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Tissue fibrosis causes debilitating human diseases such as liver cirrhosis, heart failure,
chronic kidney disease and pulmonary insufficiency. It is a dynamic process orchestrated
by specific subsets of monocyte-macrophages, fibroblasts, pericytes and hepatic stellate
cells. Fibrosis is linked to tissue inflammation. Pro-inflammatory macrophages promote
fibrosis by driving myofibroblast differentiation and macrophage myofibroblast transition.
Myofibroblasts express α-smooth muscle cell actin (α-SMA) and secrete extracellular
matrix (ECM) proteins notably collagen I and III. Deposition of ECM proteins at injury sites
and interstitial tissues distorts normal structure and impairs vital functions. Despite
advances in the mechanisms of fibrosis at cellular, molecular and genetic levels,
prevention and treatment of fibrotic diseases remain poorly developed. Recent reports
suggest that 5-methoxytryptophan (5-MTP) is effective in attenuating injury-induced liver,
kidney, cardiac and pulmonary fibrosis. It inhibits macrophage activation and blocks
fibroblast differentiation to myofibroblasts. Furthermore, it inhibits hepatic stellate cell
differentiation into myofibroblasts. As 5-MTP is an endogenous molecule derived from
tryptophan catabolism via tryptophan hydroxylase pathway, it is well-suited as a lead
compound for developing new anti-fibrotic drugs. This article provides an overview of 5-
MTP synthesis, and a critical review of its anti-fibrotic activities. Its mechanisms of actions
and potential therapeutic value will be discussed.
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INTRODUCTION

Fibrous deposition at the injured tissue is a fundamental repair process (Eming et al., 2014).
However, uncontrolled fibrous deposition at the injured and normal interstitial tissues leads to
structural remodeling and functional defects (Henderson et al., 2020). Fibrosis of diverse human
organs including liver, heart, kidney and lung causes debilitating diseases with considerable
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morbidity and mortality. Fibrosis was previously considered to be
a passive event. Recent studies with cellular tracking, gene
expression profiling and single cell analysis shed lights on the
dynamic nature of fibrosis (Wynn and Vannella, 2016). Tissue
injury by diverse insults leads to recruitment of pro-inflammatory
and pro-fibrotic cells to the injury sites where they undergo
phenotypic, transcriptional and metabolic changes to promote
fibroblast differentiation into myofibroblasts (Gibb et al., 2020).
Myofibroblasts express α-smooth muscle actin (α-SMA) and
secrete extracellular matrix (ECM) proteins notably collagen I
and III and fibronectin (Gibb et al., 2020). ECM proteins deposit
at the injured sites and the adjacent interstitial space and distort
normal structure and impair organ function. Extensive
investigations of the pathological features and molecular
mechanisms of fibrosis have shown that despite distinct
structural and functional characteristic of the vital organs,
fibrosis of liver, heart, kidney and lung shares common
pathological, cellular and molecular features. Inflammation is a
common hallmark of fibrotic disorders. In fact, fibrosis occurs in
inflammatory microenvironment which is enriched with
macrophage infiltration (Misharin et al., 2017). Macrophages
release myriad pro-inflammatory cytokines and chemokines to
elicit inflammatory responses and cause tissue damage.
Furthermore, they crosstalk with fibroblasts and promote
fibroblasts differentiation to myofibroblasts (Karlmark et al.,
2009; Murray et al., 2011; Tang et al., 2019; Zhang F. et al.,
2020). Macrophages may be transdifferentiated into
myofibroblasts through macrophage myofibroblast transition
(MMT) (Murray et al., 2011).

Under normal conditions, resident fibroblasts are quiescent.
Upon activation by factors released during tissue injury, they
undergo phenotypic switch accompanied by metabolic and
transcriptional reprogramming (Gibb et al., 2020). They are
the major source of myofibroblasts and the key effector of
organ fibrosis. Advances in single cell analytic techniques
coupled with RNA sequencing and transcriptomes, have shed
lights on heterogeneity of resident fibroblasts in various organs
and the involvement of a subset of fibroblasts destined to be
differentiated into myofibroblasts (Dobie et al., 2019; Krenkel
et al., 2019; Ramachandran et al., 2019; Reyfman et al., 2019).
Recent studies using single cell analytic techniques to explore the
fibroblast mystery identities a common principle of pathological
fibrosis: activation of a selective group of fibroblasts which
undergo progressive transcriptional reprogramming and step-
wise differentiation into myofibroblasts to generate fibrosis.

