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Cryptosporidium parvum and C. hominis are related protozoan pathogens which infect the intestinal epithelium of humans and
other vertebrates. To explore the evolution of these parasites, and identify genes under positive selection, we performed a pairwise
whole-genome comparison between all orthologous protein coding genes in C. parvum and C. hominis. Genome-wide calculation
of the ratio of nonsynonymous versus synonymous nucleotide substitutions (dN/dS) was performed to detect the impact of
positive and purifying selection. Of 2465 pairs of orthologous genes, a total of 27 (1.1%) showed a high ratio of nonsynonymous
substitutions, consistent with positive selection. A majority of these genes were annotated as hypothetical proteins. In addition,
proteins with transmembrane and signal peptide domains are significantly more frequent in the high dN/dS group.
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1. Introduction

Protozoan parasites belonging to the genus Cryptosporidium
(Phylum: Apicomplexa) develop in the intestinal epithelium
of many vertebrate species and frequently cause diarrhea.
The two main species known to infect humans are C.
parvum and C. hominis. Although highly similar at the
genome level, these species differ in host range. Specifically,
C. parvum infects humans and other mammals, particularly
calves, but C. hominis is typically only found in humans.
Human infections are mainly caused by the ingestion of
drinking or recreational water contaminated with oocysts, an
environmentally resistant form of the parasite.

The complete sequence of the C. parvum and C. hominis
genomes was recently published [1, 2]. Both genomes are
about 9 Mb in size and their gene complements appear
to be identical, each coding for about 3900 genes. The C.
parvum and C. hominis genomes exhibit only 3–5% sequence
divergence and no large insertions or deletions have been
identified [1]. Genome annotation has shown that energy
metabolism pathways are present, but biosynthetic ability is
limited. The pathways for de novo purine, pyrimidine, and

amino acid synthesis are lacking. Consistent with the reliance
of the intracellular developmental stages on the host cell
for many metabolites, numerous genes encoding membrane
transporters have been identified [1].

The analyses of nucleotide substitution patterns and
genes under positive selection are of interest for under-
standing the evolution of these parasites and to improve
genome annotation. Whereas “housekeeping genes” are
under purifying selection to conserve many metabolic func-
tions, genes that enable the parasite to adapt to different
host environments may evolve more rapidly. Evolutionary
analysis based on comparative genomics has been applied
to different organisms, such as mammals [3–6], drosophila
[7, 8], bacteria [9], and malaria [10, 11]. Here, we describe a
genome-wide analysis of nucleotide substitution patterns in
C. parvum/C. hominis orthologous protein coding genes.

2. Materials and methods

C. parvum and C. hominis protein coding gene nucleotide
and amino acid sequences were downloaded from CryptoDB
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[12] (http://cryptodb.org/cryptodb/) release 3.2. There are
3806 genes from C. parvum and 3886 genes from C. hominis
in total.

To identify orthologous genes between C. parvum and
C. hominis, best reciprocal hits were first generated with
BLASTP using an all-versus-all method and a significance
threshold e < 10−10. The alignment regions were required
to cover more than 80% of sequence lengths. This procedure
resulted in 2465 pairs of orthologous gene sequences. To cal-
culate dN/dS, amino acid sequences were first aligned using
ClustalW1.83 [13] (http://www.ebi.ac.uk/clustalw/) with
default parameters. Then, corresponding codon sequences
were aligned based on the original protein sequence align-
ment using an in-house Perl script. The same process was
also used on the raw ORF sequences to search for possible
high dN/dS fragments that were erroneously annotated as
being part of genes.

A PAML package implements three popular methods
for calculating dN/dS values from sequence alignments [14]
(http://abacus.gene.ucl.ac.uk/software/paml.html). These
are a Nei and Gojobori method [15] based on a simple
model of nucleotide substitution, and two more complex
methods: ML94 and YN00 [16, 17]. ML94 method uses
maximum likelihood framework to estimate dN/dS value
directly based on codon substitution model, while YN00
method is another approximate counting method that
incorporates the codon substitution model and unequal
weight substitution pathways. We report results from the
algorithm of Yang and Nielsen [16] that uses the codon
model and nucleotide substitution model correction F84
and HKY85, and additionally weights pathways by their
evolutionary probability. When we also calculated the dN/dS
values using all three methods, the results were very similar.
This is not surprising; results from the three methods are
only expected to diverge significantly when the evolutionary
distance between the organisms being compared is much
larger.

