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SUMMARY

The ability to select the most salient among competing stimuli is essential for animal behavior and 

operates no matter which spatial locations stimuli happen to occupy. We provide evidence that the 

brain employs a combinatorially optimized inhibition strategy for selection across all pairs of 

stimulus locations. With experiments in a key inhibitory nucleus in the vertebrate midbrain 

selection network, called isthmi pars magnocellularis (Imc) in owls, we discovered that Imc 

neurons encode visual space with receptive fields that have multiple excitatory hot spots (“lobes“). 

Such multilobed encoding is necessitated by scarcity of Imc neurons. Although distributed 

seemingly randomly, the locations of these lobes are optimized across the high-firing Imc neurons, 

allowing them to combinatorially solve selection across space. This strategy minimizes metabolic 

and wiring costs, a principle that also accounts for observed asymmetries between azimuthal and 

elevational coding. Combinatorially optimized inhibition may be a general neural principle for 

efficient stimulus selection.

In Brief

Mahajan et al. show that a sparse set of midbrain inhibitory neurons encodes visual space with 

unusual multilobed receptive fields. This results in a combinatorially optimized solution for 

selection at all pairs of stimulus locations, which minimizes metabolic and neural wiring costs.
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INTRODUCTION

Animals routinely encounter multiple competing pieces of information in their sensory 

environments. Typically, they handle this informational complexity by selecting the most 

salient or behaviorally relevant piece of information, i.e., highest “priority” information, to 

guide their actions (Fecteau and Munoz, 2006; Knudsen, 2007). However, how neural 

circuits orchestrate the computations that are essential for such stimulus selection is not well 

understood. Here, we unravel the neural basis of one such critical computation, namely, 

selection at all possible pairs of locations. This property permits spatial selection to operate 

no matter which specific locations in the sensory world the competing stimuli occupy. 

Although appearing straightforward, the implementation of comparisons between all 

possible pairs of stimulus locations is computationally complex: the number of location 

pairs at which two competing stimuli could be placed, L2-L/2, scales quadratically with L, 

the number of spatial locations that are encoded. How does the brain meet the resulting 

demands imposed on neural circuitry and solve stimulus selection at all possible pairs of 

locations?

A brain network with a well-established role in spatial target selection, and therefore an 

excellent locus to study this question, is the midbrain selection network. It includes the 

sensorimotor hub, the superior colliculus (SC) (or the optic tectum [OT] in birds), and a 

satellite inhibitory nucleus called the lateral tegmental nucleus (Graybiel, 1978; Jiang et al., 

1996), or isthmi pars magnocellularis (Imc) in birds (Sereno and Ulinski, 1987; Wang et al., 

2004) (Figure S1A). The SC/OT, which encodes a topographic map of sensory (and motor) 

space (Knudsen, 1982; Meredith and Stein, 1986), plays a critical role in stimulus selection 

across spatial locations. Specifically, the intermediate and deep layers of the SC (SCid) 

(called OTid in birds) are required for the selection of the highest priority stimulus among 

distracters (Lovejoy and Krauzlis, 2010; McPeek and Keller, 2004). This selection, which 

occurs across all possible locations of the competing stimuli, is expressed in the activity of 
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SCid/OTid neurons as response suppression. When one stimulus is presented at any location, 

the responses of SCid/OTid neurons encoding that stimulus are suppressed by a competing 

stimulus presented anywhere outside the neurons’ spatial receptive field (RF) (Mysore et al., 

2010, 2011; Rizzolatti et al., 1974). The strength of suppression depends on the priorities of 

the competing stimuli, and is largely independent of their specific spatial locations (Mysore 

et al., 2010, 2011; Rizzolatti et al., 1974).

Mechanistically, competitive suppression in the OTid is orchestrated by the GABAergic Imc 

through its specialized anatomical connectivity with the OT (Marín et al., 2007; Mysore and 

Knudsen, 2013; Wang et al., 2004). Neurons in layer 10 of the OT (OT10) provide input to 

each Imc neuron, which, in turn, projects back broadly across the OTid space map except to 

the portions that encode the input locations (Wang et al., 2004) (Figure S1B). This anatomy 

allows the Imc to implement a spatial inverse operation, distributing priority-dependent 

inhibition to all competing locations in the OTid space map (Figure S1C). Notably, 

inactivation of the Imc abolishes this competitive inhibition as well as spatial selection in the 

OTid (Marín et al., 2007; Mysore and Knudsen, 2013).

In this context, if the spatial RFs of Imc neurons are assumed to be small, resembling those 

of the input OT10 neurons, and possessing the same topographic property as them, a 

conceptually straightforward strategy by which the Imc might achieve selection for all 

possible pairs of locations in the OTid is illustrated in Figure S1D. For any given pair of 

stimulus locations, each stimulus in the pair would activate a group of neighboring Imc 

neurons encoding for adjacent locations, resulting in inhibition with a spatial pattern that 

would suppress the neurons encoding the other stimulus (Figure S1D). Simply repeating this 

Imc-OT circuit module for all location pairs would successfully implement stimulus 

selection across space with a strategy termed “modular copy-and-paste.”

However, the precise nature of the spatial RFs of Imc neurons and their properties are not 

well understood. Previous work in the Imc suggests that Imc neurons have spatial RFs that 

are vertically elongated, covering almost the entire extent of elevational space in an 

uninterrupted manner (Li et al., 2007; Wang and Frost, 1991). If true, such Imc RFs lead to a 

computational paradox. On the one hand, vertically elongated Imc RFs are unable to 

implement stimulus selection in the OT at all possible stimulus location pairs: selection 

cannot be solved for over a third of the location pairs along the elevation (Figure S1E). On 

the other hand, competitive stimulus selection in the OTid is known to occur across all 

encoded locations (Mysore et al., 2010, 2011; Rizzolatti et al., 1974), with the Imc being the 

primary source of competitive inhibition (Marín et al., 2007; Mysore and Knudsen, 2013). 

To resolve this paradox, we set out to investigate the functional properties of Imc neurons in 

the barn owl, as well as the computations implemented by the Imc-OT network in service of 

stimulus selection across space.

Our results indicate that the Imc employs a combinatorially optimized inhibition strategy to 

solve stimulus selection at all location pairs in the OT. This strategy is supported by an 

unusual, multilobed encoding of visual space by Imc, one that is consistent with the 

observed scarcity of Imc neurons available to encode stimulus locations. Although the lobes 

of individual Imc RFs are distributed seemingly randomly in space, their locations are 
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optimized across neurons such that assorted but intersecting subsets of Imc neurons are 

recruited to combinatorially solve selection across two-dimensional (2D) visual space. We 

show that Imc’s combinatorially optimized inhibition strategy for spatial selection 

minimizes metabolic and neural wiring costs. Moreover, within this framework of neural 

cost minimization, asymmetries observed in Imc’s encoding of elevational versus azimuthal 

locations are accounted for by asymmetries in its anatomical organization. Together, 

combinatorially optimized inhibition emerges as an efficient strategy for stimulus selection.

RESULTS

Spatial RFs of Imc Neurons Have Multiple “Lobes”

We measured the visuospatial RFs of Imc neurons using extracellular recordings (STAR 

Methods). Individual Imc units were identified by spike sorting single and multiunit data; 

only those units deemed to be of “high quality” were included in the analysis (STAR 

Methods). Consistent with published data, Imc neurons have high firing rates (median, 76.5 

Hz [Goddard et al., 2014; Marín et al., 2007]; Figures 1A, 1B, 1E, and 1F).

We found that individual Imc neurons possessed visual RFs with multiple, distinct response 

fields or lobes (Figures 1A–1H, S2A, and S2B). The number of lobes in each RF was 

estimated in an unbiased manner using a two-step process (STAR Methods): (1) a nonlinear 

clustering method (Rodriguez and Laio, 2014) to fit different numbers of clusters to the 

spatial map of firing rates followed by (2) a model selection method (Tibshirani et al., 2001) 

to robustly select the optimal number of clusters in the data (Figures 1C, 1G, and S2C–S2F). 

We found that about two-thirds of Imc neurons had multilobed RFs (80/116; see also Figure 

1L).

To test whether the multilobed structure of Imc RFs was an artifact of our experimental or 

analytical methods, we performed three controls. First, we tested whether errors in spike 

sorting might have caused multiple units with single-lobed RFs to be misidentified as a 

single unit with a multilobed RF. To this end, we applied an additional separability criterion 

to our sorted units. We tested the statistical separability of the waveforms of each sorted unit 

with those of any other unit as well as with outlier waveforms recorded at the same site, and 

retained only those units that were well separated (STAR Methods). We found that the 

majority of the sorted units (114/116) satisfied the separability criterion as well (p < 0.05; 

Figure 1I), ruling out multiunit contamination as a source of error. Second, we examined 

whether the spatial sampling resolution used for RF measurement, as well as neuronal 

response variability, might have caused the erroneous identification of single-lobed RFs as 

being multilobed (Figure S2G). Using experimentally grounded simulations, we mapped out 

the values of sampling step size and response Fano factor that yielded a multilobe 

misidentification rate of 5% or greater (Figure 1J, red zone; STAR Methods). By comparing 

with experimental data, we found that the values of these parameters from each recorded 

unit fell outside the 5% misidentification zone. As a final control, because it is well 

established that OT RFs have single spatial response fields, we measured visual RFs of OT 

neurons. Our methods correctly identified all of the measured OT RFs as being single-lobed 

(Figures 1K and S2H). Together, these results confirmed the veracity of our conclusion that 

the Imc contains predominantly “multilobe” neurons (68%; 78/114; Figure 1L).
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RF Lobes Are Distributed along the Elevation, but Not Azimuth

To investigate organizing principles underlying spatial encoding by Imc neurons, we 

analyzed the properties of the measured visual RFs along the two major anatomical axes of 

the Imc (Figure S1A). The azimuthal centers of RF lobes were nearly identical for lobes of 

individual multilobed neurons (Figure 2A, blue data; STAR Methods), across neurons 

recorded at a given site (Figure 2B, blue data), and across sites recorded along the 

dorsoventral axis of the Imc (Figure 2C; STAR Methods). However, azimuthal encoding 

varied systematically along the rostrocaudal axis of the Imc: centers of RF lobes encoded 

progressively more peripheral azimuths as the recording electrode was moved from rostral to 

caudal portions of the Imc (Figure 2D; (Li et al., 2007; Wang and Frost, 1991)).

The encoding of elevation by Imc neurons was strikingly different. RF lobes of individual 

multilobed neurons were spaced arbitrarilyinelevation(Figure 

2A:largerangeofreddata).Additionally, RF lobes of multilobed Imc neurons were distributed 

widely across elevational space: for each multilobed neuron (Figure 2A, inset: large median 

of data), across neurons recorded at a given site (Figure 2B, red), and across sites recorded 

along both dorsoventral and rostrocaudal axes (Figures S3A–S3D). There was also no 

systematic relationship between encoded elevations and distance along either principal axis 

(Figures S3A and S3B).

These results demonstrated that whereas azimuthal space is encoded in a topographic 

manner along the rostrocaudal extent of the Imc, elevational space is encoded by RFs with 

multiple, arbitrarily spaced, and widely distributed lobes of varying number and size 

(Figures S3E–S3J), with a maximum of three RF lobes per neuron (Figure 1L).

Neuronal Scarcity in Coronal Planes of Imc Necessitates Multiple RF Lobes along 
Elevation

The multilobed encoding of elevational space by Imc neurons was puzzling. This was 

especially so because neurons that provide input to the Imc (OT10), as well those that receive 

Imc’s output (OTid), all tile sensory space with single-lobed spatial RFs organized 

topographically in both elevation and azimuth (Figure 1K) (Knudsen, 1982). Might the 

implementation of stimulus selection across space, a main function of the Imc (Mysore and 

Knudsen, 2013), impose demands on the spatial coding properties of Imc neurons that can 

explain multilobed RFs?

To examine the implications of spatial selection on Imc RF structure and, specifically, of the 

need for implementing stimulus selection at all possible location pairs, we turned to theory 

(STAR Methods). Briefly, we compared the total number of location pairs at which selection 

must occur in the OTid, with the number of location pairs in the OTid at which selection can 

be achieved by a set of Imc neurons. Since multilobed Imc encoding is restricted along the 

elevation (Figures 2A, 2B, and S3A–S3D), we focused on stimulus selection between all 

possible pairs of elevations at any azimuth. We proved mathematically that if the number of 

Imc neurons (N) encoding different elevations at a given azimuth is less than the number of 

distinct elevational locations (L) encoded by the OTid at that azimuth (N < L), then 
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multilobed Imc RFs are necessary for stimulus selection at all possible location pairs (STAR 

Methods).

