibited dominant 3R IR over 4R IR. In
other 4R + 3R regions (CGM, RPN, SN, STN, M-TEG,
P-TEG), 3R IR and 4R IR were comparable and tau-positive
astrocytes were present in variable number. Double immu-
nofluorolabeling (Fig. 3) for 4R tau (green) and 3R tau (red)
demonstrated expected dominance of 4R tau (green) in
4R-selective regions as SN (Fig. 3a). In contrast, the
proportion of 3R tau (red) and 4R tau (green) was vari-
able from a neuron to another (Fig. 3b) in 4R + 3R re-
gions as in CGM.

Discussion
Tau pathology of PSP-type and that of AD-type have
been described separately [2, 4–6, 14, 22, 40], each
representing separate entities. In this study with 5 cases
harboring both PSP-type and AD-type tau pathology, we
tried to discriminate PSP-type and AD-type pathologies
in each brain along different criteria (distribution, par-
ticipation of glial changes and tau isoforms). As initial
description of PSP was based only on NFTs [31], com-
parison of their distribution provided a solid framework
to distinguish pure PSP from pure AD (Fig. 1, Tab. 2).
4R-selective regions, characterized by the copresence of
TA and NFT, both devoid of 3R tau IR (lower half of
Tab. 3, in green box), include typical distribution of pure
PSP (PN, RN, ION, DN, GPI, GPE and PU) [15], which
are not severely affected in pure AD. In contrast, in-
volvement of 3R tau is seen in HF and LC in this series
of cases with both disorders, which strongly suggests
AD-type pathology [17, 21, 33, 37] rather than

PSP-pathology. This assumption is reinforced by the
paucity of glial involvement in these regions as in pure
AD cases [22] and by the predominance of 3R tau over
4R tau (Tab. 3) [12]. Therefore, neuron-selective involve-
ment with preferential 3R tau over 4R tau may represent
AD-type pathology [3, 23] even in this comorbid series,
which replicated AD-type distribution of NFT (HF, IC,
LC, Fig. 4, right upper rectangle labeled AD). This is in
contrast with PSP-type pathology with 4R-selective tau
in both TA and NFTs (Fig. 4, left lower area in green)
[11, 15], which replicated the PSP-type distribution. This
operational sorting through our hybrid approach was
powerful enough to distinguish origin of most of tau le-
sions into either AD-type or PSP-type (Fig. 4), suggest-
ing that AD-type pathology and PSP-type pathology are
independent even when these two processes are occur-
ring in the same brain [7, 18, 19, 25, 27].
This sharp distinction of AD-type pathology and

PSP-type pathology in the same brain suggests that ex-
tension of AD-type pathology and PSP-type pathology
are independently guided by distinct cytopathological
mechanism along disease-specific patterns without
crossover even if 4R tau is found in AD and PSP. If
4R-tau lesions extended transsynaptically (in a prion-like
manner? [26]), AD-type and PSP-type lesions that are
found together in some regions should also be found as-
sociated in their areas of projection. Because coexistent
PSP-type pathology and AD-type pathology were distinct
in the human brain, it is hard to explain how transsy-
naptic extension of 4R tau, for example if any, exhibit
different types of tau pathology in the same brain. Still,
there remain some ambiguities in some regions such as
STN, SN, M-TEG and P-TEG (area in broken line, Fig.
4), where very small amount of 3R-poitive NFTs are
sometimes present. In these regions, 3R-positive NFTs
(arrows in Fig. 3b, red) may be of AD-type even they are
positive also for 4R tau (empty arrowhead in Fig. 3b,

Fig. 3 Tau isoforms on NFTs are different from a region (SN) to another (CGM) even in the same brain (Case 5). Preferential 4R labeling (green)
on NFT (arrow) in SN (a) represents PSP-type pathology. In CGM (b), NFTs are differently labeled for 4R (green, arrowhead), 3R (red, arrows) or
both 4R. and 3R (yellow, empty arrow), representing AD-type pathology. Bar: 25 μm
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yellow) [37, 39] . However, it is not yet clear whether
4R-positive neurons without 3R tau in these areas are of
AD-type or PSP-type (Fig. 3b, arrowhead, green) [17,
37], because it is not yet possible to distinguish 4R tau
of AD-type or of PSP-type. Indeed, 4R-tau lesions of AD
and those of PSP similarly exhibit argyrophilia with
Gallyas silver impregnation [36] and 4R tau IR with
4R-specific antibodies such as monoclonal antibody RD4
[9] or polyclonal antibodies to 4R tau [8].
It has been reported that pretangle neurons are posi-

tive for 4R tau but not for 3R tau in both AD and PSP
[17, 37]. However, this selective 4R tau IR at early phase