Signal peptide motifs were predicted using SignalP v3.0
[18] at http://www.cbs.dtu.dk/services/SignalP/. Its neural
network and hidden Markov model output YES or NO
predictions individually. We considered one sequence to have
a signal peptide if both, neural network and hidden Markov
model, predicted positive results. Transmembrane domains
were predicted using the TMHMM program v2.0 [19]
at http://www.cbs.dtu.dk/services/TMHMM/. This program
predicts the number of transmembrane domains and the
number of amino acids in each domain. We considered any
sequence to have a TM domain if at least one transmembrane
helix included more than 18 amino acids. Protein functions
were assigned based on sequence similarity search against
NCBI nonredundant protein database.

To analyze the expression of selected genes by RT PCR,
RNA was extracted from portions of the small intestine of
an experimentally infected mouse. The gut was removed on
day 14 post-infection from freshly euthanized animals and
immediately chilled on ice. The epithelial cells were mechan-
ically removed from the tissue. Total RNA was extracted
from the cell scraping using Trizol reagent and further
purified using a Qiagen RNA extraction kit. RNA was reverse

transcribed into cDNA in the presence of poly-T primers.
The absence of genomic DNA contamination from the RNA
samples was confirmed by including an RNA control mock
reverse transcribed in the absence of reverse transcriptase in
each RT PCR experiment. We randomly selected 7 sequences
from the high dN/dS (dN/dS > 1) group and 17 from
the low dN/dS (dN/dS < 1) group. PCR primers for these
sequences were designed using the LightCycler Probe Design
software version 1.0 (Roche, Applied Science Indianapolis,
IN.) with minimum cross complements. Amplifications
were performed in a LightCycler (Roche Diagnostics) using
FastStart SYBR Green I master mix (Roche Diagnostics).
Initial denaturation was performed at 95◦C for 10 minutes,
followed by 40 cycles of amplification: denaturation at 95◦C
for 1 second, annealing at 64◦C for 2 seconds, and extension
at 72◦C for 13 seconds. After amplification, melting curve
analysis was performed as follows: initial denaturation at
95◦C for 0 second, followed by annealing at 65◦C for 15
seconds, and melting was performed in 0.1 degree increment
per second until 95◦C was reached for 0 second. After
these procedures, amplification products were transferred
from capillaries to microcentrifuge tubes, mixed with the
loading buffer, and loaded onto a 1% agarose gel in a Tris-
Acetate-EDTA buffer. Expression of selected sequences was
confirmed if a single amplicon of the expected size was
identified on ethidium bromide stained gels.

3. Results

To identify the effect of selective pressure on the Cryp-
tosporidium proteome, we started our analysis with 2465
pairs of orthologous C. parvum and C. hominis genes
identified by BLASTP reciprocal best hits. Figures 1 and
2 in Supplementary Material, available online at doi:10
.1155/2008/879023, show the dS and dN value distributions
for C. parvum and C. hominis. Most of gene sequences have
a dS ratio below 0.0625 and a dN ratio smaller than 0.025.
Using the ratio of nonsynonymous over silent substitutions
(dN/dS) [20], Figure 1 shows the distribution of dN/dS
values among 2465 orthologous C. parvum/C. hominis gene
pairs. As in two other whole-genome studies [3, 11], we
found that most of the genes (2438 of 2465, 98.9%) are under
negative selection (dN/dS < 1), while the remaining 1.1%
evolve neutrally or have accelerated rates. This distribution
is consistent with most annotated genes being genuine, as
opposed to mispredictions or pseudogenes. The median
dN/dS was 0.1484, similar to what was found in the
taxonomically related malaria parasites [11, 21], where, for
example, the median dN/dS values of 0.27, 0.30, and 0.17 for
three pairwise comparisons between two laboratory isolates
of P. falciparum and a P. reichenowi and a P. falciparum
isolate from Ghana were found. Among the C. parvum/C.
hominis orthologous gene pairs, 391 (15.8%) sequences had
a dN/dS ratio less than 0.05. At the other extreme of
the distribution, 27 (1.1%) genes with dN/dS > 1 were
identified. This high dN/dS gene percentage is slightly lower
than those of previous reports from human/chimpanzee
orthologs comparison [6, 22].

http://cryptodb.org/cryptodb/
http://www.ebi.ac.uk/clustalw/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/TMHMM/
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Figure 1: dN/dS ratio distribution of orthologous gene sequences from C. parvum and C. hominis. Black bars represent the frequency of
gene sequences in each dN/dS category. For dN/dS < 1, category size is 0.05; for dN/dS > 1, category size is 0.5.
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Figure 2: dN/dS ratio distribution of orthologous genes with or without functional annotation. Black bars represent gene with unknown
function, while gray bars indicate known function.

