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Abstract
With the emergence of new pathogens, e.g., methicillin-resistant Staphylococcus aureus
(MRSA), and the recent novel coronavirus pandemic, there has been an ever-increasing
need for novel antimicrobial therapeutics. In this work, we have developed support
vector machine (SVM) models to predict antiviral peptide sequences. Oscillations in
physicochemical properties in protein sequences have been shown to be predictive of
protein structure and function, and in the presented we work we have taken advantage
of these known periodicities to develop models that predict antiviral peptide sequences.
In developing the presented models, we first generated property factors by applying
principal component analysis (PCA) to the AAindex dataset of 544 amino acid
properties. We next converted peptide sequences into physicochemical vectors using 18
property factors resulting from the PCA. Fourier transforms were applied to the
property factor vectors to measure the amplitude of the physicochemical oscillations,
which served as the features to train our SVM models. To train and test the developed
models we have used a publicly available database of antiviral peptides
(http://crdd.osdd.net/servers/avppred/), and we have used cross-validation to train and
tune models based on multiple training and testing sets. To further understand the
physicochemical properties of antiviral peptides we have also applied a previously
developed feature selection algorithm. Future work will be aimed at computationally
designing novel antiviral therapeutics based on the developed machine learning models.
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1. Introduction
With the increasing threat of viruses on human populations around the world, as
evidenced by the recent COVID-19 pandemic, there is significant need for approaches
for rapid development of treatments for novel viral outbreaks. If and when a new viral
outbreak poses an eminent threat, the availability of tools for therapeutic design could
enable the fast and efficient development of novel antiviral treatments. One promising
class of antiviral treatments are anti-viral peptides (AVPs), which can act in a variety of
ways, such as inhibiting replication, preventing binding to host cells, and interrupting
virus-induced host signalling. Rational approaches have been previously used to
successfully design AVPs, and more recent efforts have been aimed at using
computational methods to predict their function based on the peptide sequence. One
challenging aspect of developing machine learning models is identifying how to best
encode or represent a peptide’s sequence or properties. Most datasets of peptide
function include peptides of varied length and to train a machine learning model one
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must ensure that every peptide is represented by the same number of features. Past
efforts for predicting AVPs have used peptide features that include the number of
positively/negatively-charged amino acids, the charge of the peptide, the frequency of
each amino acid in the sequence, the amount of possible H-bonds, molecular weight,
and average hydrophobicity. One major limitation of these features is they do not
maintain information regarding the ordering of amino acids or properties along the
peptide structure, which is known to be crucial to protein structure and function. An
alternative approach for developing physicochemical descriptors of protein sequences
has been previously proposed that takes advantage of underlying periodicities in
protein/peptide physicochemical properties (Eisenberg et al. 1984; Rackovsky 1998).
Rackovsky (1998) has shown that periodicities of physicochemical properties along the
sequence of a protein can be used to categorize families of protein structure/function.
By using Fourier transforms and numerical tricks, it is possible to encode peptide
sequences of varying lengths in terms of the same number of features based on the
oscillation of amino acid properties.

In this work, we have used data analysis (i.e., PCA) and machine learning (i.e., support
vector machines) to develop accurate models for predicting AVP sequences based on
periodicities of amino acid properties. Additionally, by ranking the importance of the
developed Fourier-based features, we were able to train SVM models with improved
accuracy and generalizability, while also beginning to gain some insights into the
importance of oscillations in physicochemical properties for AVP function.

2. Methods
In this work, we have used the R statistical language to perform all steps of our analysis
including the generation of amino acid property factors using PCA, Fourier-based
feature extraction, training/validating support vector machines, and feature selection.
Below are more detailed descriptions of how these elements of our approach were
implemented.