Despite molecular and cellular advances in the understanding
of fibrosis, there is a gap in prevention and treatment of this
devastating human disorder. Several recent reports suggest that 5-
methoxytryptophan (5-MTP) is effective in attenuating cardiac,
renal, hepatic and pulmonary fibrosis in animal models
(Figure 1). 5-MTP was discovered in Wu’s laboratory as a
cyclooxygenase-2 (COX-2) suppressing factor (Deng et al.,
2002). It was originally named cytoguardin as it was thought
to protect tissues from inflammatory damage (Deng et al., 2002;
Wu, 2021). Metabolomic analysis coupled with genetic
approaches identified cytoguardin as a tryptophan (Trp)
metabolite, 5-MTP (Cheng et al., 2012). 5-MTP was shown to

be derived from the tryptophan hydroxylase (TPH) pathway
(Cheng et al., 2012). It is produced in fibroblasts, vascular
endothelial cells (ECs) and smooth muscle cells, renal and
bronchial epithelial cells (Wang et al., 2016). Vascular EC
releases 5-MTP into the extracellular milieu via Golgi vesicular
trafficking (Wang et al., 2016), and is a major cellular source of
blood 5-MTP. 5-MTP was reported to protect endothelial barrier
function, control endothelial expression of adhesion molecules
and inhibit monocyte/macrophage transmigration (Chu et al.,
2016; Wang et al., 2016). Furthermore, 5-MTP inhibits
macrophage activation and blocks macrophage release of pro-
inflammatory cytokines and chemokines and expression of COX-
2 (Wang et al., 2016). These findings indicate that 5-MTP is an
innate anti-inflammatory molecule (Wu et al., 2020). As vascular
EC is a major cellular source of circulating 5-MTP, 5-MTP is
considered to be a new endothelial arsenal against inflammation
(Durán and Sánchez, 2016). In view of its efficacy in controlling
myofibroblast differentiation and pathological fibrosis in vital
organs, 5-MTP has the potential to fulfill the therapeutic gap. The
purpose of this paper is to review the anti-fibrotic and anti-
inflammatory actions of 5-MTP and comment on the
mechanisms of actions and the use of 5-MTP as a lead
compound in developing new anti-fibrotic drugs.

5-MTP BIOSYNTHESIS IS CATALYZED BY
TPH-1 AND HYDROXYINDOLE
O-METHYLTRANSFERASE (HIOMT)
5-MTP is produced from Trp via two enzymatic steps: TPH
catalyzes the conversion of Trp to 5-hydroxytryptophan (5-HTP)
and HIOMT, conversion of 5-HTP to 5-MTP (Cheng et al., 2012)
(Figure 1). With respect to TPH, two isoforms were identified

FIGURE 1 | 5-MTP synthetic pathway and its inhibition by injury.
Ischemia and inflammatory mediators suppress 5-MTP production by
downregulating TPH-1 expression. 5-MTP suppression contributes to tissue
inflammation and fibrosis. Administration of 5-MTP was reported to
control fibrosis in vital organs.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7591992

Wu 5-MTP Controls Fibrosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


and characterized (Boularand et al., 1990; Walther et al., 2003).
TPH-2 is expressed in neuronal and pineal cells while TPH-1 is
expressed in peripheral tissues. 5-MTP producing cells such as
fibroblasts and vascular endothelial cells express only TPH-1. As
knockdown of TPH-1 with siRNA abrogates 5-MTP production
in fibroblasts, TPH-1 is the isoform catalyzing 5-MTP production
(Cheng et al., 2012). Examination of TPH-1 deleted mice has
linked TPH-1 to cardiac function: genetic deletion of TPH-1 leads
to cardiac failure in mice (Côté et al., 2003). Polymorphism of
TPH-1 was identified in humans which was considered to be
linked to cardiac dysfunction (Lai et al., 2005). However, there has
not been reports directly linking TPH-1 polymorphism to cardiac
fibrosis or functional impairment. By contrast, it has been
reported that TPH-1 expression is suppressed by pro-
inflammatory cytokines which results in reduced 5-MTP
production and endothelial dysfunction (Wang et al., 2016;
Chu et al., 2016). Furthermore, TPH-1 expression was
suppressed in ischemic cardiac and renal tissues which was
associated with decreased 5-MTP level, cardiac inflammation and
fibrosis and functional impairment (Chen CH. et al., 2019; Hsu et al.,
2021) (Figure 1). Thus, TPH-1 defends against inflammation,
fibrosis and tissue damage via 5-MTP production. HIOMT was
originally detected in pineal cells as the final enzymatic step in
melatonin synthesis (Axelrod and Weissbach, 1960, 1961). As it
catalyzes conversion of N-acetylserotonin to N-acetyl-5-
methoxytryptamine (melatonin), it is also called acetylserotonin
O-methyltransferase (ASMT). ASMT is a single gene product but
three mRNA isoforms due to alternative splicing were detected in
pineal cells (Rodriquez et al., 1994; Donohue et al., 1993). Isoform
345 was reported to be the active isoform in melatonin synthesis
(Botros et al., 2013). 5-MTP producing cells express only ASMT298
isoform which was reported to be catalytically active in 5-MTP
synthesis (Chen et al., 2018). ASMT contains polymorphism in the
promoter region which affects ASMT expression and was reported
to be a risk factor of autism spectrum disorders (Melke et al., 2008).
Several exonmutations affectingASMT activity were reportedwhich
may be associated with sleep disorder (Pagan et al., 2011).
Association of ASMT polymorphism/mutation with tissue fibrosis
has not been reported. Further work to characterize the relationship
may yield valuable information regarding the roles of TPH-1 and
HIOMT in inflammation and fibrosis.