To ensure that high dN/dS values did not originate from
noncoding sequences erroneously annotated as genes, 7 C.
parvum genes were randomly selected from 27 orthologs
with dN/dS > 1 for RT-PCR analysis. Specifically, under the
assumption that such genes were not a result of misannota-
tion, we expected to detect mRNA transcripts from a similar
ratio of genes with dN/dS > 1 as from genes with much
lower dN/dS values. Thus, as controls, dN/dS transcripts
with dN/dS < 1 were analyzed in parallel. For this analysis, C.

parvum RNA was extracted from the intestinal epithelium of
experimentally infected mice. Because such animal infections
are not synchronized, we expected these RNA samples to
contain transcripts of genes expressed at different stages of
the intracellular life cycle. The RT PCR analysis successfully
detected transcripts from 2 of 7 high dN/dS and 4 of 17
low dN/dS sequences (Table 1). The similar level of RT-PCR
detection in sequences with high and low dN/dS indicates
that high dN/dS genes are unlikely to have originated from
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Table 1: Summary of RT-PCR results.

RT PCR detection

dN/dS > 1 dN/dS < 1

Total number of genes(1) 7 17

Number of detected 2 4

dN/dS (mean) 1.16 0.08

TM/SP (%)(2) 100 12

Annotated (%)(3) 28 88
(1)

Number of transcripts which were detected or not detected by RT PCR
(2)Percent of transcripts predicted to encode a transmembrane domain or a
signal peptide
(3)Percent of transcripts with annotated function.

the alignment of noncoding sequences erroneously identified
as genes.

With genomes as close as C. parvum and C. hominis,
there is always a possibility that high dN/dS values are
found by chance. This is particularly a concern for the YN00
estimation method [16], which uses multiple correction
terms for distant genomes. To verify our gene sets, we also
ran the Nei and Gojobori NG86 method [15] and maximum
likelihood method ML94 [17] on the data, which we would
expect to show similar result with closely related genomes
as is the case for C. parvum and C. hominis. In fact, for
example, 22 of 27 gene pairs still exhibited dN/dS > 1 when
ML94 method were used, whereas the remaining five all had
dN/dS > 0.84.

For 797 (32.3%) of the 2465 orthologous gene pairs
included in the dN/dS analysis the function is unknown.
The remaining 67.7% (1668) have been assigned functional
predictions based on homology to genes in other species at
NCBI nonredundant protein database. Consistent with the
difficulty of annotating fast-evolving genes, for high dN/dS
genes (dN/dS > 1) putative functional annotation was rare:
59.2% of sequences with dN/dS > 1 (16 of 27) are annotated
as “hypothetical protein.” Table 1 in supplementary material.
In contrast, only 18.5% of sequences with dN/dS < 0.1
(151 of 814) are classified as hypothetical. The dN/dS
distributions of these two groups of genes are significantly
different (P < 6.51e-32, Komolgorov-Smirov (KS) test) as
shown in Figure 2. The statistics of these distributions are
summarized in Table 2.

Host-Cryptosporidium interaction is believed to involve
many extracellular proteins with transmembrane (TM)
domains or signal peptides (SP) [23]. Such proteins are
likely to be exposed to the host immune response and may
therefore evolve rapidly [24]. To investigate this hypothesis,
we predicted TM and SP domains across all C. parvum/C.
hominis orthologous gene pairs. A total of 16 of 27 sequences
(59.2%) with dN/dS > 1 were predicted to have TM or SP
domains, compared to 192 of 814 sequences (23.5%) with
dN/dS < 0.1. We also observed that a higher percentage of
sequences in the TM/SP group has dN/dS > 1 (2.2%), as
compared to 0.6% of sequences without TM/SP. Figure 3
shows the dN/dS value distributions for these two groups.
The two distributions are significantly different (P < 1.86e-

7, KS test), consistent with many membrane proteins being
under positive selection.

4. Discussion

The large proportion of C. parvum and C. hominis genes
without functional annotation indicates the extent to which
the genome of these parasites has been shaped by the
adaptation to a complex life cycle, and to the host and outside
environment. Bioinformatics contributes to our understand-
ing of these genomes by flagging proteins showing signs of
extreme selection. A computational approach is particularly
relevant for studying pathogens such as Cryptosporidium
species, which are difficult to culture, cannot be genetically
manipulated, and are resistant to antiprotozoal drugs.

