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Abstract

Welan gum is a kind of novel microbial polysaccharide, which is widely produced during the

process of microbial growth and metabolism in different external conditions. Welan gum can

be used as the thickener, suspending agent, emulsifier, stabilizer, lubricant, film-forming

agent and adhesive usage in agriculture. In recent years, finding optimal experimental con-

ditions to maximize the production is paid growing attentions. In this work, a hybrid computa-

tional method is proposed to optimize experimental conditions for producing Welan gum

with data collected from experiments records. Support Vector Regression (SVR) is used to

model the relationship between Welan gum production and experimental conditions, and

then adaptive Genetic Algorithm (AGA, for short) is applied to search optimized experimen-

tal conditions. As results, a mathematic model of predicting production of Welan gum from

experimental conditions is obtained, which achieves accuracy rate 88.36%. As well, a class

of optimized experimental conditions is predicted for producing Welan gum 31.65g/L. Com-

paring the best result in chemical experiment 30.63g/L, the predicted production improves it

by 3.3%. The results provide potential optimal experimental conditions to improve the pro-

duction of Welan gum.

Introduction

Welan gum is a kind of polysaccharide, which is one of the secretions of Alcaligenes sp.NX-3

strain. It has good stability, ideal thickening property, unique shear thinning property, good

suspension and emulsification, and assured safety, and can be used in oil drilling with its

unique shear-thinning properties. Finding optimal experimental conditions to maximize the

production of Welan gum is paid growing attentions. This can process the production of

Welan gum industrially. In 2014, producing Welan gum fermentation in laboratory is

achieved in [1], where cyperus beans are used as raw materials, protein and hydrolysis as sub-

strate. After that, Bacillus foecalis alkaligenes are designed as starting bacterial strain, to opti-

mize the yield process of Welan gum by response surface method [2].
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It is found that many factors affecting the production of Welan gum, such as glucose, yeast,

liquid volume, PH vale, temperature, which contribute the experimental conditions of produc-

ing Welan gum. To find the optimal experimental conditions, we need to consider the follow-

ing aspects:

1. function of each factor;

2. interaction between each pair of factors;

3. relationship among all the factors.

In 2010, Li et al used the batch fermentation experiment data of Welan gum’s starting bac-

terial strain Alcaligenessp.CGMCC2428 to carry out the dynamic model research, imple-

mented fermentation process of Welan gum optimization control [3]. In 2016, JMP statistical

analysis software was used to optimize the fermentation medium of Welan gum by Alcaligenes

sp.Y5. With the optimized experimental conditions, the production of Welan gum was

increased from 15.72 g/L to 26.58 g/L, with an increment of 69.08% [4].

Recently, many significant artificial intelligent algorithms and data processing strategies

has been applied on data mining, such as a self-adaptive artificial bee colony algorithm

based on global best for global optimization [5], the public auditing protocol with novel

dynamic structure for cloud data [6], privacy-preserving smart semantic search method for

conceptual graphs over encrypted outsourced data [7], a privacy-preserving and copy-deter-

rence content for image data processing with retrieval scheme in cloud computing [8], strat-

egy solving NP problems such as subset sum problem based on SN P systems [9], Apriori

algorithm based on tissue-like P systems [10], split clustering algorithm based on P systems

on simplices [11], spatial clustering algorithm based on DNA model [12], PSO algorithm

based on dynamic niche technology [13] and machine learning method have been applied

for experimental condition design, see. e.g. a secure and dynamic multi-keyword ranked

search scheme over encrypted cloud data [14]. In this work, we presents a hybrid computa-

tional method to optimize experimental conditions for producing Welan gum with data col-

lected from experiments records. Specifically, Support Vector Regression (SVR) is used to

model relationship between Welan gum production and experimental conditions, and then

adaptive Genetic Algorithm (AGA) is used to search optimized experimental conditions. As

results, a mathematic model of predicting production of Welan gum from experimental con-

ditions with accuracy rate 88.36% is obtained, a class of optimized experimental conditions

is designed to produce Welan gum 31.65g/L. Comparing the best results in chemical lab

30.63g/L, the predicted production can be improved by 3.3%. The result provides a potential

experimental conditions by data mining to improve the production of Welan gum in the lab.

