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The ability to represent approximate quantities appears to be phylogenetically
widespread, but the selective pressures and proximate mechanisms favouring
this ability remain unknown. We analysed quantity discrimination data from
672 subjects across 33 bird and mammal species, using a novel Bayesian
model that combined phylogenetic regressionwith amodel of number psycho-
physics and random effect components. This allowed us to combine data from
49 studies and calculate the Weber fraction (a measure of quantity represen-
tation precision) for each species. We then examined which cognitive,
socioecological andbiological factorswere related tovariance inWeber fraction.
We found contributions of phylogeny to quantity discrimination performance
across taxa. Of the neural, socioecological and general cognitive factors we
tested, corticalneurondensityanddomain-general cognitionwere the strongest
predictors of Weber fraction, controlling for phylogeny. Our study is a new
demonstration of evolutionary constraints on cognition, as well as of a relation
between species-specific neuron density and a particular cognitive ability.

This article is part of the theme issue ‘Systems neuroscience through the
lens of evolutionary theory’.

1. Introduction
Quantitative sensitivity is an aspect of cognition that is ubiquitous among many
species, and many researchers debate the nature of its evolutionary basis across
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taxa, including in humans and other primates [1–6]. Baboons
use numerical estimation to guide troop movement [7,8],
desert ants and fiddler crabs navigate by keeping track
of the number of steps they have taken [9,10], and social
species like hyenas and lions vocalize or approach other
conspecific groups only when their group has a numerical
advantage [11–17]. A diverse range of animals—from prima-
tes to reptiles, fish and insects—can discriminate numerical
quantities in laboratory tasks, for example, comparing com-
puterized arrays or sequences of pure tones to peck, touch
or approach the numerically larger set [2,4,18–22]. Moreover,
animals represent numerical values cross-modally [23–27]
and under conditions where dimensions such as area, density
and duration are equated, uncorrelated with numerical value
or otherwise controlled [2,4,20,28–30].

Behaviour in quantitative tasks is well predicted by the
general psychophysical principle Weber’s law: discrimination
accuracy between the magnitudes of two stimuli is deter-
mined by their proportional difference [31,32]. Weber’s law
reliably predicts performance on nonsymbolic numerical
tasks across species [7,20,29,33], through human develop-
ment [34–36], and across cultures [37]. Weber fraction (w) is
a measure of quantitative precision that represents the pro-
portion difference between quantities that is needed to
reliably discriminate them [36,38,39]. In an investigation of
the basis of quantitative decision-making by wild baboons,
number better predicted decisions than mass, with wild
baboons exhibiting Weber fractions similar to those found
for baboons in laboratory settings [7]. Insect number sense
has been explored [40], especially in honeybees [41–44],
with mixed results on relative versus absolute quantity dis-
crimination that suggest different mechanisms may be
at play than in mammals and birds. Bees do not show
particularly high quantitative sensitivity; for example, with
appetitive conditioning only, bees discriminated between 4
and 8 almost at chance level (54%), while appetitive and
aversive conditioning improved discrimination only slightly
at this 2 : 1 discrimination ratio (64%) [45].

The ubiquity of quantitative representation, and specifi-
cally numerical representation, suggests that number is
useful in many animals’ natural lives, but its phylogenetic
basis is unclear. There are no prior studies that examine
quantitative cognition in an explicitly phylogenetic frame-
work across a broad range of species. Investigating species
differences has long been one goal of comparative psy-
chology, with integration of principles of evolutionary
biology [46–48]. However, modern methods of phylogenetic
regression across taxa are novel in the context of cognitive
studies [49,50] and can provide insight into the phylogenetic
signal or ancestral state of a cognitive trait, as well as if social,
ecological or anatomical variables affect cognition when
phylogeny is taken into account [48].