To examine the biological applicability of this insight, we estimated L and N in the owl 

brain. For a given azimuth, the OTid encodes elevations ranging typically from-60° to +60°, 

and does so at a spatial resolution of at least 3° (STAR Methods). Consequently, the number 

of distinct elevational locations encoded by the OTid at a given azimuth (Lel) is at least 

120°/3° = 40 (Lel ≥ 40). Next, we estimated the number of Imc neurons encoding these 

elevational locations (Nel). Because visual azimuth is organized topsographically along 

Imc’s rostrocaudal axis (Figure 2D), transverse sections of the Imc provide snapshots of Imc 

tissue encoding all elevations at a given azimuth (Figures 3A and 3B). We obtained 

histological sections perpendicular to the rostrocaudal axis of the Imc and performed Nissl 

staining to visualize cell bodies (STAR Methods). Counts of the number of Nissl-stained 

somata (García-Cabezas et al., 2016) showed that the majority of sections (75%) had fewer 

than 28 neurons per section (Nel; Figures 3B and 3C). Thus, Nel is typically much smaller 

than Lel (median Nel/Lel < 26/40 = 0.65).

In contrast, along the azimuth, Naz is greater than or equal to Laz. The OTid encodes 

azimuths ranging typically from −15° to 60° at a spatial resolution of at best 1° (STAR 

Methods). As a result, the number of distinct azimuthal locations encoded by OTid is at most 

75 (Laz ≤ 75). On the other hand, we estimated that there are at least 84 neurons involved in 

encoding these distinct azimuths, Naz ≥ 84 (STAR Methods). Thus, there are more Imc 

neurons than there are encoded azimuthal locations (Naz ≥ Laz), an observation that is 

consistent with the absence of multilobed RFs along the azimuth.

These results indicated that multilobed encoding by Imc neurons is consistent with the need 

for the Imc-OT circuit to achieve stimulus selection at all possible elevational location pairs 

in the face of a scarcity of Imc neurons encoding elevation (Figures 3B and 3C).

Model Predicts Combinatorially Optimized Inhibition for Selection at All Location Pairs

To explore how an under-complete set of Imc neurons might implement selection at all 

possible location pairs, we turned to computational modeling. We set up stimulus selection 

across spatial locations as an optimization problem with L locations (elevations at a given 

azimuth), and N model neurons encoding those elevations (N < L; Figure S4; STAR 

Methods). We imbued all model neurons with Imc-like spatially inverting connectivity with 

the OT (Figures S1 and S4). The spatial RFs of these model Imc neurons were represented, 

for simplicity, using ones and zeros, with ones corresponding to locations inside the RF, and 

zeros, outside (Figure 4B; also see Figure S4 for validity of model even when this 

assumption is relaxed).

The goal of the optimization was to identify the spatial RF structures of these N neurons 

(i.e., the numbers of their RF lobes and their spatial locations), such that when two stimuli of 

equal priority were placed at any pair of locations, they suppressed each other equally. This 

necessary and sufficient condition for implementing selection at all location pairs was 

captured by a specially constructed cost function whose value decreased as the number of 

location pairs at which the above condition was satisfied increased. The cost function took 
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the lowest possible value of –L(L 1) if and only if the condition was satisfied at all location 

pairs (STAR Methods). Any set of Imc RFs that achieved this minimum value, i.e., that 

achieved selection for all location pairs, was called an “optimal solution.”

For each value of L, we varied the number of neurons in the model from N = 1 to N = L. In 

addition, in each case, we examined the impact of single as well as multilobed RFs on the 

existence and nature of optimal solutions. We did so by including a constraint that specified 

the maximum number of lobes allowed in a model neuron’s RF, denoted by kmax. The values 

of kmax tested were 1, 3, and 10, corresponding to key experimentally relevant values: kmax 

= 1 only permitted model neurons with (traditional) single-lobed RFs as potential solutions 

to the optimization problem; kmax = 3 permitted up to three lobed RFs, in line with the 

experimental data (Figure 1L); and kmax = 10 allowed up to 10 lobes per RF, representing 

the largest number of typical Imc RF lobes that one can fit within the encoded elevational 

space (STAR Methods). Therefore, the main parameters in the optimization problem were L 

(number of locations), kmax (maximum number of RF lobes allowed per neuron), and N 

(number of Imc neurons). For each triplet of (L, kmax, N), we ran the optimization problem 

1,000 times (Monte Carlo simulation), each time with a different, randomly chosen initial 

condition, to explore the space of potential optimal solutions.

We found that L = 5 was the smallest number of locations for which selection could be 

solved at all location pairs with fewer than 5 neurons (Figure 4B). The fewest number of 

neurons needed by the model in this case, called N*, was 4 (Figure S5A; STAR Methods). 

Therefore, the maximum “savings” in the number of Imc-like neurons for L = 5 locations 

was 1 (=L-N*). We found that as L increased, neuronal savings increased (Figure 4A; 

orange data), with L = 40 locations requiring just N* = 27 neurons to solve selection at all 

location pairs (savings of 13 neurons or 32%). Neuronal savings also increased as a function 

of kmax, the maximum number of RF lobes allowed per neuron (Figure 4A; black versus 

orange data). Notably, when only single-lobed RFs were allowed in the model (kmax = 1), 

N* was always equal to L, and there were no neuronal savings (Figure 4A; blue data). Thus, 

consistent with our theoretical prediction, selection at all possible location pairs could not be 

achieved with fewer than L neurons if all neurons only had single-lobed RFs.

The primary motivation for our optimization-based modeling approach was to gain insight 

into the computational logic underlying successful stimulus selection at all possible location 

pairs when neurons are scarce. An example optimal solution obtained when L = 5 locations, 

kmax = 3 lobes, and N = 4 neurons (Figure 4B), illustrates how fewer than L inhibitory 

neurons can successfully achieve selection at all location pairs (Figures 4C and 4D). Figure 

4E shows another example optimal model solution, obtained when L = 40 locations, kmax = 

3 lobes, and N = 27 (N*) neurons.

Detailed analysis of optimal model solutions from all runs of all (L, kmax, N) values tested 

with N < L revealed that every single optimal solution exhibited three functional properties, 

which we refer to as signature properties. (Figure 5 illustrates these properties for the 

example optimal solution in Figure 4B and also summarizes them quantitatively for all 

optimal solutions.) First, every optimal solution contained multilobed Imc neurons (Figures 

4B, 4E, and 5A). Conceptually, this “multilobe property” is necessary because of the 
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scarcity of neurons, i.e., the N < L constraint, as demonstrated previously by theory (STAR 

Methods).

Second, the RFs of the neurons in optimal solutions collectively exhibited the “optimized 

lobe overlap” property: every multilobed neuron shared each of its lobes, but not all, with 

another neuron (Figures 5B–5D). To visualize this property, consider a two-lobed neuron Ma 

(Figure 5B: for instance, neuron #1 in Figure 4B). There necessarily existed another neuron 

B (for instance, neuron #2 in Figure 4B) in the solution such that the upper lobe of Ma was 

shared with the lobes of neuron B, but the lower lobe of Ma was not. Similarly, there also 

existed another neuron C (for instance, neuron #3 in Figure 4B) in the optimal model 

solution such that the lower lobe of Ma was shared with the lobes of neuron C, but not the 

upper lobe. (Here, the neurons B and C could be either single-lobed or multilobed.) This 

property was quantified using a binary score: briefly, each optimal solution was assigned a 

score of 1 if every multilobed neuron in that solution satisfied the optimized lobe overlap 

property (as illustrated in Figure 5B), and 0 otherwise. We found that every optimal solution 

obtained had a score of 1 (Figure 5C). Conceptually, the optimized lobe overlap property is 

necessary because selection needs to be solved also when two stimuli are placed at the 

locations encoded by different lobes of an individual multilobed neuron (Figure 5D). 

Consequently, this imposes a severe constraint on the relative organization of RF lobes 

across neurons in optimal solutions—one that causes structured non-orthogonality of the 

RFs.

Third, neurons in optimal solutions used a “combinatorial inhibition” strategy to achieve 

stimulus selection at all location pairs (Figures 5E–5J). The combinatorial nature was 

quantified via a pair of necessary and sufficient conditions, namely that assorted subsets of 

neurons were selectively recruited to solve stimulus selection for individual location pairs, 

with the subsets corresponding to different location pairs intersecting extensively.

An optimal solution was said to exhibit the assortedness feature if “distant” neurons were 

recruited to solve selection between even nearby locations (Figures 5E and 5F), and vice 

versa (Figures 5E and 5G), no matter the specific ordering of neurons in the optimal solution 

(Figure S5B; STAR Methods). This feature was quantified for each optimal solution (STAR 

Methods): briefly, for a given ordering of neurons in an optimal solution, the selection 

matrix (as in Figure 4D) was constructed, “nearby” location pairs were identified (STAR 

Methods), the largest distance between neurons recruited for selection at each nearby 

location pair computed (STAR Methods), and the maximum value of this “neuronal 

distance” obtained across all the nearby location pairs in that solution. Then, the minimum 

value of this neuronal distance was computed across all permutations of neurons within that 

optimal solution, and across all optimal solutions for that (L, kmax, N) triplet (Figure 5F; 

min-max distance). We found that every optimal solution resulted in the recruitment of 

distant neurons to solve selection at nearby locations (Figure 5F). Conversely, every optimal 

solution resulted in the recruitment of nearby neurons to solve selection for distant locations 

(Figure 5G; max-min distance). These results demonstrated the assorted nature of optimal 

solutions (see also Figure S6).
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An optimal solution was said to exhibit the extensive intersection feature if neural subsets 

recruited to solve selection even for two location pairs in distant portions of space shared 

common neurons (Figures 5H and 5I). This feature was quantified by first identifying 

“doublets”: two location pairs such that the locations within each pair were nearby locations, 

but such that the two pairs themselves occupied distant portions of space. Then we checked 

whether the neural subsets recruited to solve selection for at least one such doublet involved 

a common neuron, and scored the solution as 1 if they did (STAR Methods). We found that 

optimal solutions obtained from all runs exhibited this feature (Figure 5I; see also Figure 

S6), demonstrating the extensively intersecting nature of optimal solutions. Together, the 

above results indicated that combinatorial inhibition was a signature property of optimal 

solutions.

Conceptually, combinatorial patterns of inhibition are a consequence of the RF lobes of 

model Imc neurons being widely distributed and arbitrarily spaced in the optimal solutions 

(Figures 5J, S6B, and S6D): restricting RF lobes to only nearby locations substantially limits 

the number of available RF configurations, potentially precluding optimal solutions. Stated 

equivalently, the combinatorial inhibition strategy arises because of the combinatorial coding 

of space by the model Imc neurons: individual neurons do not always encode only for 

neighboring locations (Figures 4B, 4E, S6B, and S6D), and conversely, nearby locations are 

not always encoded by “nearby” neurons (no matter what permutation of neurons is 

considered; Figures S5B, S6B, and S6D). Therefore, when two stimuli are presented, two 

groups of the inhibitory Imc neurons are activated in a nonordered fashion, resulting in a 

combinatorial pattern of inhibition.

Taken together, the model revealed that selection at all possible location pairs when N < L, 

as is the case with Imc’s elevational coding, necessitates a combinatorially optimized 

inhibition strategy by multilobed neurons.

In contrast, when N ≥ L, as is the case with Imc’s azimuthal encoding, the model was always 

able to solve selection at all location pairs with just single-lobed neurons (Figure 4A, kmax = 

1, blue data), by using the straightforward modular copy-and-paste strategy (Figure S1D).

Experimental Validation of Model Predictions in Imc

The above modeling results indicated that sparse sets of Imc-like inhibitory neurons use a 

combinatorially optimized inhibition strategy to achieve selection at all possible location 

pairs. How-ever, it is unclear whether the owl Imc does, in fact, implement this strategy for 

selection across elevational locations. To examine this, we tested whether the experimentally 

recorded activity of Imc neurons exhibited the three signature properties of combinatorially 

optimized inhibition predicted by the model. Because all elevations at a given azimuth are 

encoded by neurons within a coronal plane (Figures 2B and 2C), we sampled these neurons 

by making recordings at multiple dorsoventral sites within each coronal plane (STAR 

Methods).