Related technologies

In this section, the two main methods used, Support Vector Regression (SVR) and adaptive

Genetic Algorithm (AGA), are briefly recalled.

Here, we choose the SVR method mainly because of our limited samples. First of all, as for

the regression of a small amount of samples, SVR has many advantages, such as a few adjusted

parameters and fast arithmetic speed, etc. Secondly, the final decision function of SVR is deter-

mined by only a small number of support vectors. Finally, the computational complexity

depends on the number of support vectors, not the dimension of the sample space, which also

reflects that the robustness of the SVR method is better.

Genetic algorithm is a global search algorithm, which have a good reference for our prob-

lems. However, the traditional genetic algorithm still needs to be improved in terms of global
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search ability and convergence speed. The adaptive Genetic Algorithm we adopt can improve

these two aspects to a certain extent. In the case of crossover probability, the AGA method can

enable the crossover probability to vary with the evolution process and give the same crossover

ability to the individuals of the same generation population, so as to realize the global search

ability better. In the case of mutation probability, according to the fitness value of each individ-

ual to be mutated, the AGA method can make the mutation probability adaptively change with

the evolutionary process.

Support vector regression

Support Vector Machine (SVM) is known as a kind of machine learning method for classifica-

tion proposed in 1995 [15], has been widely used in biological data processing [16–18] and

bioinformatics [19–23]. It focuses on doing classification with seeking structured minimum

risk to improve the generalization ability of learning machine and minimizing empirical risk

and confidence limit [24, 25], thus achieving good statistical law under the condition of the

less statistical sample size. In general, it is a kind of two-category model, the basic model is

defined as the feature space interval on the maximum linear classifier. The learning strategy of

SVM is to maximize the interval, which finally can be converted into a convex quadratic pro-

gramming problem.

Support Vector Regression (SVR) is developed based on SVM for dealing with regression

forecasting problems [26, 27]. Some basic concepts of SVR are briefly recalled.

Given a set of training data {(x1, y1), (x2, y2), . . ., (xl, yl)}, Rn × R, where xi denotes the input

samples, yi is the target value and l is the total number of input samples. In SVR, the goal is to

find a function f(x), i.e., an optimal hyperplane, which has at most ε deviation from the actually

obtained target yi for all the training data as flat as possible. The form of functions is denoted

as

f ðxÞ ¼ ðω;FðxÞÞ þ b with F : Rn ! F;ω 2 F ð1Þ

where F(�) is a nonlinear mapping by which the input data x is mapped into a high dimen-

sional space F, (�, �) denotes the dot product in space F. Eq (1) can be transformed into the fol-

lowing convex constrained optimization problem by introducing the non-negative slack

variables ξi and x
�

i to cope with the otherwise infeasible constraints

minGðω; x; x�Þ ¼
1

2
k ωk2 þ C

Xl

i¼1

ðxi þ x
�

i Þ

s:t:ðω;FðxiÞÞ þ b � yi⩽εþ xi

yi � ðω;FðxiÞÞ � b⩽εþ xi

xi; x
�

i⩾0; i ¼ 1; 2; . . . ; l

ð2Þ

thereinto, C> 0, with C being the penalty parameter. ξi, x
�

i are slack variables introduced in

order to allow a certain error [28–32]. ξ is also a parameter of the ε-insensitive loss function,

where ε is called the tube size [33]. The greater the value of C is, the greater the penalty for

data points beyond the ε deviation, which determines the balance between the degree of

smoothness of the function and the number of sample points beyond ε deviation. To find the
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upper bound of a convex quadratic programming problem, Lagrangian function is applied:

lðω; xi; x
�

i Þ ¼
1

2
k ωk2 þ C

Xl

i¼1

ðxi þ x
�

i Þ

�
Xl

i¼1

aiðεþ xi � yi þ ðω�xiÞ þ bÞ

�
Xl

i¼1

a�i ðεþ xi þ yi � ðω�xiÞ � bÞ �
Xl

i¼1

ðZixi þ Z�i x
�

i Þ

ð3Þ

thereinto, αi, a�i , ηi, Z�i are the Lagrange multiplier. The optimization problem can be obtained

as follows:

mina;a�

1

2

Xl

i¼1

Xl

j¼1

ðai � a�i Þðaj � a�j ÞhFðxiÞ;FðxjÞi þ ε
Xl

i¼1

ðai þ a�i Þ

�
Xl

i¼1

yiðai � a�i Þ

s:t:
Xl

i¼1

ðai � a�i Þ ¼ 0

0⩽ ai ⩽C

0⩽ a�i ⩽C

ð4Þ

where a�i is the nonnegative Lagrange multiplier that can be obtained by solving the convex

quadratic programming problem. By exploiting the Karush-Kuhn-Tucker (KKT) conditions

of the primal optimization problem [34–36], we can get the equation a�i a�j ¼ 0, which means

that both of the multipliers a�i and a�j equal to zero, or one of multipliers is zero and ða�i � a�i Þ

is nonzero. The data samples with non-vanishing Lagrange multipliers are called the support

vectors inside or outside the ε-insensitive tube [33].

The regression estimation function can be obtained by learning as follows:

f ðxÞ ¼
X

xi2SV

ðai � a�i ÞKðxi; xÞ þ b ð5Þ

thereinto,

b ¼
1

NNSV
f
X

0<ai<C

½yi �
X

xj2SV

ðaj � a�j ÞKðxj; xiÞ � ε�þ

X

0<a�i <C

½yi �
X

xj2SV

ðaj � a�j ÞKðxj; xiÞ þ ε�g
ð6Þ

where NNSV represents the number of standard support vectors. K(xi, xj) is defined as the ker-

nel function. According to Hilbert-Schmidt principle, when kernel function matches Mercer

conditions, that is, for any given function g(x), if
R b

a g2ðxÞdx is limited, the value of the kernel is

equal to the dot product of two vectors xi and xj in the feature space F(xi) and F(xj), i.e.,

K(xi, xj) = hF(xi), F(xj)i [33].
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We choose here the Gauss radial basis function as kernel function.

Kðxi; xjÞ ¼ exp �
k x � xik

2

s2

� �

; ð7Þ

where σ is the kernel parameter.

Adaptive genetic algorithm

Genetic Algorithm (GA) derives from the computer simulation study of biological system

[37], which has been widely used function optimization, combinatorial optimization, job shop

scheduling problems [38], complex network clustering, pattern mining [39–41]. However,

there are still some disadvantages, the most obvious disadvantages are the low efficiency and

easy to fall into local optimum [42, 43].

In 2000, adaptive Genetic Algorithm (AGA) [44] is proposed, which improves the perfor-

mance of traditional GA to some extent. After that, adaptive GA is improved by involving cer-

tain intelligent strategies, including crossover to avoid inbreeding, crossover probability

associated with the number of evolution and regulating adaptive mutation probability [45].

The formula which is only related to the number of evolution for cross-probabilistic comput-

ing is as follows:

mtmp ¼ Pc;max � 2
�

t
TGen

ð8Þ

PcðtÞ ¼
mtmp ; mtmp > Pc;min

Pc;min ; mtmp⩽Pc;min

8
<

:
ð9Þ

In the formula, mtmp is an intermediate variable for calculation, TGen is the maximum evolu-

tionary number preset, t is the current evolutionary number (0� t� TGen), Pc, max is the larg-

est crossover probability preset, Pc, min is the smallest crossover probability preset, and Pc(t) is

the crossover probability of current population.