2.1. AVP Dataset
To develop data-driven classification models we need to have access to sufficiently
large datasets, which contain both amino acid sequences and function labels. At present,
there are multiple publicly available databases that hold the identities of some known
antiviral peptides, including AVPpred (Thakur et al. 2012), APD3 (Wang et al. 2016),
and CAMPR3 (Waghu et al. 2016). In the current study, we have focused on the
AVPpred dataset, which contains 544 experimentally validated antiviral peptide
sequences along with two sets of negative AVP: i) 407 experimentally validated
nonactive peptides; and ii) 544 randomly selected non-secretory peptides. To eliminate
the possibility of potential bias, we filtered the AVPpred dataset to eliminate any
sequences with greater than 40% sequence identity. This was performed by first using
the Clustal Omega webserver (https://www.ebi.ac.uk/Tools/msa/clustalo/) to align all
sequences of the AVPpred dataset, and then applying hierarchical clustering in R to
identify clusters of sequences sharing more than 40% sequence identity. The medoid of
each cluster was selected as the representative sequence, resulting in 195 AVP
sequences, 259 nonactive AVP sequences, and 492 randomly selected non-secretory
peptides. The filtered dataset is what was used for all of the model training and
validation in presented work.
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2.2. Principal component analysis
To generate physicochemical Fourier-based features, we first need to convert amino
acid sequences into numerical vectors based on amino acid properties. The AAindex
dataset, found in the protr R package, is a collection of 544 amino acid properties from
the literature that include various physicochemical descriptors. All of the 544 amino
acid properties could be used to convert the amino acid sequences into property vectors;
however, this would result in thousands of potential features once the property vectors
were converted into Fourier coefficients. Alternatively, we can perform dimensionality
reduction to reduce the number of amino acid property vectors prior to conversion to
Fourier coefficients. In the current work, we have applied principal component analysis
to generate amino acid property factors, as has been proposed previously. We used the
prcomp function in R to extract principal components and to select a subset of the
principal components based on contributions to the overall variance in the data (Figure
1).

Figure 1. Schematic of feature extraction procedure based on amino acid property periodicities.

2.3. Feature extraction
Based on the generated amino acid property factors, we then converted the amino acid
sequence of each peptide into physicochemical vectors (Figure 1). Fourier transforms,
using the fft function in R, were then applied to each of the property factor vectors. To
ensure that the same number of frequency (Fourier) components were generated for
each property vector we used zero padding and an assumed maximum sequence length
of 128 amino acids (maximum AVP sequence length in the dataset is 107 amino acids).
The moduli of the complex Fourier coefficients for frequency values of 0, 0.015625,
0.03125, 0.0625, 0.125, 0.25, and 0.5 were selected as the features for training models
(Figure 1). The frequency components (features) corresponding to periods that are
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longer than a given peptide were set to zero. We eliminated features (columns) from the
full set of features if more than 70% of peptides had a value of zero.

2.4. Support vector machines
All support vector machines were trained using the svm function of e1071 R package
based on the radial basis function nonlinear kernel. The cost and gamma
hyperparameters of the SVM models were tuned using a grid-search with cost and
gamma values based on powers of two, , where n is an integer.2𝑛  ∀ 𝑛∈ − 9, … , 8{ }
Five-fold cross-validation, based on balanced training sets containing 435 AVP and 435
non-AVP sequences, was used to tune and validate the models based on first sorting the
peptide sequences according to length and then select five training and testing sets with
an equal number of samples for each peptide class. Model performance was measured
based on classification accuracy and is reported as the fraction of classes (AVP or
non-AVP) that was predicted correctly in the testing sets (Figure 3). The reported cross
validation accuracies are the average of the classification accuracies for the five training
and testing sets.

Figure 2. Variance explained by the 20 principal components from the PCA of the 544 AAindex
amino acid properties.