Here we develop a computational model of the phyloge-
netic distribution of quantitative sensitivity, and we examine
potential causes of changes in quantitative sensitivity including
brain morphology, ecology and domain-general cognition.
This model is innovative in that it combines a phylogenetic
regression—to control for relatedness between species—with
a likelihood model based on the psychophysics of number.
Specifically, we assume that performance on number tasks is
derived froma linear internalmental scalewith linearly increas-
ing Gaussian noise. We model variation in species, individual
animal and task, and combine these with a predictor. We
model phylogenetic relatedness as a correlation matrix among
species effects, where a single parameter determines the
degree to which species effects are determined by phylogeny.
Together in a Bayesian data analysis, this allows us to test the
likely influence of a single factor (e.g. an aspect of brain
morphology or ecology), while controlling these other com-
ponents. Thus, likely underlying causal factors can be inferred
by exploring the phylogenetic variation in numerical ability
across species and investigating which physiological and
ecological factors best predict numerical competence—an
approach used previously to investigate the evolution of self-
control [49], domain-general cognitive ability [51], visual per-
spective taking [52], prosocial preferences [53], cultural
intelligence [54] and temporal decision-making [55]. Identifi-
cation of these factors may reveal the selection pressures that
have shaped numerical understanding throughout evolution.
The potential factorswe investigate include brain size and neur-
onal number and density, socioecology and domain-general
cognitive ability, detailed below.
(a) Features of the brain
One potential factor influencing the precision of quantitative
representations is brain size, as it has been proposed that
humans’ exceptional cognitive abilities arise from our large
brains [56–58]. Larger brains, despite their greater metabolic
cost [59], provide the neural tissue necessary to solve more
complex problems that an animal may encounter in its
environment. Indeed, prior research has demonstrated a
relation between some cognitive abilities and measures of
brain size. Self-control and general cognitive ability (an
aggregate score of invisible displacement, reversal learning,
delayed response and other cognitive abilities) have been
found to be strongly related to absolute brain size, supporting
a hypothesis of cortical reorganization driving the evolution
of cognitive abilities [49,51]. When brains increase in size,
cortical reorganization becomes necessary as neurons in
different parts of the brain are pushed apart. This reorganiz-
ation can result in larger brains showing more modular
organization than smaller brains [60,61]. Measures of relative
brain size, which take body size into account, cannot capture
the degree of cortical reorganization that may have occurred
due to increases in absolute brain size. On the other hand,
bigger bodies require more sensory and motor brain tissue;
relative brain size accounts for body size and is thus a
measure of brain size above and beyond that needed for
sensory and motor control. Social learning, behavioural flexi-
bility, tool use, innovation and problem-solving ability have
been found to be correlated with relative brain size, support-
ing a hypothesis that encephalization (an increase in cortex
size relative to body size) drives cognitive evolution
[62–66]. Though the avian brain would appear to be a special
case because it does not have a cortex, the nidopallium
caudolaterale (NCL) has been identified as functionally
equivalent to the mammalian prefrontal cortex [67,68].

Criticisms of using brain size measurements in compara-
tive biology include that these measures do not actually
capture variation in brain size across taxa well [69,70].
Some researchers contend that the number of cortical neur-
ons, rather than brain size, is a better proxy for cognitive
ability [71]. Recent advancements have made the quantifi-
cation of neurons more accurate and efficient [72,73],
leading to the discovery, spearheaded by Herculano-
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Houzel, that number of neurons does not scale with brain size
the sameway indifferent taxa [74–81]. Forexample, as brain size
increases, the number of neurons in the primate brain increases
more than the number of neurons in the rodent brain, meaning
that similarly sized primate and rodent brains contain different
numbers of neurons [82–84]. The number or density of cortical/
pallium neurons may, therefore, be a more accurate proxy for
quantitative ability than brain volume, particularly when com-
paring species across a range of taxonomic groups.