Across recordings made in 16 such coronal planes, we found that multilobed neurons were 

present in nearly every case (14/16; Figure 6A and S3A), thereby validating signature 

property #1. The impracticability of recording exhaustively from all Imc neurons in a 
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coronal plane made it infeasible to test whether every lobe of each multilobed neuron 

satisfied the optimized lobe overlap property (signature property #2; Figures 5B–5D). 

Therefore, we tested whether at least one lobe of each multilobed neuron satisfied it (Figure 

6B; STAR Methods). The median fraction of multilobed neurons in each coronal plane that 

satisfied signature property #2 was 1 (Figure 6C).

Finally, we tested for signature property #3 (combinatorial inhibition). Both its features, 

namely, assorted recruitment and extensive intersection, were satisfied in nearly every 

testable case (7/8 and 6/6 planes, respectively; Figures 6D–6G; STAR Methods), despite the 

non-exhaustive sampling of Imc neurons in individual planes. In addition, the computational 

basis of combinatorial inhibition, namely, combinatorial coding of space by model Imc 

neurons, which was quantified via the arbitrary spacing and wide distribution of their RF 

lobes (Figure 5J), was also found in experimental data (Figures 2A, 2B, and S3A–S3D).

Thus, our experimental results show that owl Imc neurons are activated in a combinatorially 

optimized fashion that solves stimulus-priority-dependent competitive selection across 

location pairs in the OT.

DISCUSSION

This study unpacked the mechanistic underpinnings in owls of a critical neural function, 

namely stimulus selection at all location pairs, and revealed combinatorially optimized 

inhibition as an efficient strategy for it when neurons are scarce. Combinatorial activation of 

neurons is typically inferred by visualizing their patterns of activation in response to stimuli; 

for instance, combinatorial activation of odors by olfactory receptor neurons (Sicard and 

Holley, 1984). Here, in addition to visualizing these patterns, we quantified the underlying 

intuition by defining the “assortedness” and “extensive intersection” features, which are 

necessary and sufficient for combinatorial activation, and applied this approach to both 

model solutions as well as experimental data. This allowed for quantitative support for the 

finding of combinatorially optimized activation of inhibitory neurons. Broadly, this study 

was framed in the context of selection between pairs of stimulus locations. However, 

because selection between more than two stimuli requires comparisons between all the 

possible stimulus pairs, the results of this study apply directly to the general problem of 

selection among any number of competing stimuli.

Multilobed Visuospatial RFs and Stimulus Selection

Multilobed spatial RFs have not been reported previously in any early visual area to the best 

of our knowledge. We found that, in the Imc, a sensory area that is just two synapses away 

from the retina (Wang et al., 2006), the majority of neurons have multilobed visual RFs. This 

contrasts with previous reports of large, vertically elongated visual RFs in the Imc (Li et al., 

2007; Wang and Frost, 1991), a consequence of the detailed approaches used here, rather 

than species differences (Marín et al., 2007). Multilobed Imc RFs were characterized here 

using flashing dots as visual stimuli. The use of this classical approach, which has been 

employed extensively in visual neuroscience, highlights the contrast between the unusual 

multilobed encoding of space by Imc and the traditional single-lobed encoding of space by 

other early visual areas including OT (Figure 1K).
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Imc does not play a functional role in OT’s representation of the features of single stimuli 

(Mysore and Knudsen, 2013). In contrast, Imc plays a critical role in delivering global 

competitive inhibition across the OT space map and enables the selection of the highest 

priority stimulus by the OT (Marín et al., 2007; Mysore and Knudsen, 2013). Therefore, 

potential functions for Imc’s multilobed RFs were best considered in the context of 

competitive stimulus selection across space, rather than in the context of neural or behavioral 

responses to single stimuli. In so doing, we showed that the scarcity of Imc neurons 

available to encode elevational locations at a given azimuth necessitated multilobed RFs in 

order to achieve stimulus selection across elevations (in that azimuthal plane).

Stimulus Selection across Space and Model Assumptions

Through computational modeling and subsequent experimental validation, our results 

showed that the multilobed RFs of sparse Imc neurons implement a combinatorial inhibition 

strategy for solving stimulus selection across locations (Figure 4). Our model included three 

key biological properties of the Imc-OT circuit as axiomatic features: (1) that Imc neurons 

are scarce (in elevation); (2) that they interconnect with the OT in a specialized, spatially 

inverting manner; and (3) that selection along elevation in the OT depends entirely on the 

priorities of the competing stimuli but not on their specific locations. The first axiomatic 

feature was demonstrated in Figure 3. The second, although not yet confirmed functionally, 

is consistent with anatomical tracing studies (Wang et al., 2004). The third, invariance of 

competitive suppression along elevation, has been demonstrated in previous work (Mysore 

et al., 2010). Incidentally, in other species, there are asymmetries between upper and lower 

hemifields (Yilmaz and Meister, 2013), and more generally, there can be a spatial gradient 

with stimuli at different locations being weighted differently; such a weighting function is 

easily incorporated into our optimization model.

As the goal of our modeling was to extract core computational principles underlying the 

implementation of selection at all location pairs, we chose, in the interest of model 

simplicity, not to include other details of Imc RFs observed in the data (Figure S3) beyond 

the three axiomatic features. These included proportions of single versus multilobed RFs, 

the relative spreads of the heights of single- versus two- versus three-lobed RFs, etc. In 

addition, the model made two other simplifying assumptions. First, to reduce model 

complexity, model RFs were implemented as discrete, binary “pixels” (Figure 4), as opposed 

to being continuous hills of activity (Figure 1). As described in Figure S4, this assumption 

does not affect the spatial pattern of Imc inhibition onto the OT. However, it fails to capture 

the scaling of the strength of the inhibition based on the specific position of the stimulus 

within the half-max extent of a RF. Second, the model implemented the biological 

observation that the maximum number of lobes in any Imc RF (denoted kmax) was three 

(Figure 1L) by constraining the number of RF pixels to be less than or equal to kmax. The 

consequence of this assumption was that the sizes of model RFs were also limited to kmax 

pixels (Figures 5E, S5B, and S6BD; kmax = 3), unlike biological RFs that could be larger in 

size (Figures 1, 6, and S2). This assumption was nonetheless necessary because it improved 

the convexity of the cost function, thereby allowing the runs of the optimization model to 

converge. Despite these assumptions, however, strong predictions of the model regarding 

combinatorially optimized inhibition for location-invariant selection (and the corresponding 
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signature properties) were successfully validated with subsequent experiments, 

demonstrating that the Imc does indeed employ combinatorially optimized inhibition for 

stimulus selection at all possible elevational pairs.

Notably, the signature properties were also robust to the specific proportions of single- 

versus two- versus three-lobed RFs. This was evidenced by the fact that, in the model, the 

signature properties held true for all optimal solutions even though the proportions of lobes 

varied widely across optimal solutions: for instance, one of the optimal solutions for L = 40, 

N* = 27 consisted of 7.5% single-lobed, 18.5% two-lobed, and 74% three-lobed RFs, 

whereas one optimal solution for L = 5, N* = 4 consisted of 50% single-lobed, 25% two-

lobed, and 25% three-lobed RFs (Figure 4B). Consequently, our conclusions were not 

impacted by a match (or not) between proportions of RFs in the model Imc and the 

proportions in the owl Imc. (Incidentally, because the proportions in experimental data were 

obtained, necessarily, by combining data across coronal planes and across birds, they do not 

represent the distribution within any particular Imc coronal plane [Figure 1L].)

Selection across Locations in Elevation versus Azimuth

Our results indicate that the Imc implements stimulus selection for locations both along 

elevation and azimuth. However, the strategy employed for location pairs along the elevation 

is distinct from that along the azimuth, a difference that can be accounted for by the 

difference in anatomical organization along the two axes. The scarcity of Imc neurons in 

coronal planes is consistent with a combinatorially optimized solution for selection along 

elevational locations through the use of multilobed spatial RFs (Figures 3, 4, 5, and 6). In 

contrast, abundance of Imc neurons along the rostrocaudal axis (STAR Methods) is 

consistent with the modular copy-and-paste solution through the use of single-lobed spatial 

RFs (Figure S1D).

Minimization of Wiring and Metabolic Costs

In this context, three questions regarding the biological implementation of selection at all 

location pairs by the Imc remain puzzling. First, why might N < L be biologically desirable 

in the Imc in the first place, necessitating combinatorially optimized inhibition? Second, if N 

< L is attractive biologically, why do Imc RFs not have a large number of lobes, thereby 

achieving greater savings in the number of Imc neurons (Figure 4A)? In other words, why is 

the maximum number of Imc RF lobes restricted to a low number (kmax = 3; Figure 1L)? 

Third, why is multilobed encoding found only along one spatial axis (here, elevation), and 

why not along both axes for greater neuronal savings?

To gain insight into these questions, we examined Imc function in the context of two types 

of costs that nervous systems must incur in building and operating a neural circuit: wiring 

cost and metabolic cost. We estimated wiring cost by quantifying the cost of implementing 

spatially inverting projection patterns from the Imc to the OT (Chen et al., 2006), and 

metabolic cost by quantifying the cost of broadcasting of spikes across the OT for 

competitive suppression. We found that wiring cost decreases as the number of RF lobes 

increases (Figure 7A; STAR Methods). In contrast, metabolic cost increases as the number 

of RF lobes increases (Figure 7B; STAR Methods). Consequently, the wiring cost places a 
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lower bound on the number of RF lobes (and a corresponding upper bound on the number of 

neurons), whereas the metabolic cost places an upper bound on the number of RF lobes (and 

a lower bound on the number of neurons). The optimal number of RF lobes (and the number 

of neurons necessary), therefore, is one that minimizes some weighted combination of the 

two opposing costs (Figure 7C). Because Imc neurons have high firing rates (median, 76.5 

Hz [Goddard et al., 2014; Marín et al., 2007]; Figure 1A), this causes the metabolic cost of 

Imc function to scale up substantially, pulling the ideal number of RF lobes to even lower 

values than for low firing-rate neurons (Figure 7C, thick versus thin line; thereby also 

providing a rationale for the continued presence of some single-lobed neurons in the Imc; 

Figure 1L).

Taken together, these results indicate that a small number of Imc neurons (N < L), with 

multilobed RFs that have a small number of RF lobes (small kmax value), are well suited to 

achieve selection across all locations if net neural costs are to be minimized. Increasing 

excessively the number of RF lobes along one spatial axis (here, elevation), or increasing the 

number of RF lobes also along the other axis as well (here, azimuth) are not biologically 

desirable. Thus, the estimation of the net cost of neural circuit operation provides a plausible 

window into “why” the owl Imc may be organized functionally in the way that it is (Figure 

7).

The reason for occurrence of multilobed encoding along elevation, specifically, rather than 

along azimuth, is less evident and may simply be a consequence of the relative anatomy of 

Imc and OT. The Imc is asymmetric in shape, elongated along the rostrocaudal axis, but 

compressed along the dorsoventral axis (Wang et al., 2004). It is plausible that the OT’s 

representation of azimuth along its rostrocaudal axis (Knudsen 1982) drives azimuths to be 

encoded along the parallel (and neurally rich) rostrocaudal axis of the Imc (Wang et al., 

2004), for ease of wiring, thereby relegating elevation to be coded by the transverse (and 

neurally sparse) planes.

Space Coding in Imc Is Unlike Traditional Population Coding Schemes

The multilobed encoding of space by Imc neurons (Figures 1, 6, and S6) combined with the 

optimized lobe overlap (signature property #2; Figures 5 and 6) across Imc RFs in a coronal 

section, led to the observation that Imc neurons use a combinatorially optimized population 

coding strategy (Figures 6 and S6). This coding is conceptually distinct from the major 

population neural coding schemes described thus far in the literature.