5-MTP CONTROLS SYSTEMIC
INFLAMMATION

5-MTP defends against systemic inflammation as reported in a
LPS-induced sepsis murine model (Wang et al., 2016). Mice
receiving LPS injection develop symptoms and signs
mimicking human sepsis. They exhibit surge of circulating
cytokines and chemokines (“cytokine storm”), which is
accompanied by macrophage infiltration in multiple organs.
The infiltrated macrophages express COX-2 and inducible
nitric oxide synthase (iNOS) and release abundant cytokines
and chemokines. Activated macrophages are responsible not
only for organ inflammation but also for cytokine storm.
Wang et al. were the first to report that intraperitoneal

administration of 5-MTP blocks macrophage expression of
COX-2 and release of cytokines in LPS-treated mice. It
attenuates macrophage accumulation in lungs and reduces
inflammatory response in spleen (Wang et al., 2016).
Importantly, it ameliorates sepsis manifestations and reduces
sepsis-mediated mortality (Wang et al., 2016).

5-MTP exerts anti-inflammatory effects by targeting activated
macrophages. Furthermore, in vitro and in vivo studies suggest that
5-MTP controls macrophage activation by inhibiting p38 MAPK-
mediated NF-κB activation (Wang et al., 2016). It has also been
reported that 5-MTP inhibits transcription co-activator p300
binding and histone acetyltransferase (HAT) activity (Chen et al.,
2012; Wang et al., 2016). p300 is a master mediator of pro-
inflammatory gene expression (Grunstein, 1997; Goodman and
Smolik, 2000; Thompson et al., 2004). It binds to promoter-
bound transactivators and bridges this message with
transcriptional machinery (Grunstein, 1997; Goodman and
Smolik, 2000; Thompson et al., 2004). p300 HAT acetylates
histone to open up chromatin structure thereby facilitating
transactivator binding (Grunstein, 1997; Goodman and Smolik,
2000; Thompson et al., 2004). It acetylates a large group of
transactivators to promote their transcriptional activation of pro-
inflammatory genes including COX-2, iNOS and pro-inflammatory
cytokines and chemokines (Deng et al., 2003; Deng et al., 2004).
Thus, by interfering with p300 binding and p300 HAT activity, 5-
MTP is effective in inhibiting the activity of key transactivators such
as NF-κB, C/EBPβ, AP-1 and CREB and attenuating expression of
pro-inflammatory genes mediated by those transactivators.

5-MTP PROTECTS AGAINST
POST-INFARCT MYOCARDIAL FIBROSIS

Following coronary artery occlusion, ischemia and/or ischemia-
reperfusion injury induces cardiomyocyte necrosis and apoptosis
(Cheng et al., 1996; Olivetti et al., 1996). The damaged cells
release chemotactic factors such as CXCL2 and CCL2 which
recruit blood monocytes to the injured sites (Deshmane et al.,
2009; Guo et al., 2020). Monocytes are differentiated into
macrophages, which along with resident macrophages infiltrate
the injured and adjacent normal tissues and elicit inflammatory
responses. They crosstalk with fibroblasts and induce
myofibroblast differentiation. Myofibroblasts drive cardiac
fibrosis by release of collagen and an array of extracellular
matrix proteins (van den Borne et al., 2010; Kramann et al.,
2013; Duffield et al., 2013). Macrophage-mediated inflammatory
tissue damage and myocardial fibrosis are cardinal
pathophysiological processes causing post-MI myocardial
structural changes, functional impairment and heart failure
(Prabhu and Frangogiannis, 2016; Talman and Ruskoaho,
2016; Kingery et al., 2017; Bernard et al., 2018). Hsu et al.
have recently reported that intraperitoneal administration of
5-MTP in a left anterior descending artery occlusion (LAD)
rat model (De Villiers and Riley, 2020) reduces macrophage
infiltration, attenuates myocardial fibrosis and preserves
ventricular structure and function (Hsu et al., 2021). They first
determined route, timing and doses of 5-MTP administration,
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and found that administration of two doses of 5-MTP at 17 mg/kg
within 24 h after LAD occlusion optimally reduced inflammation
and fibrosis and preserved structural integrity and ventricular
function (Hsu et al., 2021). Additional dosing after the
24 h-window did not provide additional advantage. At 48 h
after LAD occlusion, there was a significant reduction of
macrophages in the infarct and peri-infarct areas in 5-MTP-
treated rats when compared to control rats (Hsu et al., 2021).
Furthermore, expression of IL-1β, IL-6, IL-18, CCL2, CXCL2 and
CXCL10 was significantly lower in 5-MTP treated than in control
rats (Hsu et al., 2021). At day 28 after LAD occlusion, extensive
transmural fibrosis and interstitial fibrosis developed which was
accompanied by structural remodeling. Intraperitoneal 5-MTP
administration within 24 h of LAD occlusion attenuated
cardiomyocyte apoptosis and infarct volume and improved left
ventricular function accompanied by reduced fibrosis and
transmural scar in the left ventricular region. TGFβ, a master
mediator of fibrosis (Leask and Abraham, 2004; Bernard et al.,
2018) was increased in infarct zone as a result of macrophage
infiltration. Macrophage iNOS expression which was increased in
the infarct zone has been implicated in myocardial fibrosis and
heart failure (Chen CH. et al., 2019). 5-MTP was shown to reduce
TGFβ level and attenuate iNOS expression in macrophages at the
infarct zone (Hsu et al., 2021). These findings suggest that 5-MTP
prevents post-MI myocardial fibrosis by controlling ROS