The formula of adaptive mutation probability related to the number of genetic evolution

and individual fitness is as follows:

mtmp ¼ exp ½� j
fmax � f ðxiÞ

fmax
j� �

1

1þ
t

TGen

� Pm;max ð10Þ

PmðtÞ ¼
mtmp ; mtmp > Pm;min

Pm;min ; mtmp⩽Pm;min

8
<

:
ð11Þ

In the formula, Pm, max is the largest mutation probability preset, Pm, min is the smallest

mutation probability preset, f(xi) is the fitness value of individual xi, fmax is the maximum value

of fitness in current populations, Pm(t) is the mutation probability of individual xi in current

population [45].

The mathematic model and data experiments

In this section, it starts by selecting probable elements from original data, and then the values

of two important parameters of the model are determined. After that, the mathematic model
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based on SVR is built to describe the relationship between Welan gum products and experi-

mental conditions. With the model, AGA is applied to find the optimal sample point of the

model, which corresponds to a class of potential optimal experimental conditions to maximize

the production of Welan gum. The flowchart is shown in Fig 1.

The mathematic model

Data preparation. Before building the mathematic model for describing the relationship

between Welan gum production and experimental conditions, it needs to normalize the data.

Fig 1. Main work flow chart.

https://doi.org/10.1371/journal.pone.0185942.g001
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SVR mainly deals with the nonlinear problems, so the magnitude of the eigenvalues of the

samples should be different greatly, the results will be greatly affected without normalizing

samples. Besides, normalizing samples can avoid the small weight of the model and leading to

the instability of the numerical calculation, so that the parameter optimization can converge at

a faster speed and the accuracy of the model can be improved. The normalized formula used

in our method is as follows:

y ¼
ðymax � yminÞ � ðx � xminÞ

xmax � xmin
þ ymin; ð12Þ

where x is the original data, y is the normalized data, xmin is the minimum of the original data,

xmax is the maximum of the original data, ymin is the minimum of the normalized data, ymax is

the maximum of the normalized data. The value of ymin is set to be 0 and the value of ymax to

be 1. The normalized data is shown in Tables 1 and 2 below:

Without losing the generality, all 67 samples collected from Welan gum producing experi-

ments are classified according to the production, which are divided into three types: high, mid-

dle and low level production. Specifically, productions between 0g/L and 5g/L belong to low

level production data, in total 8 groups; productions between 5g/L and 20g/L are in medium

level, in total 39 groups; productions more than 20g/L are in high level, in total 20 groups.

Table 1. Sample data before normalization.

glucose (g/L) yeast

(g/L)

KH2PO4

(g/L)

MgSO4

(g/L)

liquid volume

(ml)

PH value temperature

(˚C)

rotational speed

(rpm)

inoculation amount production

(g/L)

