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INTRODUCTION

Aerobic exercise and O2 saturation in the brain
Aerobic exercise can enhance neurocognitive functions, 

including attention, executive function, memory, and work-
ing memory.1,2 The acute effects of aerobic exercise may be 
associated with an increase in cognitive task-related arousal3 
and enhancement of cognitive performance efficacy.4 Yanagi-
sawa et al.5 reported that one short bout of moderate aerobic 
exercise can lead to an increase in brain activation within the 
dorsolateral prefrontal cortex in response to a Stroop test. 
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Several studies have quantified the effects of aerobic exer-
cise on cognitive functions and brain activity.6-8 The inverted-
U hypothesis states that the optimal performance of cognitive 
functions can be achieved at an intermediate arousal level; 
however, the maximum performance of this function cannot 
be reached at low and high arousal levels.9 In accordance with 
the inverted-U hypothesis, several studies have reported the 
best improvements in cognitive function in response to mod-
erate-intensity exercise.5,7 However, different cognitive func-
tion tests and various exercises have been used, and consistent 
results have not been obtained.6-8 Moreover, few studies have 
reported changes in brain activation in response to different 
aerobic exercise levels. 

Attention, exercise, and O2 consumption in the brain
Visuospatial attention capacity is strongly associated with 

individual differences in real-world tasks10 and sports perfor-
mance.11 Guo et al.12 suggested that sports training can enable 
athletes to develop efficient neural networks that engage in vi-
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suospatial tasks. Aerobic exercise decreases resting-state ce-
rebral blood flow and increases cerebrovascular reactivity in 
response to performance tasks.13

In our previous study on children with attention deficit hy-
peractivity disorder, aerobic exercise increases brain activity 
within the frontal and temporal cortices, which are associat-
ed with the attention system.14

Breathing, O2 saturation, and brain network
Among several brain networks, the default mode network 

(DMN) is involved in breathing, heart rate, and respiration, 
which are related to aerobic exercise.15-17 In addition, brain 
activation between the DMN and dorsal attention network 
(DAN) is affected by aerobic exercise.18-21

The DMN is constituted by areas deactivated during out-
side stimulation or goal-oriented tasks but not at rest.15 Ana-
tomically, it is composed of the medial prefrontal cortex 
(MPFC), posterior cingulate cortex (PCC), precuneus, and 
angular gyrus. The breath-by-breath O2–CO2 exchange ratio 
is associated with functional connectivity (FC) among the 
DMN components, including the precuneus and PCC.16 The 
left and right anterior medial frontal areas are sensitively as-
sociated with heart rate and respiration.17 The DMN is acti-
vated in response to thinking,18 and its activity is negatively 
correlated with that of attention networks.19

The DAN is associated with the voluntary orientation of vi-
suospatial attention.20 It is referred to as a task-positive network 
because it is activated during attention-demanding tasks.21 
Anatomically, it is composed of the intraparietal sulcus (IPS) 
and frontal eye field.20 It is also associated with hypercapnia 
(CO2 ventilation).22

Hypothesis
Aerobic exercise can enhance cerebral blood flow, which 

changes the brain FC within the DMN and DAN. On the ba-
sis of the inverted U-hypothesis, we hypothesized that chang-
es in brain activity within the DMN and DAN might exhibit 
the most effective activation at moderate exercise intensity.

METHODS

Participants
Fifteen healthy male participants were recruited via adver-

tisements posted at the Chung-Ang University advertisement 
internet board. Before advertisements, the protocol of rest-
ing-state functional magnetic resonance imaging (rs-fMRI) 
scanning and two-time aerobic exercise was discussed by two 
professors with a major in brain science, two professors with 
a major in sports science, and five students with a major in 
sports education. The inclusion criteria were as follows: 1) male 

sex, 2) age of 20–25 years, and 3) absence of psychiatric dis-
ease or medical illness, including respiratory or orthopedic 
diseases. The exclusion criteria were as follows: 1) history of 
head trauma with loss of consciousness, seizure disorder, brain 
tumor, or cerebrovascular accident; 2) history of substance 
abuse or claustrophobia; and 3) intelligence quotient (IQ) of 
<80. The research protocol was approved by the Institutional 
Review Board of Chung-Ang University (1041078-202108-
HR-261-01), and written informed consent was obtained from 
all the participants.