generation, inhibiting macrophage activation and suppressing
pro-fibrotic gene expression (Figure 2).

5-MTP DEFENDS KIDNEYS AGAINST
URETHRAL OBSTRUCTION-INDUCED
FIBROSIS
Metabolomic analysis of serum metabolites in chronic kidney
diseases identified 5-MTP as a major metabolite which is
inversely associated with progression of kidney diseases (Chen
DQ. et al., 2019). In experimental animal models such as
unilateral urethral obstruction (UUO) murine model, renal
production of 5-MTP was reported to be reduced
accompanied by progressive renal damage leading to renal
fibrosis and functional impairment. Urethral obstruction elicits
renal inflammation and inflammation-mediated tissue damage
and fibrosis. It has been shown that renal tubular epithelial cells
produce 5-MTP (Wang et al., 2016). It is possible that decrease of
renal 5-MTP production following UUO is due to suppression of
renal tubular cell TPH-1. Chen et al. reported that intraperitoneal
administration of 5-MTP rescues kidney from UUO-induced
renal inflammation and fibrosis (Chen CH. et al., 2019). 5-MTP
administration reduced macrophage infiltration and pro-
inflammatory gene expression. 5-MTP downregulated

FIGURE 2 | Highlight of the potential mechanisms by which 5-MTP inhibits cardiac fibrosis. 5-MTP exerts cellular actions by ① scavenging ROS and reducing
apoptosis; ② blocking macrophage secretion of TGFβ and other pro-fibrotic factors and ③ reducing myofibroblasts.
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expression of pro-fibrotic genes suggesting that 5-MTP prevents
myofibroblast differentiation in injured kidneys. In vitro epithelial
cell experiments reveal that TGFβ and LPS induce expression of
pro-fibrotic factors accompanied by suppression of TPH-1
expression and 5-MTP production. Pretreatment with 5-MTP
rescues renal epithelial cells from TGF-β- and LPS-induced pro-
inflammatory and pro-fibrotic phenotypic switch. Furthermore, 5-
MTP blocks NF-κB activation induced by LPS. TPH-1
overexpression in renal epithelial cells restores 5-MTP
production and renders epithelial cells resistant to LPS- and
TGFβ-induced pro-fibrotic and pro-inflammatory changes.
Renal ischemia-reperfusion injury results in chronic
inflammatory and profibrotic pathophysiological changes
resembling ischemia-reperfusion injury to the heart. 5-MTP
attenuates ischemia-reperfusion induced renal inflammation and
fibrosis in a fashion similar to protection of heart from
inflammatory tissue damage and fibrosis (Chen DQ. et al., 2019).

Following UUO or ischemia-reperfusion injury, several cell
types were considered to be the source of myofibroblasts
(Duffield, 2014; Wouters et al., 2015). Recent studies using
single cell RNA sequencing and spatial transcriptomics, have
shown that myofibroblasts are derived from resident fibroblasts
and pericytes (Kuppe et al., 2021). It remains to be investigated
whether 5-MTP has a direct effect on the fibrogenic cells.

5-MTP SUPPRESSES HEPATIC STELLATE
CELL ACTIVATION AND
TRANSDIFFERENTIATION
Uncontrolled liver fibrosis leads to debilitating liver cirrhosis and
liver failure. Liver fibrosis is a common pathological event
induced by viral infections, chronic alcoholism, non-alcoholic
liver disease and non-alcoholic steatohepatitis. These
pathophysiological conditions are associated with release of
myriad factors to activate HSCs (Tsuchida and Friedman,
2017). HSCs are localized at the junction of sinusoid
endothelial cells and hepatocytes. They represent a major cell
type in liver: approximately 10% of liver cells are HSCs. At resting
state, they are quiescent. Upon liver injury, damaged hepatocytes
release pro-fibrotic factors and generate ROS and damage-
associated molecular patterns (DAMP), which activate HSCs
and induce their differentiation into myofibroblasts (Du et al.,
2018; Khomich et al., 2019; An et al., 2020). It has been shown
that activated HSCs exhibit major changes in energy metabolism
shifting from oxidative phosphorylation to aerobic glycolysis and
glutaminolysis (Du et al., 2018; Khomich et al., 2019).
Mitochondrial TCA cycle is interrupted and metabolites such
as succinate are accumulated and released. Extracellular succinate
induces HSC differentiation through binding to a specific
succinate receptor, SUCNR-1 (also known as GPR91) (Li
et al., 2015; Li et al., 2016; Cho, 2018).