For instance, in population vector coding, multiple neurons with overlapping, single-lobed 

tuning curves (or RFs) are activated to encode feature values such as stimulus locations, 

motion direction, etc., with high precision (Georgopoulos et al., 1986; Lee et al., 1988; 

Lewis and Kristan, 1998; Ma et al., 2006). With such coding, it is always possible to order 

these RFs along the feature axis such that neighboring values of features are always encoded 

by functionally “local” subsets of neurons (Figures S6A and S6C). In contrast, neurons with 

multilobed RFs cannot be ordered this way: some neurons always code also for distant 

locations (Figures S6B, S6D, and 5J), and selection for a given location pair cannot be 

guaranteed to be solved by only a local subset of neurons (Figures S6B and S6D).
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A population coding scheme reported in the literature that does involve multilobed encoding 

as well as the activation of non-local neural subsets is the combinatorial coding of odors by 

olfactory receptor neurons (Sicard and Holley, 1984). However, whereas assorted and 

extensively intersecting subsets of neurons are activated to encode odors, no inherent 

constraints that necessitate the optimization of the relative positioning of these RF lobes 

across neurons have been reported. In contrast, in the combinatorially optimized coding 

reported here, the placement of RF lobes needs to be optimized across neurons and is 

exemplified by the lobe overlap property (Figure 5B and 5C).

For this same reason, our scheme also differs from the encoding of space by entorhinal grid 

cells: the firing fields of different grid cells are not inherently yoked to one another (Hafting 

et al., 2005; Towse et al., 2013). In addition, each grid cell has a large number of highly 

organized firing fields, unlike the few, and arbitrarily placed, RF lobes of Imc neurons.

Finally, combinatorially optimized coding also stands in direct contrast to the sparse, 

orthogonal coding by an overcomplete set of neurons reported in many brain areas (Mao et 

al., 2017; Olshausen and Field, 1997). Imc’s coding, instead, involves promiscuous, non-

orthogonal representation of space by an undercomplete set of neurons.

The problem of stimulus selection at all location pairs with limited neurons, which yields 

combinatorially optimized coding in Imc, belongs to the same (np-complete) class of 

computationally complex problems as the traveling salesman problem and the minimum 

spanning tree problem (Kruskal, 1956; Lawler et al., 1985). Although the brain solves this 

problem naturally, exactly how Imc’s optimized, multilobed RFs are specified during neural 

development is an intriguing open question and a subject for future work.

Generality of Combinatorially Optimized Coding beyond the Owl and the Imc

The discoveries, here, of multilobed visual representation, combinatorially optimized 

population coding, and an efficient inhibitory solution for a critical brain function (namely, 

stimulus selection) have come from the systematic study of the functional response 

properties of inhibitory neurons in the owl Imc, an area proposed as a critical processing 

critical processing hub for stimulus selection for attention (Marín et al., 2007; Mysore and 

Knudsen, 2013; Sereno and Ulinski, 1987).

Although Imc is conserved across the midbrain of all vertebrates (Graybiel, 1978; Jiang et 

al., 1996; Wang et al., 2004), the functional properties of this nucleus of emerging 

importance have not been studied in any vertebrate other than the barn owl thus far. The 

biological advantages of the unusual coding strategy elucidated here suggest that 

combinatorially optimized coding by sparse inhibitory neurons may be a solution employed 

generally by the vertebrate midbrain to achieve spatial selection across all locations.

Additionally, this computational strategy extends naturally to any selection problem in 

which the choice must be made no matter what the specific values are of other stimulus 

features such as orientation, color, odor identity, etc. One example is feature-based pop-out 

(Treisman and Gelade, 1980), in which, for instance, a bar-shaped visual stimulus of a 

particular orientation stands out (is “selected” neurally and behaviorally) among a 
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background of several bars of a different orientation. Since pop-out must and does operate 

effectively no matter what the absolute orientations of the bars are (as long as their relative 

orientations are distinct), the underlying circuit mechanism must have the ability to compare 

responses of neurons encoding for different, and in fact, all possible, pairs of orientations, 

much like the Imc helps compare responses of OT neurons encoding for different (all 

possible pairs of) locations. Our results suggest that a careful examination of the encoding 

properties of inhibitory neurons in cortical as well as sub-cortical areas may reveal 

combinatorially optimized coding as a widespread strategy in the brain for efficient, feature-

invariant stimulus selection and decision making under metabolic and anatomic constraints.

STAR⋆METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Adult barn owls (Tyto alba) Johns 
Hopkins 
University, 
Stanford 
University, 
University 
of Maryland

N/A

Software and Algorithms

Custom code for RF analysis and 
computational modeling in MATLAB

This paper N/A

Gap statistical analysis for model selection Tibshirani et 
al., 2001

In-built MATLAB function (‘evalclusters’)

MIDACO-SOLVER (Solver for nonlinear 
optimization problems)

Schlueter et 
al., 2012

http://www.midaco-solver.com/

Clustering by fast search-and-find of density 
peaks (for clustering RF data)

Rodriguez 
and Laio, 
2014

https://people.sissa.it/~laio/Research/Res_clustering.php

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Shreesh P. Mysore (shreesh.mysore@jhu.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—We performed experimental recordings in 15 head-fixed, non-anesthetized adult 

barn owls that were viewing a visual screen passively (Tyto alba). Both male and female 

birds were used; the birds were shared across several studies. All procedures for animal care 

and use were carried out following approval by the Johns Hopkins University Institutional 

Animal Care and Use Committee, and in accordance with NIH guidelines for the care and 

use of laboratory animals. Owls were group housed in enclosures within the aviary, each 

containing up to 6 birds. The light/dark cycle was 12 hr/12 hr.
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METHOD DETAILS

Neurophysiology—Experiments were performed following protocols that have been 

described previously (Mysore et al., 2010; Mysore and Knudsen, 2013). Briefly, epoxy-

coated, high impedance, tungsten microelectrodes (A-M Systems, 250μm, 5–10 MΩ at 1 

kHz) were used to record single and multi-units extracellularly. A mixture of isoflurane 

(1.5%–2%) and nitrous oxide/oxygen (45:55 by volume) was used at the start of the 

experiment to anesthetize the bird and secure it in the experimental rig (a 30-minute period 

of initial set-up). Isoflurane was turned off immediately after the bird was secured and was 

not turned back on for the remainder of the experiment. Frequently, nitrous oxide was also 

turned off at this point, but in several experiments, it was left on for a few hours if needed. 

However, it was turned off at least 30 minutes before the recording session. Our recordings 

were performed starting, typically, 3 hours after initial set-up (the time required for 

positioning the electrode). As recovery from isofluorane occurs well under 30 minutes after 

it is turned off, and recovery from nitrous oxide occurs within a minute (the bird stands up 

and flies away if freed from restraints), recordings were made in animals that were not 

anesthetized and non-tranquilized.

Imc targeting—The Imc is an oblong structure that is 2.8 mm rostrocaudally and 0.35 mm 

dorsoventrally, appearing as a 700-μm × 350-μm elliptical disk in coronal sections. It lies 

parallel to the rostrocaudal axis of the OT, located approximately 16 mm ventral to the 

surface of the brain, and approximately 500 um medial to the medial-most part of the OT. 

We targeted the Imc following previously published methods (Mysore and Knudsen, 2013). 

Briefly we first navigated to the OT (based on well-established methods; (Knudsen, 1982)), 

and then navigated to the Imc using the OT’s topographic space map as reference. Imc 

targeting has been validated previously using dye injections (Mysore and Knudsen, 2013), 

and was additionally verified at the outset of this study through anatomical lesions (Figure 

S1A). Dorsoventral penetrations through the Imc were made at a medial-leading angle of 5° 

from the vertical to avoid a major blood vessel in the path to the Imc.

Visual stimuli and RF measurement—Visual stimuli used here have been described 

previously (Mysore et al., 2010, 2011). Briefly, stationary, translating, or looming visual 

dots (of fixed contrast) were flashed at different locations on a tangent TV monitor in front 

of the owl. Looming stimuli were dots that expanded linearly in size over time, starting from 

a size of 0.6°in radius. Visual stimuli were presented for 250ms with an inter stimulus 

interval of 1.5–3 s at all sampled locations. Pilot experiments indicated that visual RFs were 

narrow in azimuth but spread along the elevation. Therefore, RF measurements were made 

by presenting stimuli over the −60° to 60° range in elevation, and over a 40°(±10.4°) range 

in azimuth (centered around the azimuth that yielded the best responses). The ranges of 

sampling steps used were 4°−10°in azimuth and 5°−15°in elevation. Typically, we sampled 

55–70 spatial locations for each neuron (typically, 6 locations along azimuth and 10 

locations along elevation). Each sampled stimulus location was repeatedly tested 9–15 times 

in a randomly interleaved fashion. Multi-unit spike waveforms, recorded using Tucker Davis 

Technologies hardware interfaced with MATLAB, were sorted offline into putative single 

neurons (see below). The spatial responses for each neuron were measured by counting 

spikes at each sampled location during a 100–350 ms time window following stimulus onset.
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Spike sorting multi-unit data—The ‘chronux’ spike-sorting toolbox was used for the 

majority of the analyses (Fee et al., 1996). This method is based on a hierarchical 

unsupervised clustering approach in which the spike waveforms are initially classified into a 

large number of clusters, typically 10 times the number of putative units recorded. Clusters 

with very few spikes are discarded and the remaining clusters are then aggregated 

automatically using metrics of similarity between waveform shapes. In addition, we include 

only those units for analysis that have less than 5% of the spikes within 1.5 ms of each other 

(ISI criterion).

The statistical separability of individual sorted units was assessed based on the distance of a 

unit’s cluster (of waveforms) from the clusters corresponding to other units as well as the 

outlier cluster measured at the same site. We first projected the spike waveforms measured at 

a given site to a 3-dimensional space using principal components analysis. Then, we 

performed a one-way ANOVA test to examine if the mean of the waveforms of a given unit 

(in the projected 3-dimensions) was significantly different from the means corresponding to 

the other units and the outliers. This was followed by the Holm-Bonferroni criterion for 

multiple comparisons. In a few cases (4/116), there were either too few waveforms in the 

outlier cluster (number of waveforms in outlier cluster less than 8% of number of waveforms 

in any of the remaining sorted units), or the outlier waveforms did not form a cluster with a 

Gaussian distribution. In such cases, we only tested for the distance of the unit’s cluster 

mean from the cluster means of other units. We regarded only those units whose cluster 

means were significantly different from the means of all other units (and the outlier cluster) 

as ‘well-separated’ units per this separability criterion (p < 0.05; the p value plotted for each 

unit in Figure 1I is the largest p value obtained across all comparisons for that unit). Only 

well-separated units were included in all remaining analyses (subsequent to Figure 1I) in this 

study.

Identification of the optimal number of RF lobes (Figure 1)—In order to determine 

the number of response fields (or lobes) in an RF in an unbiased manner, we first 

transformed the measured RF responses to a distribution of points in 2-dimensional space 

(azimuth x elevation). This distribution was generated such that the density of points around 

each sampled spatial location was proportional to the firing rate of the neuron evoked by a 

visual stimulus presented at that location. We achieved this by distributing points randomly 

and uniformly within a rectangle centered around the sampled location such that the number 

of points was equal to the firing rate at that location; the dimensions of the rectangle were 

the azimuthal and elevational sampling steps, respectively. This transformation allowed us to 

apply spatial clustering methods to the firing rate maps.

Next, using the density peaks clustering method (Rodriguez and Laio, 2014), we fit 

successively k = 1,2,3.6 clusters to the distribution (Figures 1C and 1G). This clustering 

method identifies cluster centers by searching for regions that have high local density of 

points (r) that are also far away from any points of equal or higher density (δ = minimum 

distance from points of equal or higher density; Figures S2C–S2F. For the point with highest 

local density, δ is conventionally taken as the maximum distance of the point from all other 

points). It is robust to nonlinear cluster boundaries and unequal cluster sizes – conditions 

under which traditional methods like k-means perform poorly. The k cluster centers are 
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chosen by the algorithm as points with the k highest values of gamma (γ), defined as the 

product of ρ and δ. We repeated this procedure for each k, thereby fitting the 1-best, 2-best, 

… 6-best clusters to the data.