2.5. Feature selection
Feature selection is a crucial aspect of data science as it can enable the identification of
an essential set of predictive descriptors (features), as well as it can increase the
robustness of models to prevent overfitting. Previously, we have developed a feature
selection algorithm based on non-linear SVMs, which is general in nature and has been
applied to predicting fault detection in chemical plants (Onel et al. 2018; Onel et al.
2019) and HIV-1 viral entry (Kieslich et al. 2016). The algorithm is model-based and
requires first training a SVM model prior to computing a criterion that quantifies the
contribution of each feature to the SVM objective function to determine which features
to remove. The criterion (Eq. 1) is derived based on sensitivity analysis of the dual
formulation of SVM models.
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The algorithm uses a greedy approach to rank the features, where we start with a
training model based on all of the features, compute the criteria for all features, and
remove a fraction of the features with the largest criteria values. In the presented work,
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we removed 25% of the remaining features after each iteration of the algorithm and
retuned the hyperparameters after each iteration of the algorithm. The feature ranking
procedure was applied to each of the five training sets and a consensus ranking was
generated based on the average rank of each feature across the five training sets.

Figure 3. Feature contributions to model accuracy based on feature selection ranking. A) Feature
selection results for classifying AVPs vs. random peptides; B) Feature selection results for
classifying AVPs vs. non-AVPs.

3. Results
The principal component analysis of the amino acid properties from AAindex dataset
was based on a data matrix consisting of 20 instances (amino acids) of 544 variables
(properties). The PCA analysis generated 20 principal components that describe the
more than 500 amino acid properties, and the contribution of each principal component
is visualized in Figure 2. In choosing which principal components to use as amino acid
property factors, we selected the principal components which contribute more than 1%
of overall variance in the data. The first 18 principal components met our criteria (>1%
variance) (Figure 2), and together describe over 99% of the total variance. The analysis
resulted in 18 amino acid property factors that were used to generate 18 property vectors
for each of the peptide sequences. For each peptide, the FFT spectrum of each property
vector was computed and the frequency components corresponding to the sequence
average and the oscillations with periods of 2, 4, 8, 16, 32, or 64 amino acids were
extracted. This resulted in 126 features based on 7 frequency components from 18
property vectors for each sequence, which was filtered to 90 features by removing
features with at least 70% of the values being zero.

Based on the generated features, we developed two SVM models, one to distinguish the
AVP peptides from each of the types of non-AVP peptides (nonactive and random
non-secretory peptides). For both classification tasks, we performed feature selection to
rank the physicochemical features. To measure to the contribution of each feature to
model accuracy we performed five-fold cross validation after adding each feature one at
a time starting with the highest ranked feature. As can be seen in Figure 3,
distinguishing AVPs from random non-secretory peptides is an easier classification task
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4. Conclusions
In this study, we have developed support vector machine models that distinguish
between antiviral peptide sequences and two classes of nonAVP sequences. To develop
these models, we first generated amino acid property factors by applying principal
component analysis to a dataset on amino acid properties from the literature. We then
used the property factors to convert AVP sequences into property vectors that served as
the input for Fourier analysis to extract the features used in training our models. The
proposed approach for feature extraction and model development, including the
incorporation of the feature selection algorithm, have potentially applications in
prediction of peptide properties and function. Future work will be aimed at improving
the Fourier-based encoding of peptide sequences and applying the approach to
predicting various peptide functions/properties, as well as further development of
approaches for SVM-based feature selection. The models developed in this study could
have potential use in designing novel antiviral peptides but given the remaining
challenges in distinguishing between active and nonactive AVPs further investigation is
necessary, which may need to include both computational and experimental studies.
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than distinguishing AVPs from nonactive AVPs, since the maximum accuracy when 

using random peptides is 0.912 and only 0.752 for the nonactive peptides. Only 5 of the 

90 features are necessary to achieve the majority of the accuracy of the AVP-vs-random 

model, while about 4 times as many features are necessary to achieve the maximum 

accuracy of the AVP-vs-nonactive model, which is further evidence of the difficulty 

distinguishing between active and nonactive AVPs. 