5-MTP was reported to attenuate CCl4-induced liver cirrhosis
in a murine model. 5-MTP at a relatively low dose (5 mg/kg twice
weekly for 8 weeks) was effective in reducing α-SMA expressing
cells and attenuating liver fibrosis (Tong et al., 2021). In the
in vitro experiments with cultured HSC, LX-2 cells, 5-MTP

suppressed TGFβ-induced expression α-SMA, fibronectin,
collagen I and III, suggesting that 5-MTP may block
differentiation of HSCs into myofibroblasts. Tong et al. have
shown that 5-MTP blocks the pro-fibrotic property of HSC by
regulating FOXO3a/miR21/ATG5 pathway (Tong et al., 2021).
They have provided experimental evidence that miR21 binds and
inhibits ATG5 and thereby controls autophagy. FOXO3a inhibits
miR21 expression and restores ATG5 for participation in
autophagy. Autophagy was reported to reduce hepatic fibrosis
(Zhu et al., 1999; Hidvegi et al., 2010). However, other reports
suggest autophagy activates HSC and promotes hepatic fibrosis
(Hernández-Gea et al., 2012). The complex role of autophagy in
hepatic fibrosis may be due to different cell types, stimuli and
experimental conditions (Mao and Fan, 2015; Li et al., 2020). By
using genetic knockdown and pharmacological inhibition, Tong
et al have shown that 5-MTP inhibits HSC proliferation and
differentiation by upregulating FOXO3a and restoration of
autophagy. This observation was consistent with previous
reports that 5-MTP prevents mesenchymal stromal cell (MSC)
senescence by upregulation of FOXO3 (Chang et al., 2017) and
that FOXO3 plays a pivotal role in controlling fibrosis (Al-Tamari
et al., 2018). Taken together, the reported findings suggest that 5-
MTP attenuates liver fibrosis by upregulating FOXO3a (Figure 3)
and the consequent suppression of miR21 expression. It is to be
noted that effective 5-MTP concentrations to prevent MSC

FIGURE 3 | Schematic illustration of the effect of 5-MTP on attenuating
HSC differentiation to myofibroblasts via FOXO3a upregulation. FOXO3a was
reported to suppress miR21 expression and thereby restore ATG5 and ATG5-
mediated autophagy.
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senescence are one to two orders of magnitude higher than those
used in blocking HSC activation and differentiation. Further
studies are needed to clarify the dosing difference.

5-MTP INHIBITS BLEOMYCIN-INDUCED
PULMONARY FIBROSIS

Pulmonary alveolar epithelial cells are vulnerable to injury by
environmental toxins, drugs, radiation and immune attacks.
Uncontrolled damage leads to cell loss and fibrosis (Noble
et al., 2012; Wuyts et al., 2013). Pulmonary fibrosis destroys
normal alveolar structure and impairs lung function resulting in
chronic debilitating illness (Sgalla et al., 2019). Recent advances in
the cellular and molecular mechanisms of lung fibrosis provide
evidence to indicate that pulmonary fibrosis shares with fibrosis
of other organs key pathological features such as recruitment of
monocytes to promote fibrosis, conversion of resident fibroblasts
to myofibroblasts and activation of pro-fibrotic transcriptional
programs (Zepp et al., 2017; Peyser et al., 2019). It is thus not
unexpected that 5-MTP inhibits bleomycin-induced pulmonary
fibrosis in a murine model (Fang et al., 2020). In this model, Fang
et al. showed that 5-MTP administration to bleomycin-treated
mice reduced collagen deposition, myofibroblasts accumulation
and alveolar architectural destruction. It disrupted TGFβ/
SMAD3 and PI-3K/Akt pathways. In vitro experiments
provide evidence to support the observation that 5-MTP
inhibits fibroblast differentiation to myofibroblasts and reduces
fibroblast migration by blocking TGFβ signaling pathway (Fang
et al., 2020). These findings suggest that 5-MTP is effective in
attenuating pulmonary fibrosis due to external injury. It is unclear
whether 5-MTP exerts a similar effect on idiopathic pulmonary
fibrosis, the most common and the most severe form of human
pulmonary interstitial fibrotic diseases (Martinez et al., 2005).

POTENTIAL MECHANISMS BY WHICH
5-MTP CONTROLS FIBROSIS

The exact mechanisms by which 5-MTP reduces fibrosis in
multiple organs are not completely understood and remain to
be investigated. However, recent reports suggest that 5-MTP
exerts its anti-fibrotic actions by controlling multiple steps of
pro-fibrotic cellular changes, transcriptional reprogramming and
signaling pathways (Figure 4).