1 40 2 5 0.1 50 10 28 150 5 0.9084

2 40 2 5 0.1 50 2 28 150 5 1.1484

3 40 2 5 0.1 50 3 28 150 5 1.6588

4 40 2 5 0.1 50 9 28 150 5 1.914

5 40 2 5 0.1 50 4 28 150 5 2.9348

6 60 10 5 0.1 50 7 32.5 175 5 3.08

7 40 2 5 0.1 50 5 28 150 5 4.0832

8 40 2 5 0.1 50 5.5 28 150 5 4.5936

9 40 2 5 0.1 50 8 28 150 5 6.2496

10 60 9 5 0.1 50 7 32.5 175 5 6.29

11 10 2 5 0.1 50 7 32.5 175 5 6.75

12 40 2 5 0.1 50 6 28 150 5 8.1664

13 60 8 5 0.1 50 7 32.5 175 5 8.7

14 20 2 5 0.1 50 7 32.5 175 5 9.23

15 40 2 5 0.1 50 6.8 28 150 1 10.73

16 40 2 5 0.1 50 7.5 28 150 5 10.9084

17 40 2 5 0.1 50 6.8 28 150 10 11.52

18 40 2 5 0.1 50 6.8 28 150 8 12.05

19 40 2 5 0.1 50 6.8 28 150 7 12.28

20 40 2 5 0.1 50 6.8 28 150 3 12.68

21 60 1 5 0.1 50 7 32.5 175 5 12.8

22 40 2 5 0.1 50 7 32.5 125 5 12.982

23 40 2 5 0.1 50 6.8 28 150 6 13.45

24 40 2 5 0.1 50 6.5 28 150 5 14.036

25 60 7 5 0.1 50 7 32.5 175 5 14.31

https://doi.org/10.1371/journal.pone.0185942.t001
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Each time the model data is taken, the order of the samples within each yield is randomly

arranged, For each level data groups, the first 70% of each type data is used as training data,

the 30% data left are used as the testing data.

Before building the mathematic model, it is necessary to determine the values of two

parameters, namely penalty factor parameters (c) and kernel function parameters (g). Here,

grid search method is used to determine the optimal values of the two parameters. The result is

shown in Fig 2 below:

In the above figure of contour line, two red dotted lines are represented separately the opti-

mal values of the two parameters. The intersection of two lines, that is, the red point in the fig-

ure represents the value of the “CVmse”. The CVmse means that the mean of the squares of

the difference between the predicted value and the true value under the 5-fold cross validation.

After the values of the parameters are determined, the training data and testing data are

determined according to the selection of the aforementioned method. The index of the accu-

racy of the model is reflected in the square of correlation coefficient. The diagrams in Figs 3

and 4 reflect the model’s prediction of the testing data and the relative error.

Finding optimal experimental conditions by AGA

With the mathematical model constructed, an improved AGA is used to find experimental

conditions for optimal production. The process has the following steps.

Table 2. Sample data after normalization.

glucose

(g/L)

yeast

(g/L)

KH2PO4

(g/L)

MgSO4

(g/L)

liquid volume

(ml)

PH value temperature (˚C) rotational speed(rpm) inoculation amount production

(g/L)