of tau deposition is gradually replaced with 3R tau IR
during evolution NFTs in AD brain [12, 39]. This is in
sharp contrast with PSP or CBD brain, where 4R tau IR
remains persistent without involvement of 3R even after
tau-positive fibrils are dense enough to form aggregated
inclusions [20, 32]. Because currently available anti-
bodies against 4R tau immunolabel tau deposits both in
AD and in PSP/CBD brains [8], it remains to be clarified
how 4R tau in AD brain and that in PSP brains are simi-
lar or different. However, if representation of 4R tau de-
posits is disease-specific, it is expected that molecular
species of 4R tau itself is disease-specific as well. For ex-
ample, it has been reported that asparagine at residue
279 of 4R tau is deamidated to aspartate in AD brains
[13], while this posttranslational change is not robust in
PSP/CBD brains [8]. Immunoprobes that may detect
such AD-specific posttranslational changes may provide
a straightforward strategy to demix PSP-type lesions and
AD-type lesions in the same brain, in the same area or
even within a single neuron at molecular level. If
AD-type NFTs are characterized by paired helical fila-
ments [29, 32] while PSP-type NFTs are characterized by
straight fibrils [35] on electron microscopy, it will be ex-
citing to examine how they are related to such biochem-
ical differences, if any. Our hybrid approach to demix
AD-type and PSP-type tau lesions may be corroborated
by hybrid molecular demixing and electron microscopic
studies, which will surely improve our mechanistic un-
derstanding of these diseases for more precise diagnosis
and better management.

Conclusions
In human autopsied brains harboring both PSP-type and
AD-type pathologies, tau-positive lesions were sorted
based on their cell type (neuron vs glia), distribution and
tau isoforms (3R vs 4R). With this hybrid approach, we
were successful in demixing PSP-type cytopathology
(4R-selectivity in glia and neuron in PN, RN, ION, DN,
GPI, GPE and PU) and AD-type cytopathology (3R and
4R in neuron in HF, insular cortex:IC and LC). However,
this demixing is still incomplete because STN, SN,
M-TEG and P-TEG contain tau lesions in neurons and
glia are positive for 3R and 4R. Further demixing may be
possible if biochemical difference of 4R tau between PSP
and AD is identified.

Abbreviations
3R: three-repeat; 4R: four-repeat; AD: Alzheimer disease; CC: cerebral cortex;
CGM: central grey matter; DN: dentate nucleus; FA: formic acid; GPE: external
segment of globus pallidus; GPI: internal segment of globus pallidus;
H2O2: hydrogen peroxide; HE: Hematoxylin-Eosin; HF: hippocampal
formation; IC: insular cortex; ION: inferior olivary nucleus;
IR: immunoreactivity; KB: Klüver-Barrera; KMnO4: potassium permanganate;
LC: locus coeruleus; M-TEG: tegmentum of midbrain; NFT: neurofibrillary
tangle; OA: oxalic acid; PBST: phosphate-buffered saline containing 0.03%
polyoxyethylene (10) octylephenyl ether; PC: primary motor cortex;
PN: pontine nucleus; PSP: progressive supranuclear palsy; P-TEG: tegmentum

Fig. 4 How to differentiate the origin (PSP or AD) of each tau-positive
lesion in comorbid brains with both PSP and AD pathology. Tau-positive
lesions are sorted along regions indicated at the center column. Regions
containing NFTs but not TAs are labeled in bold face (HF, IC: insular
cortex, LC and PN). Other regions containing both NFTs and TAs are
labeled in italics. Horizontal bars indicate relative quantity of TA and NFT
in each region. IR to 4R tau (green) and that to 3R tau (red) are indicated
by vertical lines. TAs are positive only for 4R tau as indicated on the left
half. In contrast, NFTs were sometimes positive for 3R tau in SN. 3R tau IR
was more predominant in HF, IC, PC, LC, CGM and RPN, which replicates
AD-like distribution partly shared with typical PSP. Rectangle in the right
upper corner labeled as AD encompasses AD-type pathology in terms of
distribution, further characterized by dominance of 3R tau and lack of
TAs. The left lower area labeled as PSP encompasses PSP-type pathology
in terms of distribution with 4R selectivity not only on TAs but also on
NFTs. Although this chart provides concise and operational sorting of
tau-positive lesions into AD or PSP origins, it is still difficult how to sort
STN, M-TEG and P-TEG into PSP or AD (dotted area), because a few
lesions exhibited 4R tau IR
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of pons; PU: putamen; RN: red nucleus; RPN: raphe nucleus; SN: substantia
nigra; STN: subthalamic nucleus; TA: tuft-shaped astrocyte
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