Following this, we applied a model selection procedure to identify the optimal number of 

clusters in the data, i.e., the best k value (k*), based on the ‘gap statistic’ (Tibshirani et al., 

2001). This is an unbiased method to detect the number of clusters that best fit a distribution 

of points. For each k, we estimated a ‘gap’ value (gap(k)), which evaluated the goodness of 

fitting k clusters to the distribution. The gap value was calculated by standardizing the 

pooled within-cluster sum of square distances between all points in each of the k clusters 

(Wk) and comparing its log value (log (Wk)) to the expectation of this quantity, (E*(log 

(Wk)), under the null hypothesis that the data contains only one cluster (Tibshirani et al., 

2001). We calculated this in MATLAB by using the ‘evalclusters’ function with ‘gap’ as the 

evaluation method, which yielded gap(k) as well as se(k) for each k; se(k) was the standard 

error in the estimate of gap(k). Then, the gap selection statistic was defined as, GAP(k) = 

gap(k)- gap(k+1) + se(k+1). The number of clusters that fit the data optimally is defined by 

the method as the smallest value of k for which GAP(k) > = 0. Conceptually, the value of 

GAP(k) for the null hypothesis (k* = 1) keeps decreasing linearly with increasing k, whereas 

the rate of the decrease of the metric under the alternate hypothesis (k* > 1) has been shown 

to fall exactly at k = k*. Hence the ‘gap’ between the two curves is maximum at k = k*, and 

GAP(k), the difference between gap(k) and gap(k+1) is greater than zero for the first time 

when k = k*.

Defining the centers of RF lobes—The center of an RF lobe defined as the stimulus 

location evoking the highest firing rate within that lobe. The azimuthal RF ‘center’ of an Imc 

neuron is defined as the average of the azimuthal centers of all of its RF lobes, because RF 

lobes of an individual neuron do not vary significantly in azimuth (Figure 2A; blue). The 

azimuthal RF ‘center’ of a recording site in the Imc, across all the neurons recorded at that 

site, is defined as the average of the azimuthal centers across all the RF lobes of all the 

neurons recorded at that site. This is valid because RF centers of individual neurons within a 

recording site do not vary significantly in azimuth (Figure 2B; blue). The azimuthal RF 

‘center’ of a penetration is defined as the average of the azimuthal centers across all 

recording sites in that penetration. This is valid because RF centers of individual recording 

sites within a penetration do not vary significantly in azimuth (Figure 2C).

Monte-Carlo analysis of the effect of neuronal noise and spatial sampling 
resolution on number of detected RF lobes (Figure 1)—A low spatial sampling 

resolution during the measurement of spatial RFs, as well as high variability in neural 

responses, could both cause a single lobed RF to appear falsely as a multilobed one (see 

Figure S2G). To test how robust our method for identifying the ideal number of RF lobes is 

to sampling resolution (sampling step-size) and neural response variability (response Fano-

factor; defined as variance/mean), we performed the following control. First, we generated a 

single-lobed Gaussian in 2D (azimuth x elevation), with mean and covariance equal to the 

average values of these parameters across all the experimentally measured Imc RFs (114 

Imc units). Using this single-lobed RF as ‘reference’, we repeatedly simulated RFs using 

Mahajan and Mysore Page 18

Cell Rep. Author manuscript; available in PMC 2019 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different step-sizes and different response Fano-factor values: For a given step-size, the 

firing rate at each location was chosen randomly from a normal distribution with mean equal 

to the value yielded by the reference RF at that location, and variance determined by the 

Fano-factor value. Next, we transformed this simulated RF into a distribution of 2-D points 

and applied the density peaks clustering method. Finally, we applied the gap-statistic model 

selection method to determine the ideal number of lobes in the RF. We repeated this 150 

times for each step-size and Fano-factor pair, and calculated the fraction of times for which 

multiple RF lobes were detected (erroneously) in this data. We repeated the whole procedure 

for a range of step-size and Fano-factor values that subsumed the range of experimental 

step-sizes and measured Fano-factor values, and identified the zone that yielded ≥ 5% false 

detection rate of multiple lobes (Figure 1J).

To test the extent to which our experimental and analytical methods falsely detected 

multilobed RFs, we compared the experimentally used step-size for each RF and the RF’s 

Fano-factor value with those that yielded a ≥ 5% false detection rate in simulation. The 

Fano-factor for each RF was calculated as the average of the Fano-factor values at all 

sampled locations in that RF. The step-size for each RF was calculated as the average of the 

azimuth and elevation sampling steps used to measure the RF. We found that all of our RFs 

were well within the ‘safe’ zone of ≤ 5% error (Figure 1J). Thus, the detection of multilobed 

RFs in our data was unlikely to be a spurious consequence of sub-optimal measurement 

conditions.

Histology (Figure 3)—Owls were perfused with paraformaldehyde and their brains 

extracted per standard procedures. The fixed brains were blocked so that the rostro caudal 

axis of the Imc was perpendicular to the sectioning plane, and brain sections of 40μm 

thickness were obtained. Sections containing Imc were mounted, Nissl stained, and 

coverslipped. Sections were imaged at 40x under a light microscope and the number of Nissl 

stained somata in the Imc in each section were manually counted by NRM and SPM 

independently (García-Cabezas et al., 2016). For each section, the maximum value of the 

counts from the two authors was used to generate the plot in Figure 3C.

Theoretical calculations regarding the need for multilobed RFs—We compared 

the total number of location-pairs at which selection must occur in the OTid, with the 

number of location-pairs at which selection is achievable by a set of Imc neurons. Since 

multilobed Imc encoding is restricted along the elevation (Figures 2A and 2B), we focused 

on stimulus selection between all possible pairs of elevations at any azimuth.

Simplified version.: We started by making two simplifying assumptions: (a) that the OT 

space map is a collection of non-overlapping spatial RFs that tile sensory space, and (b) that 

each Imc neuron has exactly k RF lobes (k always ≥ 1).

In this scheme, if the number of distinct elevations (at a given azimuth) in the discretized OT 

space map is L, then the total number of distinct pairs of stimulus locations possible is 

L(L-1). A stimulus placed within any RF lobe of a k-lobed Imc neuron can suppress 

competing stimuli located anywhere outside the RF, i.e., at L-k locations. Therefore, each 

Imc neuron is capable of implementing competitive selection at k(L-k) pairs of locations. 
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With N such Imc neurons, the number of pairs of stimulus locations at which competitive 

selection can be resolved by the Imc is at most Nk(L-k). Note that this quantity is computed 

assuming no overlap between Imc RFs and is greater than the number of pairs of stimulus 

locations at which competitive selection can be resolved by the Imc if overlap between RFs 

is allowed. Therefore, to achieve successful competitive suppression between all possible 

pairs of stimulus locations, i.e., location invariance, a condition that must be satisfied is

Nk(L − k) ≥ L(L − 1) (1)

= > k ≥ L(L − 1)
N(L − k) (2)

This necessary (but not sufficient) condition for location invariance is already very revealing: 

If all Imc neurons had only single-lobed RFs, i.e., k = 1, the above inequality reduces to 

N≥L i.e., the number of Imc neurons would need to be greater than or equal to the number of 

distinct spatial locations. Since the logical proposition ‘A = > B’ is exactly the same as the 

proposition ‘not (B) = > not (A)’, in our case, the proposition ‘k = 1 = > N ≥ L’ is exactly 

the same as the proposition ‘N < L = > k≠1’, i.e., if the number of Imc neurons is less than 

the number of spatial locations, then at least one Imc RF must be multilobed (because RFs 

cannot have fewer than one lobe, by definition).

This conclusion held true even when both the simplifying assumptions – (a) that OT RFs are 

non-overlapping, and (b) that all Imc neurons have the same number of RF lobes – were 

relaxed (see ‘Full version’ next).

Full version.: We used a more biologically accurate model of space in which RF extents, 

overlap of RFs across neurons, and the resolution of competition reported in the OTid (the 

minimum distance between two stimuli such that OTid is able to select the stronger of the 

two stimuli) (Mysore et al., 2010) were all modeled to match experimental data. In addition, 

we allowed varying numbers of Imc RF lobes:

Let the total range of elevational locations for which barn owl’s midbrain encodes space be 

R, and the resolution of encoding space be r. Then, the number of distinct locations at which 

a stimulus can be placed along elevation is L = R/r. Let the resolution for competitive 

selection be Cres.

The total number of distinct location-pairs at which two competing stimuli can be placed 

such that they are greater than Cres apart from each other is approximately L(L - (2Cres/r)). 
Note that this quantity is calculated by counting all the locations at which a second stimulus 

can be placed such that it is at least Cres away on either side of a first stimulus that is placed 

in any of the L locations. However, when a first stimulus is placed at the edge of the visual 

field, a second competing stimulus can be placed only on one side such that it is Cres away. 

It is straightforward to show that L(L - (2Cres/r)) is smaller than the corresponding quantity 

obtained when edge effects are included. Hence, for location invariance to be achieved, 
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selection of the stronger stimulus must at least be implemented when two competing stimuli 

are placed in any of these possible location-pairs.

Let the number of lobes in a given Imc neuron be k. Let the half-max size of each lobe be lh. 

Then, a k lobed Imc neuron solves competition for a total of k(L-(lh/r)k) location-pairs 

(assuming each Imc neuron sends inhibition to all locations that lie outside the half-max 

extent of the neuron’s RF, without loss of generality; see “Model assumptions” section 

below and Figure S4 for implications of this assumption). This is just the number of 

location-pairs such that one stimulus can be placed inside the multilobed RF (at its peak for 

effective suppression of competing stimuli) and the other outside. Let the total number of k 

lobed Imc neurons be Nk. Therefore, the total number of Imc neurons is

N = ∑
k

Nkk (3)

To achieve location invariance, we need

∑
k

Nkk L −
Ih
r k ≥ L L −

2Cres
r (4)

Since k≥1, and lh > 2Cres (mean lh = 33.6° ± 1.25°from the 209 RF lobes across 114 Imc 

neurons we measured, and Cres < 10°(Mysore et al., 2010)), we get

L −
Ih
r k ≤ L −

2Cres
r (5)

Using (5) in (4) gives,

∑
k

Nkk ≥ L (6)

In other words, if all the Imc neurons are single-lobed (k = 1), this equation becomes N≥L. 

Since the logical proposition ‘A = > B’ is exactly the same as the proposition ‘not (B) = > 

not (A)’, the proposition ‘k = 1 = > N ≥ L’ is exactly the same as the proposition ‘N < L = > 

k ≠ 1’ i.e., if the number of Imc neurons is less than the number of spatial locations, then at 

least one Imc RF must be multilobed (because RFs cannot have fewer than one lobe, by 

definition).

Estimating number of elevational and azimuthal locations encoded by OTid 
(Lel and Laz, respectively)—To estimate, conservatively, the number of distinct 

elevational locations encoded by the OTid, we divided the extent of elevational space by the 

poorest resolution of spatial encoding by OTid neurons. The OTid encodes elevations 

ranging typically from −60°to 60°(Knudsen, 1982; Mysore and Knudsen, 2013). The poorest 
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OTid spatial resolution was estimated as the largest distance between adjacent spatial 

locations for which discriminability (d-prime) of neural responses was above a plausible 

threshold of 1(Bala et al., 2003). Using published data (Sridharan et al., 2011) that reports d-

prime values computed from spatial tuning curves in the OTid, we estimated the OTid’s 

poorest spatial resolution at 3°. Thus, the number of distinct elevational locations encoded 

was at least 120°/3°, in other words, Lel ≥ 40.

To estimate the largest number, the number of distinct azimuthal locations encoded by the 

OTid, we divided the extent of azimuthal space by the best resolution of spatial encoding by 

OTid neurons. The OTid encodes azimuths ranging typically from −15° to 60(Knudsen, 

1982; Mysore et al., 2010). In addition, the OTid encodes frontal azimuths with a 

magnification factor of 150 μm/deg, and peripheral azimuths with a magnification factor of 

50 μm/deg (Knudsen, 1982). Because resolution varies inversely as the magnification factor, 

we estimated the best spatial resolution from the poorest using M-scaling 3°* 50/150 = 1° 

(Carrasco and Frieder, 1997). Thus, the number of distinct azimuthal locations encoded was 

at most 75°/1°, in other words, Laz ≤ 75.

Selection across azimuthal locations—The number of distinct azimuthal locations 

encoded by OTid was estimated above to be ≤ 75 (Laz ≤ 75).