Study procedure
The following steps were performed: pre-exercise comput-

erized mental rotation test (visuospatial attention test; 5 min), 
pre-exercise rs-fMRI, moderate-intensity exercise (10 min), 
rest (10 min), computerized mental rotation test (visuospatial 
attention test; 5 min), and rs-fMRI after moderate-intensity 
exercise; and high-intensity exercise (10 min), rest (10 min), 
computerized mental rotation test (5 min), and rs-fMRI after 
high-intensity exercise (Figure 1). These two conditions were 
performed on same day. 

A 15-min period was allocated for resting+mental rotation 
test between exercise and rs-fMRI.23 The heart rate was as-
sessed using a multi-sensor activity tracer (Fitbit AltaHR; Fit-
bit Inc., San Francisco, CA, USA) on the nondominant wrist 
during exercise. The belt speed of treadmill walking was ad-
justed for a warm-up period (5 min) to prepare for the exer-
cise session and enrich the target heart rate for each exercise 
intensity. 

Exercise intensity was determined according to the per-
centage of the maximal volume of oxygen uptake (VO2max) 
and cardiorespiratory function (the total amount of oxygen 
that an individual can utilize).24 On the basis of other studies 
on exercise intensity, moderate and high intensities were de-
termined at 65% VO2max

25 and 80% VO2max, respectively.25 
The target heart rate (THR) was calculated using the Kar-
vonen equation: THR = (HRmax–HRrest) × %intensity desired + 
HRrest.26 HRmax was calculated using the “220 age” formula.27 
Considering 2–8 minutes of non cortical hemodynamic vari-
ables, including skin blood flow, middle cerebral artery flow, 
and time for the heart rate to return to baseline,28 two rest pe-
riods of 10 min were set before the rs-fMRI scan.

The computerized mental rotation test was run on a win-
dow-based table. A pair of 3D objects was presented on a com-
puter screen in various ways: same shapes and rotations, 
same shapes but different rotations, different shapes but same 
rotations, different shapes, and different rotations. They were 
then rotated on a certain axis to a certain degree (0°, 60°, 90°, 
120°, or 180°). In response to the presented type of the two 
3D objects, the participants were asked to determine whether 
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the two 3D objects were the same or different. During the test, 
which has a good test-retest reliability,29 the number of cor-
rect responses and the mean reaction time from the presenta-
tion of 3D objects to determination were recorded. The faster 
the reaction times and the higher the number of correct re-
sponses, the better the visuospatial attention. 

The IQ of the participants was assessed using the Korean 
Wechsler Adult Intelligence Scale,30 which has an internal 
consistency of 0.78–0.94.30

Imaging processing and analysis 
Resting-state brain activity data were obtained through 

fMRI performed using a 3.0 T scanner (Philips Achieva 3.0 T 
TX MRI scanner; repetition time = 3 s, 12 min scan, 240 vol-
umes, 128 × 128 matrix, 40 slices at 4.0 mm slice thickness). Data 
were preprocessed and processed using the Data Processing 
Assistant for Resting-State fMRI (DPARSFA; http://restfmri.
net/forum), a plug-in software that works with Statistical Para-
metric Mapping (SPM12; http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/) and the Resting-State fMRI Data Analysis 
Toolkit (REST; http://resting-fmri.sourceforge.net). During 
preprocessing, the following procedures were performed: de-
spiking (AFNI: 3dDespike), motion correction (SPM 12b), 
co-registration to magnetization-prepared rapid acquisition 
gradient echo image (SPM 12b), normalization to Montreal 
Neurological Institute space, temporal detrending (Matlab: 

detrend.m), bandpass filtering (Matlab: idealfilter.m), and ce-
rebrospinal fluid, white matter, and facial soft tissue degrad-
ing (Matlab), as described in previous studies.30 For the cor-
rection of head movement, the voxel-wise regression of identically 
bandpass-filtered time series of six head motion parameters 
was applied to realignment steps with six rigid-body parame-
ters characterizing the estimated subject motion of each sub-
ject. Global signal regression was not performed.31,32