Ratio-dependent neural responses to numerical stimuli
have been demonstrated in theNCL of corvids [33,85], compar-
able to those found in the intraparietal sulcus area of the cortex
in humans [86,87] and nonhuman primates [27]. Given the vast
differences in avian and mammalian brain structure, it may
also be fruitful to explore other avian brain regionswith a com-
paratively high neuronal density as potential proxies for
cognitive ability. Cerebellar neuronal scaling rules also differ
across taxonomic groups [84], with songbird and parrot cer-
ebellum neuronal densities (as well as pallium neuronal
densities) being higher than those of mammals [79]. Mammals
from four orders showed the same coordinated scaling of
neuron number in both the cerebral and cerebellar cortices,
supporting arguments for integrated functions and selective
pressures [88]. Indeed, some researchers argue that the cerebel-
lum has been neglected in studies of vertebrate brain evolution
and cognition [89–91].
(b) Socioecology
Socioecological selective pressures could also influence
quantitative ability directly since both dietary and social com-
plexity have been previously linked to differences in
cognition. Diet is related to spatial memory in seed-caching
birds [92–94], Central and South American primates [95]
and lemurs [96]. Bonobos, whose food source is more uni-
formly distributed in their habitat and who arguably rely
on a relatively consistent food source, are more risk averse
than chimpanzees, whose food source is more patchily dis-
tributed [97]. This and other differences in ecology between
bonobos and chimpanzees [98,99] have implications for the
cognitive profile of the last common ancestor between
humans and Pan [100]. More broadly, the foraging required
to maintain a particular diet has been hypothesized as one
of the driving forces in the evolution of primate cognition
[101]. Successful foragers of diverse taxa accurately decide
when to keep foraging in the same area and when to move
to a new area [102]. This likely requires a finely tuned
representation of quantity and the ability to accurately com-
pare multiple quantities. Therefore, dietary factors such as
the percentage of fruit in the diet, which reflects the diversity
of foraging done by a species, may be related to the precision
of species’ quantitative representations. A larger home range
size and/or a longer day journey length involves more com-
plex navigation of heterogeneous environments on a larger
scale and may require more quantitative sensitivity in
making ecological decisions with high cost or high gain out-
comes in terms of energy acquisition or expenditure.

Navigating complex social systems influences multiple
components of cognition in social vertebrate taxa. The social
intelligence (or social brain) hypothesis suggests that social
complexity drove brain evolution, especially in primates
[103–105]. Survival in large social groups requires the ability
to keep track of multiple individuals and their relationships,
as well as judge whether to engage with another group or
not. When baboons disagree about the direction of troop
movement, undecided baboons more often choose to go in
the direction with more supporters [8], behaviour which is
driven by approximate number representations [7]. Addition-
ally, in species that engage in reciprocal altruism, having
precise quantity representations could help them keep track
of the quantities being exchanged and thus avoid cheaters
[106]. In intergroup encounters, assessment of the number of
opponents is advantageous across multiple taxa [12,15,16].
Within-group social decision-making, in the context of naviga-
tion, predator avoidance, cooperative hunting and mating
behaviours also involves quantitative processing [5]. Being
able to make accurate quantity judgements, due to a well-
tuned quantity representation system, would likely be adap-
tive for a highly social species. Social group factors like
group size could, therefore, be related to numerical precision.

(c) Domain-general cognitive ability
Finally, domain-general cognitive abilities could influence
performance on the quantity discrimination tasks used to
measure numerical precision. These tasks could place
demands on executive functions like attention, memory and
self-control that, while distinct from the number sense itself,
influence an animal’s ability to discriminate between quan-
tities. For example, species with low self-control could
perform poorly on quantity discrimination tasks because
they are less able to inhibit incorrect responses.

Our goal was to evaluate these factors quantitatively in
mammals and birds (N = 33 species) using a novel modelling
approach that integrates Bayesian, phylogenetic and number
psychophysics components. Specifically, the model jointly fits
effects of predictors across species on Weber fraction (w), as
well as the influence of phylogenetic relatedness, while control-
ling for species, individual, study and task effects. With the
wealth of quantitative discrimination studies across taxa, we
implemented this model in the context of a meta-analysis.
2. Methods
(a) Animal quantity discrimination data compilation
To find studies from which Weber fractions could be calculated,
Google Scholar literature searches were conducted of ‘animal’
and ‘quantity discrimination’ in March 2015 and May 2017.
Studies were included in these analyses if they used one of these
three paradigms: match-to-sample, go/no-go or ordinal tasks
with visual array stimuli (controlled array paradigm); food stimuli
tasks with sequential presentation of food (sequential paradigm);
and food stimuli tasks with simultaneous presentation of food
(simultaneous paradigm). Data were obtained either from the pri-
mary literature or, when possible, directly from the author(s). In
total, data were obtained from 49 studies for 33 species and 672
subjects. See electronic supplementary material, table S1 for a
complete list of the studies included in these analyses.