5-MTP Inhibits Ischemia-Induced Apoptosis
Immediately following coronary artery occlusion, hypoxia
induces rapid metabolic changes. Glycolysis is enhanced while
oxidative phosphorylation is shut down, resulting in TCA cycle
interruption and accumulation of succinate (Chouchani et al.,
2014; Zhang et al., 2018). Furthermore, mitochondrial electron
transport chain (ETC) becomes disorganized with a reverse
electron transport resulting in generation of reactive oxygen
species (ROS) (Chouchani et al., 2014). Balance of mitochondrial
dynamics (mitochondrial fusion vs. fission) is altered to favor
mitochondrial fission resulting in mitochondrial fragmentation

which is accompanied by uncontrolled mitochondrial membrane
permeability resulting in cellular necrosis and apoptosis (Ong et al.,
2010; Ramachandra et al., 2020). Massive cardiomyocyte death
creates an infarct zone. Damaged and dead heart cells produce
chemotactic factors to recruit neutrophils, monocytes and
lymphocytes from circulating blood to the infarct and peri-infarct
zone. DAMP as well as cell debris and mitochondrial DNA is
generated to activate the recruited blood cells and elicit
inflammatory responses (Ramachandran et al., 2012; Mouton
et al., 2018). Excessive inflammation induces additional cardiac
cell damage and expand the infarct size and triggers the
subsequent tissue fibrosis. Reported data indicate that 5-MTP
attenuates apoptosis and reduces infarct size following LAD
occlusion in the rat model (Hsu et al., 2021). 5-MTP reduces
caspase 3 level of myocardial tissues and caspase 3-positive
cardiomyocytes at the peri-infarct region (Hsu et al., 2021). These
findings suggest that 5-MTP reduces mitochondrial damage and
controls mitochondrial release of cytochrome C. Furthermore, 5-
MTP preserved TOM20, a mitochondrial outer membrane protein,
which is decreased by ischemia, suggesting that 5-MTP maintains
mitochondrial membrane integrity during ischemic attacks and thus
attenuates apoptosis via themitochondrial-dependent pathway (Hsu

FIGURE 4 | Simplified graphic scheme illustrating the 5-MTP targets via
which it attenuates tissue-injury-induced tissue fibrosis.
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et al., 2021). Inhibition of ischemia- and toxin-induced
mitochondrial damage and the consequent release of pro-
apoptotic factors from mitochondria is a major attribute by
which 5-MTP attenuates inflammation and fibrosis. This event
represents an early window of opportunity for fibrosis control.

5-MTP Scavenges ROS and Prevents
ROS-Induced Cell Death and Senescence
During tissue injury by ischemia, toxins and chemicals, there is
continued generation of ROS: initially via damaged mitochondria
followed by activation of cytosolic NADPH oxidase and xanthine
oxidase (Chouchani et al., 2016; Zhang Y. et al., 2020). ROS are
scavenged by mitochondrial antioxidant enzymes notably
MnSOD and peroxiredoxins (Prdx) (Cox et al., 2009) and
cytosolic antioxidant enzymes such as catalase. ROS induce a
broad spectrum of pathological changes including cell deaths,
inflammation and fibrosis (Gonzalez-Gonzalez et al., 2017; Moris
et al., 2017). It was reported that ROS promote fibrosis by
enhancing TGFβ signaling (Gonzalez-Gonzalez et al., 2017). 5-
MTP was reported to reduce ROS generation in mesenchymal
stromal cells induced by high glucose by upregulating MnSOD
and catalase activities (Chang et al., 2017). Hsu et al. reported in
the rat MI model that 5-MTP administration within 24 h after
LAD occlusion reduced accumulation of ROS (Hsu et al., 2021).
Their results reveal that 5-MTP restored MnSOD and Prdx3 and
inhibited NADPH oxidase by suppressing expression of NOX2
and NOX4 (Hsu et al., 2021).

5-MTP Controls the Transcriptional
Network That Drives Fibrosis
The subset of fibroblasts, which are destined to be differentiated
to myofibroblasts exhibit distinct transcriptional network. Several
transcriptional activators have been identified as master driver of
fibroblast commitment. PU.1 was reported to drive fibroblast
polarization and to be essential for tissue fibrosis (Wohlfahrt
et al., 2019). Inhibition of PU.1 prevents bleomycin-induced skin
fibrosis. AP-1 transactivator plays a pivotal role in organ fibrosis.
Activation of c-Jun, a subunit of AP-1, was sufficient to induce
diverse fibrotic diseases (Wernig et al., 2017; Schulien et al., 2019).
AP-1 binds to the promoter region of profibrotic and pro-
inflammatory genes including collagen and ECM proteins,
growth factors, cytokines and COX-2 (Manabe et al., 2002),
which contribute to cardiac and pulmonary fibrosis
(Rajasekaran et al., 2013). Other transactivators such as NF-
κB, C/EBPβ and CREB were reported to be activated in fibrotic
tissues and contribute to fibrosis. For example, NF-κB has been
shown to regulate activation of HSCs and hepatic myofibroblast
differentiation (Luedde and Schwabe, 2011) and promote cardiac
remodeling (Hamid et al., 2011). C/EBPβ phosphorylation at Thr
217 contributes to lung fibrosis in mice (Buck and Chojkier, 2011)
and mesenchymal specific deletion of C/EBPβ suppresses
pulmonary fibrosis (Hu et al., 2012).