1 0.375 0.1111 1 0 0.25 1 0.3 0.25 0.4444 0

2 0.375 0.1111 1 0 0.25 0 0.3 0.25 0.4444 0.005777

3 0.375 0.1111 1 0 0.25 0.125 0.3 0.25 0.4444 0.018064

4 0.375 0.1111 1 0 0.25 0.875 0.3 0.25 0.4444 0.024207

5 0.375 0.1111 1 0 0.25 0.25 0.3 0.25 0.4444 0.04878

6 0.625 1 1 0 0.25 0.625 0.75 0.5 0.4444 0.052275

7 0.375 0.1111 1 0 0.25 0.375 0.3 0.25 0.4444 0.076425

8 0.375 0.1111 1 0 0.25 0.4375 0.3 0.25 0.4444 0.088711

9 0.375 0.1111 1 0 0.25 0.75 0.3 0.25 0.4444 0.128575

10 0.625 0.8889 1 0 0.25 0.625 0.75 0.5 0.4444 0.129547

11 0 0.1111 1 0 0.25 0.625 0.75 0.5 0.4444 0.14062

12 0.375 0.1111 1 0 0.25 0.5 0.3 0.25 0.4444 0.174716

13 0.625 0.7778 1 0 0.25 0.625 0.75 0.5 0.4444 0.187561

14 0.125 0.1111 1 0 0.25 0.625 0.75 0.5 0.4444 0.20032

15 0.375 0.1111 1 0 0.25 0.6 0.3 0.25 0 0.236428

16 0.375 0.1111 1 0 0.25 0.6875 0.3 0.25 0.4444 0.240723

17 0.375 0.1111 1 0 0.25 0.6 0.3 0.25 1 0.255445

18 0.375 0.1111 1 0 0.25 0.6 0.3 0.25 0.7778 0.268203

19 0.375 0.1111 1 0 0.25 0.6 0.3 0.25 0.6667 0.27374

20 0.375 0.1111 1 0 0.25 0.6 0.3 0.25 0.2222 0.283369

21 0.625 0 1 0 0.25 0.625 0.75 0.5 0.4444 0.286258

22 0.375 0.1111 1 0 0.25 0.625 0.75 0 0.4444 0.290639

23 0.375 0.1111 1 0 0.25 0.6 0.3 0.25 0.5556 0.301905

24 0.375 0.1111 1 0 0.25 0.5625 0.3 0.25 0.4444 0.316011

25 0.625 0.6667 1 0 0.25 0.625 0.75 0.5 0.4444 0.322607

https://doi.org/10.1371/journal.pone.0185942.t002
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Step 1: Initialize the population and encode the individuals.

Each sample is related to nine variables, so we consider the nine variables as nine genes that

make up a chromosome. For example, encode [glucose, yeast, KH2PO4, MgSO4, fluid volume,

PH value, temperature, rotational speed, inoculation amount] to [x1, x2, x3, x4, x5, x6, x7, x8,

x9], where x1 2 [5, 95], x2 2 [1, 10], x3 2 [1, 6], x4 2 [0.1, 1], x5 2 [25, 125], x6 2 [2, 12], x7 2

[25, 35], x8 2 [125, 250], x9 2 [1, 10].

Step 2: Select good individuals based on the fitness values.

Step 3: Perform crossover operation. From the first individual in the population, the corre-

sponding crossover probability of the individual is calculated, denoted as cross_rate. We ran-

domly generate a random number between 0 and 1, denoted as rand_num. If the value of

rand_num is less than cross_rate, the individual is performed crossover operation. That is, two

integers between 1 and 9 are randomly generated, where the smaller number is the starting

position of the crossed chromosome, the larger number is the ending position, the chromo-

some of the individual is exchanged with the chromosome of the next adjacent individual, in

the range from the starting position to the termination position. In addition, if the i-th individ-

ual did not perform the crossover operation, the above-described process is repeated for the

i+1-th individual; if the i-th individual performed the crossover operation, the above-described

process is repeated for the i+2-th.

Step 4: Perform mutation operation. From the first individual in the population, the corre-

sponding mutation probability of the individual is calculated, denoted as mutate_rate. We ran-

domly generate a random number between 0 and 1, denoted as rand_num. If the value of

rand_num is less than mutate_rate, the individual is performed mutation operation. That is,

Fig 2. SVR parameter selection result[GridSearchMethod].

https://doi.org/10.1371/journal.pone.0185942.g002
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an integer between 1 and 9 is randomly generated as the location of the gene that needs to be

mutated, regenerate the gene at the location.

Step 5: The new individuals generated by the above operations constitute the new popula-

tion, and go to step 2.

Repeat these steps until we find the optimal individual.

The size of initial population is set to be 300, that is there are 300 individuals, the number of

iterations is 500. The selection operator is roulette selection method, which is also known as

the proportional selection operator. The basic idea is that the probability of each individual

Fig 4. Relative error plot.

https://doi.org/10.1371/journal.pone.0185942.g004

Fig 3. Comparison of raw data and regression predictive data.

https://doi.org/10.1371/journal.pone.0185942.g003
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selected is proportional to its fitness value.

PðxiÞ ¼
f ðxiÞ

PK
i¼1

f ðxiÞ
; ð13Þ

where P(xi) is the selection probability of individual xi, K is the population size. The value of

parameter Pc,min is set to be 0.6, Pc,max to be 0.9, Pm,max to be 0.1 and Pm,max to be 0.001. The

search results are shown in Fig 5.