The rostrocaudal extent of the Imc is 2800 μm, and the somas of Imc neurons are no larger 

than 33 μm (largest somatic dimension = 33 μm, n = 456 neurons across 20 coronal 

sections). Therefore, there are at least 84 (coronal) sections along the rostrocaudal axis of 

the Imc (2800/33), with each section containing at least one Imc neuron not also found in the 

neighboring sections. (For this conservative estimate of Naz, we only need that of the ~26 

neurons in each successive coronal section of the Imc (median #neurons per section = 26; 

Figure 3C; dashed red line), just one be distinct.) In other words, there are at least 84 

neurons involved in encoding the at most 75 distinct azimuths: Naz ≥ 84. Laz ≤ 75, which 

yields that Naz ≥ Laz.

Thus, there is sufficient number of Imc neurons to encode azimuthal locations, precluding 

the need for a combinatorial solution for selection at all location-pairs along the azimuth 

(involving multilobe neurons with RF lobes spread along the azimuth). Consistent with this 

expectation, azimuthal encoding by Imc neurons is effectively single-lobed: all lobes of a 

multilobe Imc neuron encode the same azimuth (Figures 2A–2C).

Optimization model for solving stimulus selection at all elevational location-
pairs (Figure 4)—Conceptualizing and setting-up the model (Figure S4). In our model,

L = number distinct spatial elevations at a given azimuth encoded in our model (i.e., the 

number of elevations in the ‘OTid’ space map).

N = number of model Imc-like neurons, i.e., neurons with Imc-like anatomical projection 

patterns.

kmax = maximum number of RF lobes allowed for each model neuron.
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N* = smallest number of upto-kmax-lobed model neurons needed to solve selection across L 
elevations.

The optimization model solves for the number and positions of RF lobes of each of the N 
model neurons in order to achieve selection at all location-pairs. The model neurons are 

‘Imc-like’: each of them is excited by a stimulus placed anywhere within its RF, and delivers 

competitive inhibition to all locations in the OTid space map outside its RF that is 

proportional to the strength of the stimulus (Figures S4A and S4B). Without loss of 

generality, we take stimulus priority = 1 unit (for all stimuli), and the proportionality 

constant (underlying inhibition by the Imc) to be 1. Therefore, for each stimulus, each 

neuron excited by that stimulus generates an inhibition of 1 unit at those locations in the 

OTid that are outside that neuron’s RF (Figures S4A and S4B). For successful, 

relativepriority dependent competitive stimulus selection between stimuli presented at a 

given pair of locations, the net inhibition at these two locations in the OTid should be equal. 

For competitive selection to be solved at all location-pairs, this condition must hold for 

stimuli placed at any pair of all the possible Lc2 (L choose 2) pairs of locations. The details 

of the setup of the optimization problem are described below.

Let X be a matrix of size L x N (Figure S4C), where the jth column of the matrix 

corresponds to the L elevational locations encoded by the jth Imc neuron in the population. 

The optimization problem is framed as minX f (X; L, N), where the objective function f(X) 

is designed such that it achieves its minimum value (of -L(L-1)) for a given L only when the 

RFs of the model neurons solve selection at all location-pairs.

Consider two competing stimuli (of equal strength) placed at locations 1 and 2. In our 

scheme, we represent this by a row vector u1xn = [1 1 0..0.0] (Figure S4D). The ones in the 

first two indices of the row vector correspond to the two locations at which the competing 

stimuli are placed.

Note that XTuT results in a vector in which the jth index corresponds to the number of 

locations that the jth neuron is activated by when the two competing stimuli are placed in 

positions shown in a (Figure S4E).

Additionally, the matrix (X-1) corresponds to the suppression image of the Imc population, 

where 1 is a matrix vector of all ones. The jth column of this matrix represents the locations 

to which the jth Imc neuron sends inhibition in the OT space map. This is because of the 

inverse anatomical projections from the Imc to the OT. The product (X-1)XTuT then results 

in a vector in which the jth index corresponds to the net inhibition sent to the jth location by 

the entire Imc population when the two competing stimuli are placed at different locations, 

i.e., at different positions within the row vector u (Figure S4F).

For competitive selection at these two locations, the net inhibition at these two locations in 

the space map of the model ‘OTid’ should be equal. To penalize solutions for which this is 

not the case, we include a cost term in the objective function that is equal to the square of 

difference in the inhibition at the two locations. This is written mathematically as
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f 1(X; u, L, N) = v(X − 1)XTuT 2
(7)

where v is a row vector whose length equals that of u and nonzero indices are same as u, but 

with the sign of one of the 1 s flipped (in this case v = [1 1 0..0.0] or [−1 1 0..0.0]). The 

minimum value that f1 can take is 0, which happens when equal inhibition is sent to both the 

locations at which the competing stimuli are placed (Figure S4F).

In addition to the strength of inhibition at the two locations being equal, the strength of 

inhibition must be strictly negative. This is because, the other possibility, of strength of 

inhibition at each location being zero, would not be acceptable because no inhibition would 

be sent to either of the two locations. To penalize solutions for which this condition is not 

met, we include a cost term in the objective function that is equal to the number of locations 

at which the inhibition is not negative. This is written mathematically as

f 2(X; u, L, N) = u * sign (X − 1)XTuT (8)

Minimizing f2, therefore, ensures that inhibition is sent to both the locations. The minimum 

value f2 can take is −2, when inhibition is sent to both the competing locations (Figure S4F).

Finally, we write the full objective for the location-pair (the locations in the pair are 

specified in the vector u) as below

f X; u, L, N = f 1 X; u, L, N + f 2 X; u, L, N

= v(X − 1)XTuT 2 + u * sign (X − 1)XTuT

(9)

The minimum possible value that f can take is −2.

For location invariance to be achieved, the function f should be minimized for each pair of 

locations at which competing stimuli can be placed. In other words, f should be minimized 

for all possible permutations of vector u. This can be written mathematically as

f (X; u, L, N) = tr V(X − 1)XTUT . * V(X − 1)XTUT + tr U * sign (X − 1)XTUT (10)

where U is the permutation matrix of vector u (thus rows of U contain all possible location-

pairs). V is the corresponding permutation matrix of vector v. tr(Y) refers to the trace (sum 

of all the diagonal elements) of the matrix Y. Y.*Z is the Hadamard (element-wise) product 

between the matrices Y and Z and sign(Y) is a matrix obtained by applying the element-wise 

sign operator to the matrix Y.
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Because there are Lc2 possible location-pairs (corresponding to the Lc2 permutations of the 

vector a), the minimum value that f can achieve is 2*Lc2 = -L(L-1). Thus, selection is solved 

at all location-pairs in our optimization model if and only if the cost function converges to 

the lowest possible value of –L(L-1).

We add two constraints to this optimization scheme. First, we code the RFs of all the model 

neurons with ones (inside RF) and zeros (outside RF), a simplifying assumption (see “Model 

assumptions” section below for implications of this assumption). Second, we introduce a 

mechanism to limit the number of lobes in any model neuron to kmax. This is done so that, 

by setting kmax = 3, we would be able to match the experimentally observed constraint that 

there are no more than three RF lobes per Imc neuron. The first constraint is fed into the 

optimization problem as bounded integer constraints with bounds between 0 and 1 to make 

the RFs binary. The second constraint is implemented as an inequality constraint, written 

mathematically as

g( j) = kmax − 1L * X j ≥ 0, f or all j = 1, 2…N (11)

where 1L is a row vector of length L, and Xj is the jth column of X corresponding to the RF 

of the jth neuron. Additionally, we also test the model with kmax = 10 for some of the 

analyses reported in Figures 4, 5, and 7.

We solve the above nonlinear optimization problem with mixed constraints, an np-complete 

problem, using the ‘MIDACO’ solver in MATLAB (Schlueter et al., 2012).

Estimating N*:  N* is the smallest number of model neurons needed to solve selection at all 

location-pairs for a given L and kmax, i.e., the smallest N for which the minimum value of 

the objective function (-L(L-1)) can be successfully achieved. This was estimated as follows. 

For each value of N from 1 to L, we ran the optimization model 1000 times (1000 runs). 

Any given run was said to have converged to a solution if the value of cost function did not 

change for 1000 successive iterations (by setting the ‘evalstop’ criterion in the optimization 

code to 1000), thereby reaching an asymptotic value. The collection of model neuron RFs at 

convergence was called a ‘convergent solution’. Additionally, if the convergent solution 

attained the value of –L(L-1), then it was called an ‘optimal solution’. In other words, 

optimal solutions are ones that converged and additionally achieve stimulus selection at all 

location-pairs.

N* (for a given L and kmax) is, therefore, the smallest value of N for which at least one of 

the 1000 runs yielded an optimal solution, meaning that for N = N*−1, none of the 1000 

runs yielded a solution that successfully achieved selection across all L locations.

For instance, if kmax = 1 lobe, then for all L, N* = L (Figure 4A, blue data; consistent with 

theoretical calculation presented in the text surrounding Figure 3). If kmax = 3 lobes and L = 

5 elevations, all runs for all values of N from 1 to L yielded convergent solutions, but 

optimal solutions were produced only when N ≥ 4 (Figure S5A). More generally, if kmax > 1 

lobe, then for all L > 4, N* < L (Figure 4A; orange and black data).
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Range of kmax values chosen for various analyses (Figure 4A onward):  The specific 

values of kmax used in our simulations (Figures 4, 5, and 7) were 1, 3, and 10 lobes. The 

reasoning for this choice of values is described below.

kmax = 1 lobe corresponded to the null hypothesis of single-lobed RFs

kmax = 3 lobes represented Imc data (Figure 1L)

kmax = 10 lobes. (i) The range of elevations encoded by the OTid and the Imc is no greater 

than −60° to 60°, and (ii) Most individual RF-lobes have a half-max height ≥ 10° (10-

percentile value of half-max height of an individual RF lobe = 10° (Figure S3G). Therefore, 

the number of possible distinct lobes along elevation for RFs of typical Imc neurons ≤~10 

lobes ( = 120°/ (10°+ 2°); with the two added degrees representing 1°spacing on either side 

of a lobe to separate it from abutting ones.)

Model assumptions.: Our optimization model makes two key simplifying assumptions: (a) 

discretized (pixelated) spatial locations, and (b) binary (on or off) RFs of the model neurons. 

The former assumption can be readily reconciled with biology by making the pixel size 

sufficiently small. Therefore, this assumption does not result in loss of generality of the 

model. Second, the pattern of spatial inhibition sent to the OTid space map, the key 

computational function required of Imc in the model, is the spatial inverse of the RF: 

inhibition is sent to all locations except the ones inside the RF. In other words, the spatial 

pattern of inhibition is, by definition, a ‘binarized spatial inverse’ of the Imc RF, with the 

strength of delivered inhibition being proportional to the specific location within the 

continuous RF at which the stimulus is placed (Figures S4A and S4B). For the model, it is 

the pattern of inhibition that is critical, informationally speaking, rather than the variations in 

the strength of delivered inhibition based on the specific location within RF that a stimulus 

occupies (Figures S4A and S4B). (This is unlike population vector coding, where the 

specific values of firing rates within an RF are critical informationally (Georgopoulos et al., 

1986; Lee et al., 1988; Lewis and Kristan, 1998; Ma et al., 2006)). Therefore, the continuous 

RF can be binarized itself (say, at the half-max, or 75%-max level) without the qualitative 

conclusions of the model being affected (Figures S4A and S4B). Notably, despite these 

simplifying abstractions of the biology by the model, we found that predictions from the 

model held true experimentally (Figure 6), further revealing that the model captured 

sufficiently well the key computational principles at play in this circuit. Consequently, it was 

able to provide a compelling explanation for the unusual functional properties of Imc 

neurons, and illuminate the neural mechanisms by which this midbrain circuit solves 

stimulus selection at all location-pairs.

Characterizing signature properties of optimal model solutions, and testing 
them in experimental data (Figures 5 and 6)

The “multilobe property”(property #1)

Model.: For each optimal solution at each (L, kmax, N) tested, we examined if any of the 

model RFs were multilobed. A model RF was said to be multilobed if it had “on” pixels that 

were separated by “off” pixels; two adjacent “on” pixels were treated as one lobe. For 
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instance, in Figure 4B, neurons #2 and #4 have one lobe each. Neuron #1 has two RF lobes 

and neuron #2 has 3 RF lobes. These two neurons are multilobed. Thus, this optimal model 

solution is said to satisfy the “multilobe property.”

Data.: For each coronal Imc plane recorded, we examined if any of the neurons in that plane 

had multilobed RFs. Whether an RF was single or multilobed was determined using 

methods described in (and surrounding) Figure 1.