Number representation precisionwas quantified by theWeber
fraction (w), a value that quantifies the representational precision,
assuming the underlying approximate number system is formal-
ized as Gaussian distributions along a mental number line [107].
Smaller Weber fractions correspond to narrower Gaussian curves
and more precise quantity representations, while larger Weber
fractions reflect increased noise and overlap between Gaussian
curves of numbers being compared and poorer quantity discrimi-
nation. In our model, Weber fraction was jointly estimated with
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other parameter effects (species, study, subject, task) per species in
a Bayesianmodel implemented in the Stan programming language
(see details under Bayesian analyses section).

(b) Phylogenetic tree construction
Phylogenetic trees were generated in R using the ape package
[108], based on information from The Timetree of Life
[109,110], incorporating a 3 Mya divergence of the North Island
robin and South Island robin [111], and a 15 000-year-ago diver-
gence of dogs and wolves [112].

(c) Brain and socioecological data
Most endocranial volume (ECV) and socioecological variable
data were acquired from a previous large-scale comparative
study [49] (see electronic supplementary material, table S1 for
primary sources). Additional ECV and socioecological data
were obtained from the literature. When ECV could not be
found, it was calculated from brain mass based on brain tissue
density of 1.036 g cm−3 [113]. Residual brain volume (RBV) is
the residuals from a phylogenetic regression of ECV on body
mass [49]. Actual cortical/pallium neuron data and cerebellum
neuron data for 12 species were obtained from the literature
(see electronic supplementary material, table S1 for primary
sources). For cerebellum neuron number, an outlier, the African
elephant, is included, as models run with the African elephant
excluded for cerebellum neuron number and density did not
show a major shift in effect (see electronic supplementary
material, figure S2 for scatterplot of w by cerebellum neuron
number with and without the elephant outlier). For the primate
species without cortical neuron data, the number of cortical neur-
ons was calculated from brain mass using the following scaling
rule: no. of cortex neurons = 37 813 551.018 × brain mass0.891

[114]. For the primate species without cerebellum neuron
number data, the number of cerebellar neurons was calculated
from brain mass using the following scaling rule: no. of cerebel-
lum neurons = 69 640 042.656 × brain mass0.936 [114]. Calculating
cortical or cerebellar neuronal density values for species with
missing values was less straightforward because neuronal den-
sity and neuronal number are decoupled in primates, i.e.
unlike in nonprimate mammals, more neurons does not mean
larger neurons (and lower density) in primates [75,115]. There-
fore, our sample size for neuronal density is smaller than that
for neuronal number.

Socioecological variable data, specifically group size, percen-
tage fruit in diet, home range and day journey length, were
compiled from the literature (see electronic supplementary
material, table S1). Group size was compiled across all taxa,
while percentage fruit in the diet, home range and day journey
length were compiled for primate species only. Finding compar-
able social and ecological variable data across primate,
nonprimate mammal and avian taxa is not straightforward: for
example, finding values for percentage frugivory for corvids is
complicated by lack of reliance on fruit and corvid diverse
diets with variable and sometimes qualitative mention of fruit-
eating [116,117]. For bird taxa generally, other social and ecologi-
cal variables not applicable to mammals may be more relevant
selective pressures; for example, degree of food caching.

Some of the variables were transformed in order to meet the
assumptions of the statistical analyses performed: ECV, group
size, home range, day journey, cortical neuron number, cerebellar
neuron number, cortical neuron density and cerebellar neuron
density were log-transformed.

(d) Domain-general cognitive ability data
Self-control data were obtained for 17 species from a large-scale
comparative study (species score was composite score calculated
from performance on A-not-B task and cylinder task) [49] and for
two species from studies of corvids [118] and parrots [119]
(species score was performance on cylinder task). Domain-gen-
eral cognitive ability data were obtained for 10 primate genera
from a meta-analysis [120]. In the meta-analysis study [120], a
high general cognitive ability score indicated poor performance,
so we reversed the scores in our analyses for clarity (so that high
score indicated good performance).
(e) Bayesian analyses
We used a Bayesian model that combines a phylogenetic
regression with a likelihood that is grounded in number psycho-
physics. Specifically, the regression assumes that there was a
linear effect of each single predictor (outlined above) on the
mean log Weber fraction for a species. The phylogenetic
component includes a correlation that derives from the phyloge-
netic tree, but the strength of this correlation is determined by a
free parameter, lambda (λ) [48,121–123]. Finally, the inferred
Weber fractions w are converted into a binary prediction by fol-
lowing the common linear-scale-variable psychophysical model
which assumes a number n is represented with standard devi-
ation wn. This model predicts binary accuracy judgements on
specific numerical comparisons, which is the observed data
for the model. In addition, the model includes parameters to
capture variation in species, tasks and individuals via a simple
mixed-effect component. Thus, the model jointly fits effects of
predictors across species on w, as well as the influence of
phylogenetic relatedness employing a mixed-effect component
similar to previous phylogenetic approaches [124], to control
for individuals, study, species and task. Task refers to experi-
mental task (i.e. paradigm), while study indicates a specific
research study. A graphical model for our analysis is shown
in figure 1. This shows the relationships between the key vari-
ables, with plates (rectangles) illustrating arrays of variables.
For example, lambda, a parameter that controls the strength
of the phylogenetic component, determines the species effects
and is constant across all species, while x, the predictor
of interest, takes on a different value for each species and,
along with the regression coefficients β0 and β1, determines the
mean value µ of each Weber fraction. This model importantly
allows us to quantify the effect of each predictor under
tight controls for these other factors, as well as a principled
likelihood that is based on a formalization of approximate
number perception.

