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Abstract

Interstitial deletions of 16q24.1–q24.2 are associated with alveolar capillary dyspla-

sia, congenital renal malformations, neurodevelopmental disorders, and congenital

abnormalities. Lymphedema–Distichiasis syndrome (LDS; OMIM # 153400) is a dom-

inant condition caused by heterozygous pathogenic variants in FOXC2. Usually,

lymphedema and distichiasis occur in puberty or later on, and affected individuals

typically achieve normal developmental milestones. Here, we describe a boy with

congenital lymphedema, distichiasis, bilateral hydronephrosis, and global develop-

mental delay, with a de novo microdeletion of 894 kb at 16q24.1–q24.2. This report

extends the phenotype of both 16q24.1–q24.2 microdeletion syndrome and of LDS.

Interestingly, the deletion involves only the 30-UTR part of FOXC2.
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1 | INTRODUCTION

Microdeletions of the long arm of chromosome 16 are not rare. In 1993,

Callen et al. reported seven patients with interstitial deletions of 16q

(Callen et al., 1993). Patients had global developmental delay, microceph-

aly, and dysmorphic features (Callen et al., 1993). The deleted segments

comprised the interstitial parts of the 16q, occurring proximal to band

16q24.2. Since then, patients with haploinsufficiency of the 16q sub-

telomeric region have been identified with broad phenotypic variability

(Handrigan et al., 2013; Kozłowska et al., 2020; Seeley et al., 2014;

Stankiewicz et al., 2009; Szafranski et al., 2016; Szafranski et al., 2018;

Yu et al., 2010; Zufferey et al., 2011).

Microdeletions at 16q24.2 are phenotypically apparent. Affected

individuals present with intellectual disability, autistic spectrum disor-

der, seizures, speech delay and brain malformations, and congenital

renal disease (Handrigan et al., 2013).

We describe a patient with a deletion at 16q24.1–q24.2 who

presented with congenital lymphedema, distichiasis, developmental

delay, and congenital hydronephrosis. Lymphedema–Distichiasis syn-

drome (LDS) is a distinct condition caused by heterozygous patho-

genic variants in FOXC2. LDS may also be associated with renal

disease and diabetes mellitus (Yildirim-Toruner et al., 2014).

The deleted region harbors the morbid gene FBXO31 and the 30-

UTR region of FOXC2.
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Although FOXC2 and FBXO31 have been included in some of

the reported cases, LDS has not been reported as part of the syn-

drome. We compare the features of our patient with the reported

16q24 microdeletion syndrome cases and to those described

with LDS.

2 | MATERIALS AND METHODS

2.1 | Chromosomal microarray analysis

Deoxyribonucleic acid (DNA) extraction from peripheral blood was

performed by the MagNA Pure Compact (MPC) nucleic acid isolation

kit I and an Automated MPC instrument (RocheDiagnostics) in accor-

dance with manufacturer's protocol. Quantity and quality assessment

of the extracted DNA was performed by a NanoDrop ND-1000 Spec-

trophotometer (NanoDrop Technologies, Inc.). DNA samples were

diluted to a concentration of 50 ng/ml.

Chromosomal microarray (CMA) analysis was performed using

Illumina Human Omni express (GxG Comprehensive Array, v1.0

Beadchip 709,671 SNP loci) microarrays. Gene by Gene's GxG Com-

prehensive Array analysis was done. Coordinated are according to

UCSC Genome Browser GRCh37.

2.2 | Expression studies

Expression analysis was done on the proband and his healthy parents.

Ribonucleic acid (RNA) was extracted from peripheral blood mononuclear

cells (PBMC) using TRIzol reagent (Thermo Fisher Scientific). Reverse tran-

scription reactions for mRNA were performed using the High-Capacity

cDNA Reverse-Transcription Kit with random primers, according to the

manufacturer's protocol (Thermo Fisher Scientific). Real-time quantitative

PCR (RT-PCR) was performed using Quanta qPCR Gene Expression

Master Mix (Quanta Technology). Comparative critical threshold

(Ct) values, obtained by real-time PCR analysis, were used for relative

quantification of gene expression, and determination of the fold-change

of expression. Fold change values were obtained using the formula:

2�ΔΔCt (Schmittgen & Livak, 2008). Normalization for mRNAs was per-

formed compared to human B-actin expression. Primers sequences:

Forward-AGCAGCAAACTTTCCCCAACG, Reverse-CATTGCCACTCA

CCTGGGA.

2.3 | Sanger cDNA sequencing of FOXC2

In order to confirm that the proband possesses a wild type copy of the

FOXC2 30-UTR, a region located downstream of the deletion was ampli-

fied (using PCR) and sequenced. Complementary DNA (cDNA) was syn-

thesized, and amplification of FOXC2 was performed using custom

primers: 50-ATTTCTCCAACCGTGCTGTAC-30, 50-ACTTATCCAGTG

AACTCAACTT-30. The PCR product was run through a 1.5% Agarose gel.

Discrete bands were extracted from the gel and were confirmed using

Sanger sequencing technology.