Images were corrected for slice acquisition time differences, 
realigned, normalized, and spatially smoothened with a 6 mm 
full-width half maximum kernel. Functional images were de-
trended and temporally bandpass filtered to 0.01–0.08 Hz to 
remove signal artifacts (e.g., heartbeat, respiration).

Eight regions in the two brain networks (four from the 
DMN: MPFC, right/left angular gyrus, PCC; four from the 
DAN: right/left frontal eye field, right/left inferior parietal 
sulcus [IPS]) were extracted from the AAL atlas of the brain 
(https://www.nitrc.org).33 Fisher-transformed correlation 
coefficients were measured for each pair of regions of interest 
(ROIs) in each subject. FC was calculated between ROIs by 
using the CONN-fMRI FC toolbox (ver.15; www. Nitrc.org/
projects/conn). Between-group effects were considered sig-
nificant at a cluster-level false discovery rate (FDR) with 
p<0.05.
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Figure 1. Study design. rs-fMRI, resting-state functional magnetic resonance imaging.
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Statistical analysis
Changes in the reaction time and rate of correct responses 

in the mental rotation test from baseline to post-moderate 
and post-high-intensity exercises were analyzed via repeated-
measures analysis of variance (ANOVA). Changes in FC be-
tween ROIs from pre-exercise to moderate- and high-intensity 
exercise conditions were also examined using repeated-mea-
sures ANOVA. Correlations between changes in the rate of 
correct responses in the mental rotation test and changes in FC 
between ROIs were evaluated through Pearson correlations.

RESULTS

Demographic and visuospatial attention test 
characteristics

The mean age, height, weight, body mass index, and 
years of education of all participants were 23.2±1.6 years, 
175.7±4.2 cm, 75.4±6.2 kg, 24.1±2.0 kg/m2, and 15.0±1.7 
years, respectively (Table 1).

The mean rate of correct responses and reaction time in 
the visuospatial attention test were 71.5%±12.1% and 2.8± 
1.1 s, respectively.

Changes in visuospatial attention in response 
to exercise intensity

The reaction time in the mental rotation test changed sig-
nificantly in response to exercise intensity (F=19.27, p<0.01), 
but it did not change from pre-exercise to moderate-intensity 
exercise condition (z=0.91, p=0.36). However, from moder-
ate-intensity exercise condition to high-intensity exercise 
condition, the reaction time increased significantly (z=3.41, 
p<0.01) (Figure 2A).

The rate of correct responses in the mental rotation test 
changed significantly in response to exercise intensity (F= 
22.13, p<0.01). Specifically, it increased from pre-exercise to 
moderate-intensity exercise condition (z=2.50, p<0.01). How-
ever, from moderate-intensity exercise condition to high-in-
tensity exercise condition, the rate of correct responses de-
creased (z=3.41, p<0.01) (Figure 2B).

Changes in brain FC in response to changes 
in exercise intensity

In the DMN, FC from the PCC to the MPFC (F=5.69, p< 
0.01) and from the PCC to the right angular gyrus (F=7.39, p< 
0.01) increased from pre-exercise to high-intensity exercise 
condition (Figure 3A and B).

In the DAN, FC from pre-exercise to high-intensity exer-
cise condition changed significantly (F=9.31, p<0.01). From 
pre-exercise to moderate-intensity exercise condition, FC from 
the IPS to the right frontal eye field increased. However, from 
moderate-intensity exercise condition to high-intensity exer-
cise condition, the beta FC from the IPS to the right frontal 
eye field decreased (Figure 3C).