Our model differs from standard phylogenetic regressions in
that the quantity we measure, Weber fraction, is not directly
observed. It is a latent variable that predicts accuracy only via
a particular psychophysical linking function. We have a fixed
covariance matrix V based on one phylogenetic tree which indi-
cates how correlated species should be based on their phylogeny.
That matrix V is mixed with the identity matrix via lambda (e.g.
M = λ ×V + (1− λ) × identity) to create the inferred covariance
matrix M among species. If λ = 0, each species effect is indepen-
dent (sampled from standard normal), while if λ = 1, each
species’ adjustment to the overall Weber fraction is determined
by the phylogeny’s predicted covariance. In the model, lambda
is fitted simultaneously with all other parameters (only the
matrix V is fixed). The species-level adjustments to log Weber
fraction are sampled from a normal with covariance M. In the
model, these species effects are added to the grand overall (log)
Weber fraction, effects for each task, individual and study. And
then the (log) Weber fraction thus derived is used to predict
the correct/incorrect outcomes on each number comparison
using a standard psychophysical model. The only data we
observe are V and the accuracies, while the effective Weber frac-
tion for each trial is latent, as is the species effects on this
Weber fraction.
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We implemented the model in the Stan programming
language (Stan v. 2.19.1, using the R interface rstan [125]),
which employs Hamiltonian Monte Carlo, specifically the
no-U-turn sampling (NUTS) algorithm [126]. Rhat values,
meaning the agreement of multiple chains, were used to assess
convergence; we found all Rhat values < 1.05 (indicating that
between-chain variance was similar to within-chain variance).
3. Results
Figure 2 shows a phylogenetic tree of the species included in
these analyses and overallWeber fraction,with uncertainty rep-
resented, for each species. Larger Weber fractions reflect worse
performance—a Weber fraction of 0.2 would mean an animal
can reliably discriminate quantities as fine as 10 versus 12
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whereas a Weber fraction of 0.5 affords reliable discrimination
only to 10 versus 15. The ranges in Weber fractions in each of
the three groups broadly agree with previous studies in pri-
mates [7,128–130], other mammals and birds [131]. Birds (in
red) haveWeber fractions that are lower and narrower posterior
distributions than those of nonprimate mammals (blue) and
some primates (green). Among nonprimate mammals, the
horse and the coyote show highest estimated Weber fractions
with the widest posterior distributions. Among primates,
smaller Weber fractions with narrow posterior distributions
are found for some Central and South American primates,
and some Afro-Eurasian primates, including most apes. The
human Weber fraction [127] is shown with a green asterisk
for comparison with the other species. The inset in figure 2
shows lambda ofw across all predictors (controlled), indicating
the existence of a phylogenetic correlation for w across brain,
socioecological and cognitive predictors, with uncertainty.
Lambda indicates whether the species-level adjustments to
Weber fraction are correlated in the way the phylogeny
would predict or not; therefore, the inset in figure 2 provides
evidence that λ > 0, which means that species are not indepen-
dent. Subsequent results reported below take into account this
uncertainty in phylogenetic correlation for w.