3 | RESULTS

3.1 | Clinical characterization

The clinical features of the affected patient are summarized in

Table 1. The proband is a 6-year-old boy who first attended the

genetic clinic at 10 months of age due to congenital lymphedema,

hypotonia, and global developmental delay.

The boy is a son of healthy nonconsanguineous parents of Bukha-

rin Jewish origin. Family history is negative for neurological disorders

or congenital anomalies.

The pregnancy was uneventful. Fetal sonographic scan revealed

bilateral pyelectasis. He was born at term; birth weight and occipital

frontal circumference were within normal ranges. He was diagnosed

with moderate hydronephrosis and vesicouretheral reflux.

During the first weeks of life moderate swelling of both calves and

feet, more on the right leg, occurred. Ultrasound of lower extremities

revealed increased skin and subcutaneous thickness, and pronounced

subcutaneous echogenicity, with normal venous Doppler ultrasound.

His development was slow without stagnation or regression. He

walked independently at 19 months. Single words appeared at

13 months of age; however, further attainment was significantly delayed.

He attained special education since 3 years of age. At that age, his

vocabulary and understanding were significantly limited. He was diag-

nosed with attention deficit hyperactivity disorder at the age of 5 years.

At the age of 5 years, physical development and head circumfer-

ence were age appropriate. The right foot was longer than the left.

There was a moderate difference in the lower shin circumference

(right thicker than left; Figure 1b).

Distichiasis-double rows of eyelashes was observed at the age of

6 years (Figure 1a).

3.2 | Chromosomal microarray

CMA showed a 894.4 kb deletion at genomic coordinates

chr16:86602575–87497027 (GRCh 37; Figure 2). The proband also had

a maternally inherited 317 kb duplication at chr8:14779676–15096705,

classified as likely benign. The 16q24 deletion was de novo. It and

included the OMIM morbid FBXO31, the 3UTR of FOXC2 genes, and the

FOXL1 and,MAP1LC3B genes, which are not associated with diseases.

Full details of the genes located in the deletion can be found in

Table S1.

This deletion detected for the first time in our cohort of 53,498

CMA cases done in Maccabi HMO from August 2014 to December

2020, of them 6195 postnatal tests, done on patients with intellectual

deficiency, ASD or major malformations. Sanger sequencing of

FBXO31 did not detect any suspected variant.

3.3 | Real-time PCR

Real-time PCR analysis of FOXC2 expression levels demonstrated

71% reduction of expression in PBMCs from the proband, compared

to PBMCs from control samples (p = 0.031; Figure 3).
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3.4 | Sanger cDNA sequencing of FOXC2

The sequencing matched the FOXC2 mRNA sequence (Figure S1),

implying the presence of a 30-UTR from the wild-type copy of the

FOXC2 gene for the proband.

4 | DISCUSSION

The overlapping deletions at 16q24.1–q24.2 have been described with

diverse associations. These included alveolar capillary dysplasia, cystic

hygroma and hydrops fetalis, structural brain malformations, unspecific

dysmorphic features, autism, and vascular malformations (Table 1).

We describe a patient with 16q24.1–q24.2 microdeletion with

congenital lymphedema, distichiasis, developmental delay, and renal

abnormalities.

Previous studies have shown that microdeletion at the 16q24.1–

q24.2 may be associated with neurodevelopmental disorders

(Table 1).

However, the deletion in our patient is proximal to those reported

cases. The overlapping deleted region included the OMIM morbid

FBXO31 and four other genes—ZCCHC14 MAP1LC3B, FOXL1, and

C16orf95 (Table 2), which scarce information regarding neuro-

development exists about them.

FBXO31 controls neuronal morphogenesis and migration in the

developing brain (Vadhvani et al., 2013). Bi-allelic mutations in that

gene have been associated with intellectual disability (Mir

et al., 2014). Sequencing of the gene did not detect additional patho-

genic variant. Recently, two patients with cerebral palsy, heterozygous

for de novo mutations in FBXO31 were described (Mental retardation

autosomal recessive-45, OMIM # 615979; Jin et al., 2020). Therefore,

FBXO31 may contribute to the neurodevelopmental delay, either

F IGURE 1 Pictures of the proband's eyelashes and calves.
(a) Distichiasis: The picture depicts double row eyelashes
(b) Lymphedema: The picture depicts moderate swelling of the right
shin comparing with the left one

F IGURE 2 Known CNV variants located in the deletion region: Data taken from UCSC (GRCh37) using the UCSC tracks ClinVar (P/LP/VUS,
gain and loss CNVs, >5 kb), decipher (P/LP/VUS deletions, >5 kb), DGV (deletions, >5 kb), and gnomAD SV (deletions, >5 kb). Items that span the
region shown in the graph were merged. The region presented in this article (chr16:86602575–87497027) is highlighted in light gray. (a) A 1.3 mb
area surrounding the region presented in this article (highlighted in light gray). (b) A 5 kb area congaing the gene FOXC2

MICHELSON ET AL. 1993



directly or by an effect on the allelic architecture (Yuan et al., 2020).