Cryptosporidium genomes are not intron-rich; only 5%–
20% of genes are predicted to have multiple exons [1, 2].
Therefore, we also performed our dN/dS analysis using
ORF sequences, so that we might find high dN/dS genes
that were missed by the automatic gene annotation used in
CryptoDB. We estimated selection pressures on C. parvum
and C. hominis homologous ORF pairs using the same dN/dS
statistics. A total of 251 out of 4279 orthologous ORFs (5.8%)
showed signs of positive selection. One possible reason for
the higher percentage is that some ORFs represent only parts
of whole gene sequences, and averaging over multiple ORFs
will lower dN/dS value of whole gene. For example, ORF
CpIOWA V AAEE01000007-1-707587-707922 has a dN/dS
value of 1.79, but further analysis showed that it is only a
part of a protein which has a much lower dN/dS of 0.054.
Nonetheless, it may be worth in future studies to examine
these high dN/dS ORF regions more closely to elucidate if
any high dN/dS genes were missed by gene finding methods.

Given the low divergence between C. parvum and C.
hominis, estimation of dN/dS value may be inaccurate due
to stochastic noise and a low level of substitutions. Most
of the gene sequences have dS below 0.0625 (Supplemental
Figure 1), which means that some of the high dN/dS values
may be due to chance. Previous studies between closely
related species such as human and chimpanzee showed that
a large number of genes under positive selection are expected
to occur by chance [6, 22]. The detection in our analyses of
high dN/dS sequences with two different methods together
with a significant enrichment for TM/SP sequences in these
genes indicates that our analysis detects rapidly evolving
genes.

As with other pathogens, sequences with TM/SP struc-
tures are expected to be directly involved in host-pathogen
contact. In our study we identified a large proportion
of sequences with predicted TM or SP motifs that have
elevated dN/dS ratios. This observation is consistent with
other studies. For instance, Jeffares et al. reported that
P. falciparum genes mediating host cell invasion have
high dN/dS ratios [11]. These authors also examined the
substitution rates of genes according to cellular location.
Significantly, more rapid rates of evolution were observed
for predicted membrane-spanning proteins and exported
proteins, as compared to proteins localized to the nucleus,
cytoplasm, and mitochondrion. In another study comparing
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Table 2: Summary of dN/dS analysis.

Classification by structure Classification by annotation

With TM/SP(2) Without TM/SP Hypothetical Known function

Number of genes(1) 721 1744 797 1668

Median dN/dS 0.1762 0.1388 0.2124 0.1276

KS(3) test P value 1.86e-7 6.51e-32
(1)

Number of orthologous gene sequences between C. parvum and C. hominis
(2)Transmembrane or signal peptide
(3)Kolmogorov-smirnov test.
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Figure 3: dN/dS ratio distribution of orthologous gene sequences with or without TM/SP structural domains. Black bars represent genes
with TM/SP structural domain while gray bar represents the gene without TM/SP. TM: transmemebrane domain; SP: signal peptide.

the genome of the rodent malaria species P. berghei and
P. chabaudi [10], a significant difference between dN/dS
values in TM/SP-containing and non-TM/SP-containing
genes was found in proteins expressed during the blood
stage, but not in genes expressed in the mosquito vector.
A similar trend was also reported in a comparative study
of the two Theileria species T. annulata and T. parva
[25]. Whether similar life cycle dependent differences also
occur in Cryptosporidium species or are a characteristic of
Apicomplexa of the blood is an interesting topic for future
investigation.

Even though many of the high dN/dS sequences in the
C. parvum/C. hominis genome comparison remain without
annotation, the few annotated genes in this category are
worth mentioning. In particular, the genes with the second
and sixth highest dN/dS values, (cgd2 440 with dN/dS >
3.36 and cgd2 220 with dN/dS > 1.5, resp.) are annotated
as secreted mucins. Such mucins have been shown to be
involved in attachment and invasion of host intenstinal
epitethelial cells by C. parvum sporozoites and are crucially

involved in pathogenesis of cryptosporidiosis [26]. They
are found on the cell surface and apical region of invasive
stages and are shed in trails during gliding motility [26, 27].
Another high dN/dS protein is from the DHHC family
of palmitoyl transferases (cgd5 1260, with dN/dS > 1.46),
which are enzymes involved in cellular signaling and mem-
brane trafficking. In some parasitic protozoa palmatoylated
proteins have been predicted to play a role in the evasion of
the host immune response [28, 29].
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