The “optimized lobe-overlap property ” (property #2)

Model.: A multilobed model neuron that shares each of its RF lobes, but not all, with 

another neuron is said to satisfy this property. If every neuron in a model solution satisfies 

this property, the model solution itself is said to satisfy the optimized lobe-overlap property. 

The fraction of model solutions satisfying this property for each (L, N*) is plotted in Figure 

5C (100%, in each case).

Data.: The set of neurons recorded within a given coronal plane, i.e., across all the recording 

sites along a dorsoventral penetration, is collectively a potential solution set for solving 

selection across all elevation pairs at that azimuth. (This is because of our finding that spatial 

azimuth is encoded topographically along the rostrocaudal axis of the Imc, and all the 

elevations at a given azimuth are encoded by the neurons in the coronal plane at the 

appropriate point along the rostrocaudal axis; Figures 2 and S3). A multilobe neuron that 

shares at least one of its RF lobes, but not all, with another neuron in the solution set is said 

to satisfy the experimentally testable version of the lobe-overlap property. To test this 

property in data, we first obtained the set of discrete elevational locations encoded by Imc 

neurons in a solution set (coronal plane). We did this by quantizing, at a resolution of 3° (to 

match theory and model; see main text related to Figure 3), the maximum elevation range 

encoded by their RFs combined. Next, an RF lobe of a multilobed Imc neuron was said to 

overlap with the RF of another neuron if there existed a location within the former’s half-

max extent that also lay within the half-max extent of the latter’s RF. The fraction of 

multilobed Imc RFs in each coronal plane that satisfy this testable version of the optimized 

lobe-overlap property is shown in Figure 6C. (This testable version of the lobe-overlap 

property was necessary because of the inherent infeasibility of recording from all Imc 

neurons in a coronal section, i.e., from all the neurons in a ‘solution set’. Specifically, the 

small mediolateral extent of the Imc (< 350 μm), coupled with the thickness of the electrode 

(250 μm) that was used to reliably target the deep Imc (~16 mm below brain surface), 

limited us to one dorsoventral penetration within a coronal section. This made recording 

from all Imc neurons in a given section unviable. The average # neurons recorded per 

section = 3.44 ± 0.47.

The “combinatorial” property (property #3)

“Assorted neural subset”feature.: Distant neurons are recruited to achieve selection for 

nearby locations, and nearby neurons are recruited to achieve selection for distant locations. 

To test for this feature, we divide the elevation range (L locations) into three parts, the upper 

L/3, middle L/3 and lower L/3 locations. Two locations are said to be ‘nearby’ if the distance 

between them is ≤ L/3, and ‘distant’ if the distance between them is ≥ 2L/3. Similarly, two 
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neurons are said to be nearby if the distance between them is ≤ (N-1)/ 3, and distant, if their 

distance is ≥ 2(N-1)/3. We then ask if distant neurons are recruited for a nearby location-pair 

(LP), and vice-versa. Since there is no meaningful functional ordering of multilobe neurons 

owing to the lack of topography in the encoding of elevation, we must test these questions 

across permutations of the ordering of Imc neurons within a solution.

Model.: First, we tested if distant neurons are recruited for a nearby location-pair. We did so 

by computing the following metric (Equation 12) for each (L, N*) (Figures 5E and 5F).

d (nearby LP) = min
solutions

min
permutations

max
nearby LP

(d) (12)

Here, ‘d’ is the maximum distance between the neurons recruited for solving selection for a 

given nearby location-pair in a given solution. The maximum of this across all nearby 

location-pairs yields the farthest distance between neurons recruited to solve selection for 

any nearby location-pair. The minimum of this value across permutations of neurons in the 

solution, and across all solutions, yields d (nearby LP) for that (L, N*).

For L = 5 (N* = 4), we tested this exhaustively for all possible permutations ( = factorial(4)). 
However, for L = 20 (N* = 14) and L = 40 (N* = 27), the number of permutations is very 

large (14! = 8.7 ×1010 and 27! = 1.08 3 1028). Because it was infeasible to test all possible 

permutations in these cases, we tested a subset of permutations (n = 1000) that was selected 

randomly from the set of all the possible permutations using the ‘randperm’ function in 

MATLAB.

For each (L, N*), we calculated the normalized minimum distance between neurons 

recruited for selection at distant location-pairs as shown in Equation 13, and plotted it in 

Figure 5F.

dnorm(nearby LP) =
d(nearby LP) − dmin

dmax − dmin
(13)

Here, dmax ( = N*−1) and dmin ( = 1) are the maximum and minimum possible distances 

between neurons in a solutions set consisting of N* neurons. We found that in every case, 

this normalized distance was high (> 0.66; the normalized cut-off value chosen for defining 

‘distant’ neurons).

Next, we tested if nearby neurons are recruited for a distant location-pair (Figures 5E and 

5G), using a metric constructed with a logic similar to that used above:

d (distant LP) = max
solutions

max
permutations

min
distant LP

(d) (14)
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dnorm(distant LP) =
d(distant LP) − dmin

dmax − dmin
(15)

For each (L, N*), we calculated the normalized maximum distance between neurons 

recruited for selection at distant LPs (Equation 15), and plotted the results in Figure 5G. We 

found that in every case, this normalized distance was small (< 0.33; the normalized cut-off 

value chosen for defining ‘nearby’ neurons).

Data.: For Imc neurons in each solution set (coronal plane), we obtained the range of 

discretized elevation values encoded as before (resolution of 3°), and then calculated the 

normalized minimum distance between nearby neurons and the normalized maximum 

distance between distant neurons using the Equations 13 and 15 above. Note that for the 

notions of nearby neurons and distant neurons, there need to be at least 3 neurons in the 

solution set so that the maximum distance is 2 and the minimum distance is 1. Out of 14 

coronal planes that contained multilobe neurons, 8 had ≥ 3 neurons. The results from these 8 

planes are plotted in Figure 6F.

(B) “Extensive intersection”feature.: Location-pairs occupying distant portions of space 

recruit shared neurons to solve selection at each pair. Two location-pairs are said occupy 

distant portions of (elevational) space if one location-pair lies within the upper third of the 

locations (upper L/3) and the other lies within the lower third of the locations (lower L/3). 

Since intersection between the neural subsets is independent of the ordering of the neurons, 

we do not need to test this for all permutations of neuron orderings.

Model.: For every optimal solution at a given (L, N*), we tested if there existed two 

location-pairs (a ‘doublet’) occupying distant portions of space such that the neural subsets 

recruited to solve selection at each location-pair shared at least one neuron. The fraction of 

optimal solutions that satisfied this property is plotted as a function of (L, N*) in Figure 5I; 

the fraction is uniformly 100%.

Data.: For Imc neurons in each solution set (coronal plane), we obtained the range of 

discretized elevation values encoded as before (resolution of 3°). We then tested if these 

neurons satisfied the extensive-intersection property as described for the model. Of the 14 

coronal planes at which neurons were recorded, in 6 cases, the encoded locations included 

two location-pairs that occupied distant locations. The fraction of these 6 coronal planes that 

satisfied the extensive intersection property is shown in Figure 6G (100%).

Wiring and metabolic costs in the Imc-OT circuit for implementing selection at 
all location-pairs (Figure 7)

Wiring cost: The wiring cost incurred by the Imc to implement selection at all location-

pairs is estimated as the cost of generating axonal projections (‘wires’) between each Imc 

neuron and each of its target OTid neurons. This cost depends both on the number of 

locations that each neuron must suppress and the number of neurons in the population. 
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Assuming that the lengths of wires from Imc to each OTid neuron is approximately equal 

(say 1 unit each, without loss of generality), we can estimate the total wiring length and 

consequently the total wiring cost using Equation 16 below (see Chen et al., 2006).

Wiring Cost L, N*, kmax = ∑
i = 1

N*
( # Locations suppressed by neuron i) ∧ p (16)

The summation is the total wiring length of all the wires from the Imc neurons to the OTid 

population. ‘p’ is a power term such that typically 1 < p < 4 (see Chen et al., 2006). This 

quantity is computed for each optimal solution (obtained over the 1000 runs) for a given (L, 

N*, kmax) triplet, and the results are plotted in Figure 7A.

Metabolic cost: The metabolic cost incurred by the Imc to implement selection at all 

location-pairs is estimated as the cost of generating and broadcasting spikes to the OTid to 

achieve competitive suppression. This depends on the number of neurons activated by a 

stimulus at each of the L locations, as well as the number of OTid locations to which each 

activated neuron delivers inhibition. If the cost of suppressing one OTid location using 1 

spike is 1 unit, then the total metabolic cost for the circuit for a given firing rate f is given by 

Equation 17 below (using a similar formula as for wiring cost).

Metabolic cost L, N*, kmax, f = f
L ∑

j = 1

L
∑
i = 1

N*
( # Locations suppressed by neuron i when

stimulus is placed at location) ∧ q

(17)

Note that when the stimulus is placed at location j, the term in the inner summation is non-

zero only for activated neurons. ‘q’ is a power term chosen such that 1 < q < 4 (similar to the 

wiring cost). This quantity is computed for each optimal solution (obtained over the 1000 

model runs) for a given (L, N*, kmax, f = 10 Hz), and the results plotted in Figure 7B.

Total cost: The total cost for any solution is calculated as a weighted combination of the 

wiring cost (weight = α) and the metabolic cost (weight = β) as given in Equation 18 below.

Total cost L, N*, kmax, f = α * Wiring cost L, N*, k
max

+ β * Metabolic cost L, N*, kmax, f

(18)

Therefore, there are five parameters (α; p; β; q and f) in the computation of the total cost. 

The results are plotted for α= 20; p = 2:5;β= 80; q = 2:42 and for firing rates of f = 10 Hz 

(thin black line) and f = 80 Hz (thick black line) in Figure 7C.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were carried out with custom MATLAB code. Parametric or non-parametric 

statistical tests were applied based on whether the distributions being compared were 

Gaussian or not, respectively (Lilliefors test of normality). The Holm-Bonferroni correction 

was used to account for multiple comparisons. Data shown as a ± b refer to mean ± s.e.m, 

unless specified otherwise. The ‘*’ symbol indicates significance at the 0.05 level (after 

corrections for multiple comparisons, if applicable). Correlations between RF centers 

(azimuth) and electrode measurement positions (rostrocaudal/ dorsoventral) were tested 

using Spearman’s rank correlation coefficient (corr command in MATLAB with the 

Spearman option).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Imc, a midbrain inhibitory nucleus, encodes visual space with multilobed RFs

• Such coding of space by the owl Imc is necessitated by scarcity of Imc 

neurons

• It results in combinatorially optimized inhibition for stimulus selection

• This solves stimulus selection at all location pairs while minimizing neural 

costs
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Figure 1. Visual Receptive Fields of Imc Neurons Have Multiple Distinct Response Fields (Lobes)
(A) 2D visual receptive field (RF) of Imc neuron: raster plot of neuron’s responses to visual 

stimulus presented at different spatial locations. Inset top: gray line, stimulus onset; red 

lines, time window used to calculate firing rate; evoked firing rates in Imc were high 

(median, 76.5 Hz; n = 114 neurons). Inset bottom: average spike waveform for neuron in 

(A); identified as high-quality unit (STAR Methods); mean (black) ± SD (gray).

(B) Color-coded firing rate map corresponding to (A).

(C) Rate map in (B) re-plotted as distribution of points in a 2D plane and subjected to spatial 

clustering (STAR Methods). Shown are the best single (top left), best two (top right), and 

best three clusters (bottom left) fitted to the data using the density peaks clustering method 

(Rodriguez and Laio, 2014) (Figure S2C; STAR Methods). Bottom right: plot of GAP 

statistic, a robust model selection metric, against the number of clusters (k) fitted to data 

(Tibshirani et al., 2001) (STAR Methods). Red point: statistically optimal number of clusters 

(k*), identified as the smallest k for which GAP exceeds zero; here k* = 2 (STAR Methods) 

(Tibshirani et al., 2001).

(D) Half-max extents of these two optimal RF clusters (lobes).

(E–H) Same as (A)–(D), but for a different Imc neuron.