5-MTP was discovered as a suppressor of COX-2 expression
(Deng et al., 2002; Cheng et al., 2012). It inhibits COX-2
transcription by inhibiting binding of NF-κB, AP-1, C/EBPβ

and CREB to COX-2 promoter (Chen et al., 2012). As COX-2
is considered to be a prototypic immediate early gene and shares
with pro-inflammatory cytokines, adhesion molecules and pro-
fibrotic genes common promoter characteristics, it is likely that 5-
MTP attenuates injury-induced organ fibrosis through blocking
activation and binding of AP-1 and other transactivators to the
promoter regions of pro-fibrotic genes. p300 inhibitor was
reported to ameliorate cardiac and renal fibrosis (Rai et al.,
2017) indicating that p300 is intimately involved in pro-
fibrotic transcriptional program. 5-MTP inhibits p300 binding
and HAT activity via which it exerts potent actions on controlling
transcription of pro-inflammatory and pro-fibrotic genes.

5-MTP Disrupts Pro-Fibrotic Signaling
Pathways
A number of signaling pathways including p38 MAPK (Ma et al.,
1999; Stambe et al., 2004; Molkentin et al., 2017; Turner and
Blythe, 2019), TGFβ/SMAD3 (Fang et al., 2020), PI3K/AKT
(Zhang et al., 2016; Hsu et al., 2017; Fang et al., 2020; Hu
et al., 2020); JNK (Grynberg et al., 2017) and STAT3
(Chakraborty et al., 2017) were reported to mediate tissue
fibrosis. p38 MAPK plays a central regulatory role. Molkentin
et al. have used transgenic approaches to demonstrate that
fibroblast-specific transgenic overexpression of MAP kinase 6
(MKK6), an upstream inducer of p38MAPK, results in interstitial
and perivascular fibrosis in the heart, lung and kidney
accompanied by increased myofibroblast (Molkentin et al.,
2017). Genetic deletion of Mapk14 (coding for p38 MAPK)
blocks fibroblast differentiation to myofibroblasts in a murine
cardiac injury model (Ma et al., 1999). These results suggest that
p38 MAPK is a major signaling molecule of fibroblast
differentiation and activation and plays a central role in in
pathological fibrosis.

TGFβ induces fibroblast activation and myofibroblast
differentiation (Froese et al., 2016; Meng et al., 2016) by
binding to a membrane heterodimeric receptor which activate
and differentiate fibroblasts via several signaling pathways (Luo
and Lodish, 1996). The canonical pathway is mediated via
SMAD3 which has been shown to be critical for myofibroblast
differentiation (Hu et al., 2007; Dobaczewski et al., 2010). TGFβ
may induce fibroblast activation and myofibroblast
differentiation via other signaling pathways independent of
SMAD3 among which p38 MAPK pathway and PI-3K/AKT
are well characterized non-canonical signaling pathways.
Furthermore, it has been reported that p38 MAPK mediates
fibrogenic signal through SMAD3 photophosphorylation
suggesting a crosstalk between p38 MAPK and SMAD
(Furukawa et al., 2003). It has been suggested that various
signaling pathways converge at STAT-3 to mediate TGFβ-
induced tissue fibrosis (Chakraborty et al., 2017).

5-MTP was reported to block p38 MAPK activation in a
number cellular models under different stresses. For example,
it was reported that 5-MTP protects endothelial VE-cadherin and
therefore endothelial barrier function by blocking p38 MAPK
activation (Chu et al., 2016). 5-MTP suppresses cytokine-induced
vascular SMC phenotypic switch by blocking p38 MAPK and

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7591997

Wu 5-MTP Controls Fibrosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


thereby maintaining contractile vascular SMC contractile
phenotype (Chen CH. et al., 2019). Importantly, 5-MTP
inhibits macrophage activation and secretion of cytokines by
inhibiting p38 MAPK signaling pathway (Wang et al., 2016). An
additional supportive evidence is derived from cancer cell
epithelial mesenchymal transition (EMT) (Cheng et al., 2016).
EMT is an important cellular phenotypic switch via which cancer
cells achieve metastatic characteristics. It was reported that 5-
MTP was effective in reducing A549 cancer cell EMT via
suppressing p38 MAPK (Cheng et al., 2016). Taken together,
the reported data suggest that 5-MTP exerts its multiple
protective effects through blocking p38 MAPK activation and
p38 MAPK signaling pathways.

Fang et al. reported that 5-MTP attenuates pulmonary fibrosis
by blocking TGFβ-induced SMAD3 and PI3K/AKT signaling
pathways (Fang et al., 2020). Thus, 5-MTP controls tissue fibrosis
by inhibiting several pro-fibrotic signaling pathways (Figure 4).
Of note, these signaling pathways cross-talk to promote fibroblast
activation, differentiation and fibrosis.