The deleted region in our patient also includes long noncoding RNAs

that may affect the phenotype. Recent studies have demonstrated the

role of long noncoding RNAs in CNS development, by regulation of

gene expression in neuronal differentiation, synaptogenesis, and syn-

aptic plasticity (Cuevas-Diaz Duran et al., 2019).

LDS is a distinct syndrome characterized by unique combination

of lymphedema and distichiasis (McDermott & Lahiff, 2016). The

lymphedema is confined to the lower limbs and appears in puberty or

later on. Distichiasis usually occurs in puberty or in young adulthood

(Table 1).

Forkhead transcription factor (FOXC2) is considered the only

causative gene for LDS (Tavian et al., 2016; van Steensel et al., 2009).

FOXC2 regulates genes and signaling pathways involved in

lymphangiogenesis (Norden et al., 2020; Wu & Liu, 2011). Mutations

impair transcriptional activity and cell proliferation (Tavian

et al., 2020). FOXC2 also negatively regulates increased Ras/ERK sig-

naling during lymphangiogenesis.

LDS phenotype is caused by numerous mutations along the entire

gene, and has been attributed to promoter–enhancer dissociation of a

topological-associated domain (Wallis et al., 2021; Table 2). The CMA

results, presented here, include only the 30-UTR of the FOXC2 gene.

30-UTR regulates translation efficiency of synthesized protein, mRNA

stability, export to cytoplasm, and subcellular localization (Matoulkova

et al., 2012). rs1035550 (NM_005251.3:c.*260A>C/T/G), a variant in

the FOXC2 30-UTR, was associated with secondary lymphedema fol-

lowing breast cancer surgery (Miaskowski et al., 2013) and risk of vari-

cose veins (Shadrina et al., 2016). The FOXC2 30-UTR also contains

several MicroRNAs (miRNA) targets (Nimir et al., 2017). MiRNAs were

found to play a role in embryonic lymphangiogenesis through the acti-

vation the NFATC1 transcriptional factor, which is associated with

FOXC2. Knock down of endothelial miRNAs have shown to result in

defective lymphatic vessels development (Jung et al., 2019). Regula-

tion of gene expression through 30-UTR was shown to be directly

mediated by overexpression of miR-204 and miR-495, and affected

by miR-374c-5p and MiR-204-5p (Yang et al., 2017).

The role of the FOXC2 30-UTR deletion is further supported by

the results of the current study. Quantitative PCR results showed sig-

nificantly lower expression level of FOXC2 in the proband compared

to his parents, thus supporting the genomic finding. To support a

TABLE 2 Clinical features in current patient and previously reported patients with FOXC2 variants

Described by Presented case Bell et al.
Erickson
et al. 2001

Finegold
et al. 2001 Brice et al. 2002

van Steensel
et al. Tavian et al. Wallis et al.

Number of
patients

1 14 31 44 74 11 6 5

Mutation 30-UTR deletion Frameshift Truncating Truncating Frameshift,
Missense

Nonsense
Missense
Frameshift

Missense
Frameshift
Stop codon

FOXC2 promoter–
enhancer
dissociation due
to balanced
translocation t
(16;22) (q24;
q13.1)

Lymphedema –
age of onset

Birth Puberty or
later on

4–82 yo 6–80 yo
2 cases-birth

11–36 yo 6–16 yo 14–50 yo 15 yo

Distichiasis –
age of onset

6 yo Puberty puberty 0–30 yo puberty 2/11
NA

26–48 yo NA

Renal
anomalies

Bilateral
hydronephrosis

None None None 5/74
Hydronephrosis

None None None

NDD disorder Global
developmental
delay

Language disorder
ADHD

None None None 1/74 learning
disabilities and
autistic
features

None None None

Other
anomalies

No Varicose
veins

CHD
Pierre-Robin

sequence
Scoliosis

2/31 Cystic
hygroma

TOF
Cleft palate

1/44 Cystic
hygroma.

TOF
Cleft palate
Yellow nail

Varicose veins
CHD
Scoliosis

Varicose veins 1/6 Bicuspid
aortic valve

Hydrops
Nuchal edema

Abbreviations: ADHD, attention deficit hyperactivity disorder; CHD, Congenital heart disease; NDD, neurodevelopmental disorders; TOF, tetralogy of Fallot; Yo, years old.

F IGURE 3 FOXC2 expression in PBMC samples from control and
proband: Real-time PCR analysis of FOXC2 expression from control
and proband samples. The data are shown as means ± SEM. *p < 0.05,
Welch's t-test. n = 2 control, n = 1 Proband. FOXC2 expression in the
proband's sample was 71% less compared to the parents
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possible role of heterozygote deletion in the FOXC2 30-UTR, this

region was sequenced using DNA and cDNA samples. Both tests

showed the existence of wild-type allele.

In conclusion, we report a novel phenotype of 16q24.1–q24.2

microdeletion syndrome of congenital LDS. Our results indicate a pos-

sible newly described role of FOXC2 30-UTR deletion in LDS, which

needs to be further studied.
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