(I) Plot of p values (logarithmic scale) obtained from separability testing for each sorted 

unit; one-way ANOVA followed by correction for multiple comparisons(STAR Methods). p 

value < 0.05 (blue data): units that are deemed “well separated” from co-recorded units as 

well as outliers (n = 114). Red data: units not well separated form cohort.
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(J) Effect of neuronal response variability and spatial sampling step size on number of RF 

lobes detected in a simulated single-lobed RF; Monte Carlo analysis(Figure S2G; STAR 

Methods). Red area: Fano factor and step size pairs yielding >5% rate of misidentifying 

single-lobed RF as multilobed. Blue data: experimentally recorded Imc neurons (n = 114).

(K) Summary of number of RF lobes across 69 OT neurons. See also Figures S1 and S2.

(L) Summary of number of RF lobes across 114 Imc neurons.
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Figure 2. RF Lobes of Multilobe Imc Neurons Are Distributed along Elevation but Not Azimuth, 
and RFs Are Organized Topographically in Azimuth, but Not Elevation
(A) Histograms of pairwise distance between centers of RF lobes of individual multilobed 

neurons (STAR Methods). Blue: azimuthal distance; red: elevational distance; marked range: 

5th to 95th percentile range of red data; large range indicates arbitrary spacing of RF lobes. 

Arrows: median values; *: median significantly different from 0 (p = 0.17, azimuth; p < 

0.05, elevation; one-tailed rank sum tests). Inset: histogram of maximum elevational distance 

between centers of RF lobes of an individual multilobed neuron. Arrow: median value; 

significantly different from 0 (p < 0.05, one-tailed rank sum test); large median indicates 

widely distributed RF lobes.

(B)Histograms of maximum distances between centers of RF lobes of multilobed neurons 

sorted from individual recording sites (STAR Methods); conventions as in (A); p = 0.65 for 

azimuth; one-tailed rank sum test, p < 0.05 for elevation; one-tailed t test.

(C) Plot of average azimuthal center of a recording site against the dorsoventral position of 

the site within the Imc (STAR Methods); colors: different penetrations. Inset: data re-plotted 

as histogram of pairwise differences in the azimuthal centers of recording sites along a 

dorsoventral penetration (p = 0.18, one-tailed rank sum test). (D) Plot of average azimuthal 

“center” of a dorsoventral penetration against the rostrocaudal position of electrode in the 

Imc in that recording session (STAR Methods). Colors: different recording sessions; 

Spearman correlation = 1 in each case. See also Figure S3.
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Figure 3. Imc Encodes Elevations with a Sparse Number of Neurons
(A) Coronal section of owl midbrain showing Imc and OT.

(B) Zoomed-in image showing individual, Nissl-stained, Imc somata (arrow-heads); 22 

somata in this section. The zoomed-in image was obtained by stitching 5 images (each taken 

at 40× magnification) with overlapping fields of view at the edges.

(C) Violin plot showing number of Imc somata per coronal section; each dot,one section; n = 

64 sections across two owls. Dashed line: median (26 neurons); solid line: 75th percentile 

(28 neurons).
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Figure 4. Example Optimal Solution from Model Illustrates Stimulus Selection at All Location 
Pairs with an Under-Complete Set of Neurons
(A) Summary plot showing the fewest number of neurons (N*) needed by model to solve 

selection across all locations for different numbers of locations (L) (Figure S5A; STAR 

Methods). kmax: maximum number of RF lobes allowed for each neuron (STAR Methods).

(B–D) Illustration of selection at all possible location pairs by an optimal model solution for 

L = 5 locations (numbered a–e) and N = 4 neurons (numbered #1–#4).

(B) The four RFs in the optimal solution. Shaded areas: RF of neuron; two neurons have 

multilobed RFs (#1, two lobes; #3, three lobes).

(C) Optimal solution in (B) implements selection between stimuli Sa and Sb at location pair 

ab (extreme left). Sa and Sb are of equal priority (1 unit for simplicity). Top row: information 

flow through the model OT10-Imc-OTid circuit triggered by Sa. First column: activation of 

OT10 space map. Second column: activation of individual Imc neurons. Third column: 

suppression pattern generated by each activated Imc neuron (spatial inverse of the neuron’s 

RF; consistent with published anatomical results; Figures S1B–S1E [Wang et al., 2004]). 

Fourth column: combined pattern of suppression in the OTid. Dark colors: 2 units of 

suppression; light colors: 1 unit (STAR Methods). Curved arrow: net suppression driven by 

Sa location b. Dark-gray shading: “activated” neuron (#2); defined as a neuron driven by Sa 

but that does not send inhibition to location b. Red shading: “recruited” neuron (#3); defined 

as activated neuron that sends inhibition to location b, thereby involved in selection for 

location pair ab. Bottom row: same as top row, but for stimulus Sb.

(D) Selection matrix summarizing implementation of selection at all location pairs by 

optimal model solution in (A). Columns: ten possible location pairs; rows: the four neurons. 

In each column: dark-gray, activated neurons; red, recruited neurons; blank, neurons not 

activated by either stimulus.

(E) Example optimal solution for (L, kmax, N*) = (40, 3, 27). Black pixels: locations inside 

neurons’ RF; white pixels, locations outside neurons’ RF.
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Figure 5. Model Solutions Reveal Combinatorially Optimized Inhibition Strategy for Stimulus 
Selection at All Location Pairs with an Under-Complete Set of Neurons
Quantification of signature properties of combinatorially optimized inhibition for optimal 

model solutions.

(A) Signature property #1 (multilobe neurons). Fraction of optimal model solutions that had 

multilobed Imc neurons for all (L, N*) pairs; orange bars, kmax = 3; black bars, kmax = 10.

(B–D) Signature property #2 (optimized lobe overlap; see text).

(B) Illustration of property for example optimal solution in Figure 4B. Top row: multilobe 

neuron #1 in Figure 4B shares upper, but not lower lobe with neuron #2, and shares lower, 

but not upper lobe with neurons #3 and #4. Bottom row: similar, but for multilobe neuron 

#3. (C) Fraction of optimal model solutions that satisfy the “optimized lobe overlap” 

property; conventions as in (A).

(D) Schematic illustrating need for the optimized lobe overlap property of multilobed Imc 

neurons. Shown is a two-lobed Imc neuron (middle). When stimuli Sa and Sb both occur 

within the RF of this “Imc” neuron (left), the resulting zone of suppression generated by this 

Imc neuron in the OTid would spare both stimuli (right); selection for this location pair 

would not be achievable by just this neuron.

(E–J) Signature property #3 (combinatorial inhibition; see text). (E–J) “Assortedness” 

feature.

(E)Illustration of this feature for example optimal solution in Figure 4B. Left panel: 

locations a–e. Right panel: patterns of neurons activated and recruited to solve selection for 
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indicated location pairs (LPs); extracted from selection matrix in Figure 4D. Location pair 

bc involves nearby locations (left panel), but recruits distant neurons to solve selection (right 

panel; #1 and #4; distance = 3, yielding normalized distance of 1, the largest possible value; 

STAR Methods); conversely, distant location pair ae recruits nearby neurons (#1 and #2; 

distance = 1, yielding normalized distance of 0, the smallest possible value; STAR 

Methods).

(F)Summary plot showing that distant neurons are recruited for selection at nearby locations. 

Plotted is the normalized distance between neurons recruited for solving selection at nearby 

locations, termed “min-max” distance. This is the minimum, taken across optimal solutions 

and their permutations, of the maximum normalized distance between neurons in a solution 

recruited for solving selection at nearby locations. Green dashed line: normalized distance 

cutoff to be exceeded for neurons to be termed “distant” (0.66; STAR Methods) and 

“nearby” neurons (magenta; 0.33; STAR Methods).

(G) Summary plot showing that nearby neurons are recruited for selection at distant 

locations. Plotted is the normalized distance between neurons recruited for solving selection 

at distant locations, termed “max-min” distance. This is the maximum, taken across optimal 

solutions and their permutations, of the minimum normalized distance between neurons in a 

solution recruited for solving selection at distant locations. Magenta dashed line: normalized 

distance cutoff to not be exceeded for neurons to be termed “nearby” (0.33; STAR Methods).

(H–J) “Extensive intersection” feature.

(H) Illustration of this feature for example optimal solution in Figure 4B: location pairs 

occupying distant portions of space (left panel) recruit intersecting neural subsets to solve 

selection (right panel; STAR Methods). See also Figures S5 and S6.

(I) Fraction of optimal model solutions that satisfy the extensive intersection feature (STAR 

Methods; conventions as in A).

(J) Lobes of neurons in model solutions were arbitrarily placed and widely spread. 

Histogram of pairwise distance between centers of RF lobes of individual multilobed 

neurons for a randomly selected model solution for (L, kmax, N*) = (40, 3, 27); marked 

range: 5th to 95th percentile range of red data; large range indicates arbitrary spacing of RF 

lobes. Inset: histogram of maximum distance between centers of RF lobes of a multilobed 

neuron, for the same model solution.Red arrows: median values; * medians significantly 

different from 0 (p < 0.001, one-tailed rank sum test); large median indicates widely 

distributed RF lobes.
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Figure 6. Experimental Validation of Combinatorially Optimized Inhibition in the Imc
(A) Signature property #1: pie chart summary of fraction of Imc coronal planes tested that 

contained multilobed neurons (87% = 14/16 planes; also Figures S3E and S3F).

(B and C) Signature property #2.

(B) Left: rate map of RF of another Imc neuron sorted from the same recording site as the 

neuron in Figures 1A–1D. (Only these two neurons were recorded in this Imc coronal 

plane.) Middle: half-max of RFs of neurons in Figure 1 (purple; reproduced from Figure 1D) 

and Figure 6B, left (orange). Right: for each neuron, the upper RF lobe, but not lower one, 

shows overlap, satisfying the testable lobe overlap property (see text); conventions as in 

Figure 5B.

(C)Fraction of multilobe neurons in each coronal plane satisfying the testable version of lobe 

overlap property; dot, coronal plane; median fraction = 1.

(D–F) Signature property #3.

(D)RFs (half-max) of all Imc neurons recorded within an example coronal plane. a–g are 

seven (discretized) spatial locations encoded by these neurons (STAR Methods).

(E) Selection matrix showing combinatorial activation of recorded neurons for selection at 

different location pairs; conventions as in Figure 4D.

(F) Two left panels: illustration of assortedness feature for example in (D); conventions as in 

Figure 5E (STAR Methods). Right: summary of this feature across Imc coronal planes; only 

those planes containing ≥ 3 Imc neurons each were testable (8/14; STAR Methods) Dashed 

lines: distance cutoffs for “distant” neurons (green; 0.66) and “nearby” neurons (magenta; 

0.33; STAR Methods). Filled circles: Imc coronal planes that satisfied these cutoff criteria; 

≥7/8 in each case (STAR Methods).(G) Left: illustration of “extensive intersection” feature 

for example in (D); conventions as in Figure 5H. Right: pie chart summary of this feature 

across coronal planes (100% exhibited the feature; 6/6). Note that this feature was testable 

only for those planes for which the recorded neurons encoded location pairs occupying 

distant portions of space (6/14; STAR Methods).
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Figure 7. Metabolic and Wiring Costs for Stimulus Selection at All Possible Location Pairs
(A) Wiring cost plotted as a function of the maximum number of Imc RF lobes allowed 

(kmax); calculated across optimal model solutions (STAR Methods). Values of kmax 

examined along x axis are particularly relevant to the Imc: kmax = 1 corresponds the single-

lobed case, kmax = 3 to the experimentally determined value in the owl Imc, and kmax = 10 

to the practical upper bound on the number of possible RF lobes (based on the functional 

properties of Imc neurons; STAR Methods and Figure 1L).

(B) Metabolic cost as a function of kmax (STAR Methods).

(C) Schematic showing total cost (weighted combination of A and B) for Imc circuit to solve 

selection at all location pairs for L = 40 at low average firing rates (thin line, 10 Hz), and 

high average firing rates (thick line, 80 Hz; STAR Methods); weights used for combining 

wiring and metabolic costs were identical for the low and high firing rate cases. Circled 

values along x axis (and corresponding large dots) indicate the optimal kmax values at the 

two firing rate levels. Results demonstrate left shift of optimal kmax with increasing firing 

rates (STAR Methods; the specific values of optimal kmax yielded by this analysis, and 

shown here, are incidental to the choice of the values of relative weights, and not particularly 

informative by themselves.) In all cases, mean ± SD values are plotted; SD values smaller 

than size of dots.
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