It remains to be determined how 5-MTP blocks diverse signaling
pathways. Preliminary data suggest that 5-MTP acts via a specific
membrane receptor (Wang et al., 2018). It is possible that 5-MTP
blocks p38 MAPK, SMAD3 and PI-3K/AKT through cross-talk
between the signaling pathway mediated by 5-MTP receptor
activation and stress-induced pro-fibrotic signaling pathways. As
5-MTP receptors have not been identified and characterized, the
potential cross-talk is hypothetical and requires further validation.

CONCLUSION

Vascular endothelial cells, renal and pulmonary epithelial cells,
fibroblasts and cardiomyocytes produce 5-MTP which defends
vital organs against injury and maintains tissue homeostasis. Pro-
inflammatory mediators suppress 5-MTP production through
inhibiting TPH-1 expression, and disrupting the homeostatic
balance leading to tissue damage and fibrosis. Supplementation
with exogenous 5-MTP rescues tissues from inflammatory damage
and prevents fibrosis and structural remodeling. 5-MTP was
recently reported to protect against post-infarct cardiac fibrosis
and left ventricular remodeling in a rat LAD permanent ligation
model (Hsu et al., 2021). The experimental data suggest that 5-
MTP exerts anti-fibrotic effects through control of early ROS
accumulation, apoptosis and macrophage recruitment. 5-MTP
attenuates renal fibrosis and functional failure in a UUO model
(Chen DQ. et al., 2019). 5-MTP reduces bleomycin-induced
alveolar epithelial cell damage and induces interstitial fibrosis
through downregulating TGFβ and PI-3K signaling pathways
(Fang et al., 2020). Finally, 5-MTP was reported to alleviate
CCl4-induced liver fibrosis through FoxO3a-mediated
autophagy (Tong et al., 2021). These reports indicate that 5-
MTP possesses universal anti-fibrotic actions and is a potential
lead compound for developing new therapy for fibrotic disorder.

5-MTP exerts the anti-fibrotic effect by inhibiting macrophage
recruitment and activation, which is closely linked to its anti-
inflammatory actions. Macrophage infiltration in injured tissues is
a cardinal manifestation of tissue inflammation, fibrosis and organ

failure. 5-MTP blocks monocyte transmigration and macrophage
secretion of chemokines thereby reducing macrophage
accumulation at the tissue injured site. Furthermore, 5-MTP
inhibits macrophage release of pro-inflammatory cytokines
notably IL-1β, TNFα and IL-6 and pro-fibrotic factors such as
TGFβ, PDGF and cytokines. Macrophages are heterogenous.
Subsets of macrophages are functionally selective for
inflammatory responses and fibrotic formation, respectively. It
remains to be determined whether 5-MTP possesses selective
actions on functionally distinct subsets of macrophages.

5-MTP controls macrophage activation by inhibiting p300 HAT
activity and binding of pro-inflammatory transactivators such as
NF-κB, AP-1, C/EBPβ and CREB. Since AP-1 plays a central role in
mediating fibrosis, it is likely that 5-MTP inhibits pro-fibrotic gene
expressions in fibroblasts andmyofibroblasts by blocking the activity
and binding of AP-1. p38 MAPK is a key signaling pathway
mediating inflammation and fibrosis. 5-MTP is known to inhibit
p38MAPK activation inmacrophages, vascular ECs and SMCs. It is
likely that 5-MTP inhibits pro-inflammatory transactivators by
disrupting p38 MAPK activation and downstream signaling.

The antifibrotic and anti-inflammatory actions of 5-MTP are
likely to be mediated by interaction between 5-MTP and its
cellular surface receptors. Preliminary data suggest that the 5-
MTP receptor is a G protein-coupled receptor. It is possible that
signaling from 5-MTP receptors inhibits p38 MAPK activation,
and/or upregulating p38 MAPK inhibitors (Kumar et al., 2003).

Development of anti-fibrotic therapy has been hampered by
incomplete understanding of the complex cellular and molecular
mechanisms underlying initiation and progression of fibrosis.
Another hurdle that hampers development of antifibrotic
therapy is lack of an effective strategy to block selectively
pathological fibrosis while preserving physiological fibrosis,
which is vital to tissue repair. 5-MTP represents a new class of
compounds that could overcome the obstacles. It offers several
advantages. Foremost is that it is an endogenously produced
metabolite with known anti-inflammatory and tissue protection
properties. Secondly, it suppresses but does not completely abolish
macrophage activation and fibroblast differentiation. It is therefore
well suited to be a lead compound for developing new anti-fibrotic
drugs. 5-MTP derivatives were recently granted multi-national
patents. As post-MI heart failure and post-injury chronic kidney
diseases emerge as a major disease burden with great health and
socioeconomic impacts, 5-MTP derivatives will be a valuable
addition to prevention and treatment of those devastating illnesses.
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