To improve the accuracy and further reduce the range of the nine gene variables. We made

the following changes by observing the genetic variables of samples with productions higher

than 30g/L, which is x1 2 [55, 60], x2 2 [2.5, 3.1], x3 2 [5, 5.5], x4 2 [0.1, 0.3], x5 2 [48, 51.5],

x6 2 [6.7, 7.15], x7 2 [32, 33], x8 2 [176, 179], x9 2 [4.85, 5.15]. The average maximum fitness

value of data experiments with 500 iterations each time is shown in Fig 6.

Fig 5. The optimization result.

https://doi.org/10.1371/journal.pone.0185942.g005

Fig 6. The average maximum yield result graph under 500 iterations.

https://doi.org/10.1371/journal.pone.0185942.g006

Optimal experimental conditions for Welan gum production by SVM and AGA

PLOS ONE | https://doi.org/10.1371/journal.pone.0185942 October 9, 2017 11 / 15

https://doi.org/10.1371/journal.pone.0185942.g005
https://doi.org/10.1371/journal.pone.0185942.g006
https://doi.org/10.1371/journal.pone.0185942


Results

The accuracy of the established mathematic model is 88.36%, the optimal medium composi-

tion ratio is shown in Table 3 below:

The maximum production of Welan gum is 31.65g/L.

This hybrid computational method, which combines with SVM and AGA, has the intelli-

gent learning ability and can overcome the limitation of large-scale biotic experiments [46–

51]. A mathematic model of predicting production of Welan gum from experimental condi-

tions with accuracy rate 88.36% is obtained, a class of optimized experimental conditions is

designed to produce Welan gum 31.65g/L. Comparing the best results in chemical experiment

30.63g/L, the predicted production can be improved by 3.3%.

Conclusion

We focused on building a mathematic model of Welan gum, the nine factors which contribute

the experimental conditions of producing Welan gum as preparative optimization indicators.

The nine factors include glucose, yeast, KH2PO4, MgSO4, fluid volume, PH value, temperature,

rotational speed and inoculation amount. A hybrid computational method combined with

SVM and AGA is proposed. Through the training of sample data, a mathematic model of pre-

dicting production of Welan gum from experimental conditions is obtained. We find the opti-

mal sample point in the sample space, i.e. a class of optimized experimental conditions. This

hybrid computational method has a good learning ability, which can avoid the high cost prob-

lem caused by large-scale biological experiments. It also overcomes the “mature” defects of tra-

ditional Genetic Algorithm. The result provides a potential experimental conditions by data

mining to improve the production of Welan gum in the lab.

For further research, neural-like computing models, e.g., spiking neural P systems [52] can

be used for optimization of Welan gum production. As well, some recently developed data

processing and mining methods, such as the speculative approach to spatial-temporal effi-

ciency for multi-objective optimization in cloud data and computing [53], privacy-preserving

smart similarity search methods in simhash over encrypted data in cloud computing [53], k-

degree anonymity with vertex and edge modification algorithm [54], kernel quaternion princi-

pal component analysis for object recognition [55], might be used for optimizing experimental

conditions of Welan gum. In the aspect of data preparation, decision tree [56] can be used to

deal with the missing attribute value of some samples in dataset.

Acknowledgments

This work was supported by 863 program (2015AA020925), National Natural Science Founda-

tion of China (61402187, 61502535, 61572522, 61572523, 61672033 and 61672248), Key

Research and Development Program of Shandong Province (No. 2017GGX10147), China

Postdoctoral Science Foundation funded project (2016M592267), PetroChina Innovation

Foundation (2016D-5007-0305), Fundamental Research Funds for the Central Universities

(R1607005A). The funders had no role in study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Table 3. The optimal medium composition ratio.

glucose (g/L) yeast (g/L) KH2PO4 (g/L) MgSO4 (g/L) liquid volume (ml) PH value temperature (˚C) rotational

speed(rpm)

inoculation

amount

55.26 2.89 5.23 0.1 49.8 7.01 32.53 177.51 5
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