In figure 3, the intervals illustrate the posterior distri-
bution for the coefficient for each predictor. Posterior
distributions in Bayesian analysis quantify what we should
believe about the true value of the parameters, i.e. what we
normatively should believe about the size of each effect.
Specifically, figure 3 shows posterior uncertainty intervals
that indicate the means that give the best estimate with a
spread that shows how confident to be in that estimate. In
our model, parameters are chosen so that their value quan-
tifies a theoretically driven hypothesis, such as the likely
influence of a predictor on numerical acuity. We plot pos-
terior quantiles, which provide the range of likely true
values for the parameters (e.g. the 50% quantiles show the
most central half of probability, or belief, in the parameter’s
value). Bayesian analysis does not typically ask whether vari-
ables are exactly equal to zero—as in a null hypothesis test, or
standard frequentist regression—because that has zero prob-
ability of being true in the world. Instead, these ranges
illustrate the model’s best guess (value) and confidence
(range) in each effect. In figure 3, from a model with 33
species, the posterior distributions demonstrate that w
decreases (quantity discrimination improves) with increased
cortical neuron density, cerebellar neuron density and general
cognitive score; weaker effects are also shown for RBV, fru-
givory and group size. A parameter with no effect would
be centred at 0 (as cerebellum neuron number is) with
wide symmetrical error bars. These findings indicate that a
subset of neural and general cognitive variables are related
to the evolution of quantitative sensitivity among species.
A model with only primate species (n = 15) showed some
effects, including cerebellar neuron density and self-control,
were weakened or removed; cerebellar neuron density shifted
to no effect (centred at zero) (electronic supplementary
material, figure S1). Two effects were strengthened when
only primates were included in the model: primate species
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w decreases (quantity discrimination improves) with
increased RBV and increased cerebellum neuron number
(electronic supplementary material, figure S1).

Figure 4 shows the posterior credible intervals on the scale
parameters for species, subject, study and task, as well as the
posterior credible interval of one of the predictors (group
size). Figure 4 indicates that species and individual subject
contribute to performance. Task, with wide uncertainty, also
contributes to performance.
Scatterplots shown in figure 5 allow us to visualize each
predictor by effectively estimating w independently and
examining its relationship with key predictors, by taxonomic
group. The species w values in figure 5 were generated via a
model with no predictors and only species, study, subject and
task effects (i.e. the same model as for figure 1). The cortical
neuron density (figure 5a) effect is driven by primates and
birds, while the cerebellum neuron density effect is driven
by nonprimate mammals (figure 5b). Better (lower) w was
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related to better general cognitive score in primates (figure 5c).
For weaker effects, the RBV effect is driven by primates
(figure 5d) and the group size effect is driven by all three
taxonomic groups (figure 5e). The largest group size (with a
relatively high w) belongs to the South American sea lion.

We acknowledge thatw for different tasksmay be related to
predictors differently: for example, self-controlmay specifically
be related to the sequential task w. In the sequential numerical
cognition task, animals wait while a set of items is baited
one-by-one over time, and this is a general task demand on
attention and response control (e.g. [129]). Testing these predic-
tions about task differences is outside the scope of our model
because by assumption in the model, each task scales the
value of w the same across all other predictors. Future work
with different modelling approaches should address these
questions as different quantitative tasks likely have unique
relations to some predictors—particularly if the task require-
ments have consistent effects on performance among
individuals of a species.
 B
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4. Discussion
The question of how strongly phylogeny predicts variation in
cognition across species has a contentious intellectual history.
For nearly a century, many psychologists considered evolution
to be irrelevant to the study of learning because the behaviours
of all species were thought to obey similar laws [132,133].
Ultimately, however, it was shown that the laws of learning
often depend on the biological preparedness of the organism
[134]. Comparative psychologists have since made inferences
about species-specific biological influences and possible evol-
utionary relations among cognitive faculties but often relied
on few species for comparative study [46]. By contrast,
modern phylogenetic modelling methods applied across hun-
dreds of individuals from dozens of species provide a new
empirical test of phylogenetic constraints on cognition [48].
This is the first study to measure the origins of quantitative
cognition with these methods. We found contributions of
phylogeny to quantity discrimination performance across
taxa, indicating evolutionary constraints on quantitative cogni-
tion. Additionally, a subset of neuronal and cognitive variables
predicted species’ quantitative sensitivity—the strongest pre-
dictors were neuron density and general cognitive ability. The
results indicate that when selecting an animal from the world
at random, we can roughly predict its Weber fraction by know-
ing its species.

An individual’s Weber fraction was related to its species-
typical cortical neuron density. Individuals from species with
higher cortical neuron density had more precise Weber frac-
tions. Thus, one constraint on an individual’s quantitative
cognition is the biological capacity for information processing
in their brain, as determined genetically and developmentally
for each species [74–81]. Additionally, quantitative precision
was related to neuron density in the cerebellum, a brain struc-
ture that has been overlooked in studies of vertebrate brain
evolution and cognition [89–91].We found that density of neur-
onswasamore accurate proxy for quantitative ability thanbrain
volume when comparing species across taxa. Caveats to the
interpretation of the neuron density findings include (i) the
number of species with cortical and cerebellar neuron density
values is lower than for neuronal number, and (ii) the relation-
ship between neuron number and neuron density differs
across animal groups.An increase innumberof neurons in apri-
mate brain structure does not mean larger neurons (and lower
density), whereas in most nonprimate mammals more neurons
means larger neurons and lower density [75,115]. Our study is a
rare demonstration of a relation between neuron number or
neuron density and a particular cognitive ability. Previous
within-species comparisons showed that neuron number in
multiple brain regions did not predict performance on a battery
of behavioural tasks in mice [135], and though raccoons who
performed best on a puzzle box task hadmore cells in their hip-
pocampus than lower performing individuals, this difference
may have been driven by glial cells [136]. However, cross-
species comparisons in primates and birds suggest that
neuron number has more behavioural explanatory power than
cranial capacity, basedon the correlation between cortical orpal-
lial neuron number and performance on a self-control task [71].
Our cross-species finding frombirds andmammals implies that
quantitative sensitivity isyoked to species-specific developmen-
tal programmes for neuronal density; therefore, some species
are well-equipped to develop precise quantitative sensitivity
whereas others may be unable to do so.

Our finding that primate species’ quantitative sensitivity
improved with their domain-general cognition score indi-
cates that general cognitive functions, perhaps in tandem
with specialized quantitative functions, impacted the evol-
ution of quantitative precision across species. In the original
domain-general cognition study [120], primates’ performance
on tasks like object discrimination, reversal learning, sorting,
oddity learning and delayed response reliably approximated
general cognitive ability at the genus level in a Bayesian latent
variable analysis. This ‘general cognitive ability’ variable
could represent a constellation of cognitive capacities that dis-
tinguishes species, or it could represent attention or memory
functions that affect animals’ overall task performance [105].
The current study expands the suite of tasks that relate to
general cognitive ability to include quantitative sensitivity,
which provides further support for the hypothesis that
some species perform better than others across tasks indepen-
dently of task content. These conclusions about general
cognitive factors are limited to primates and it is an open
question whether these patterns generalize to other mammals
and birds. However, it is remarkable that these general cogni-
tive scores may mediate differences in quantitative cognition
between species as closely related as, for example, an olive
baboon and a capuchin monkey.

It is important to highlight that these anatomical, ecological
and cognitive factors are likely interrelated [51,137,138], mean-
ing that some factors may play a role in mediating others. For
instance, the influence of foraging pressures may be difficult to
separate independently from group size. However, in general,
separating out the independent causal contributions of corre-
lated components is difficult, even more so in analyses like
these where all variables were not available for all species.
Our analysis, therefore, focused on evaluating each factor in
a simplified framework where each is tested independently.
Additional data and methods are needed to disentangle how
social, ecological and brain selection pressures are intertwined
in affecting cognition [139] and for exploration of mosaic evol-
ution of cognition, in which social and/or ecological variables
shape particular domains differently [100,140]. Fully formal-
ized theories of how such causal factors jointly interact may
permit computational modelling of further relationships in
the future.
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Our novel analysis shows that biological features of a
species’ evolutionary history likely modulate the develop-
ment of individuals’ numerical cognition, a crucial finding
that emphasizes the importance of phylogenetic constraints
on cognition. Natural selection has biologically prepared
some species to develop high neuronal densities and general
cognitive capacities that yield precise quantitative represen-
tations. These data begin to reveal the evolutionary
pressures that shaped numerical cognition across species
and bring us closer to understanding the evolutionary
precursors that sparked human mathematical cognition.
l/rstb
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