With respect to both the DMN and DAN, FC from the PCC 
to the MPFC increased from pre-exercise to high-intensity 
exercise condition (F=11.5, p<0.01). FC from the PCC to the 
left frontal eye field decreased from pre-exercise to moderate-

Table 1. Demographic characteristics

Characteristics Value
Age (yr) 23.2±1.6
Height (cm) 175.7±4.2
Weight (kg) 75.4±6.2
BMI (kg/m2) 24.1±2.0 
Education (yr) 15.0±1.7
Values are presented as mean±standard deviation. BMI, body mass 
index
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intensity exercise condition (z=3.01, p<0.01), but FC from the 
PCC to the left frontal eye field increased from moderate-in-
tensity to high-intensity exercise condition (z=2.56, p=0.01) 
(Figure 3D and E).

Correlations between changes in brain FC and 
those in visuospatial attention

From pre-exercise to moderate-intensity exercise condition, 
changes in the rate of correct responses were correlated with 
changes in FC from the IPS to the right frontal eye field (r= 

0.57, p=0.027). However, their difference was not statistically 
significant.

From moderate-intensity exercise condition to high-inten-
sity exercise condition, changes in the rate of correct respons-
es were negatively correlated with changes in FC from the 
PCC to the MPFC (r=-0.816, p<0.0001). From moderate-in-
tensity exercise condition to high-intensity exercise condition, 
changes in reaction time were correlated with changes in FC 
from the PCC to the MPFC (r=0.818, p<0.0001) (Figure 4).
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DISCUSSION

The current results support the inverted-U hypothesis of 
the maximum arousal efficacy during moderate exercise. Both 
cognitive domains, namely, the attention system and brain 
activity domains, might be better with moderate-intensity ex-
ercise than with high-intensity exercise. Moreover, changes in 
cognitive domain functions were associated with changes in 
FC between the DMN and DAN.

Changes in visuospatial attention in response 
to exercise intensity

The reaction time and rate of correct responses in the men-
tal rotation test were significantly associated with exercise in-
tensity in the current study. Reaction time was slow during 
high-intensity exercise, and the rate of correct responses was 
the highest during moderate-intensity exercise.

These results were consistent with previous findings.34,35 
Decroix et al.34 reported that aerobic exercise significantly im-
proves the speed of information processing (reaction time) in 
healthy participants. Lefferts et al.35 demonstrated that the hy-
poxic condition induced by acute aerobic exercise can slow 
down the reaction time but cannot change the accuracy in N-
back and flanker tasks. 

Changes in brain FC in response to changes 
in exercise intensity

FC within the DMN during high-intensity exercise was 
higher than that at baseline and during moderate-intensity 
exercise. FCs within the DAN and between DMN and DAN 
during moderate-intensity exercise were the highest and low-
est, respectively. 

For maximum attentive function, the switching between 
the DMN and attention network (ATN) should be flexible.36 
The flexible FC between the DMN and ATN is likely a result 
of the decreased FC within the DMN, increased FC within 
the ATN, or both.36 Interestingly, the modulation of respira-
tion is possibly associated with the DMN.4 In the current 
study, the rate of correct responses and reaction time of cog-
nitive functions were negatively correlated with the FC with-
in the DMN during high-intensity exercise. During high-in-
tensity exercise, brain activity within the DMN may increase 
to modulate respiration, while brain activity within the ATN 
may decrease to compensate for respiration.4,35 Changes in 
brain activity within the DMN and ATN could increase the 
FC between DMN and ATN, thereby decreasing the attentive 
function. 

Many studies with variable assessment modules have sug-
gested cerebral blood flow modulation in response to aerobic 
exercise intensity.37-40 In duplex Doppler ultrasound studies, 
aerobic exercise can increase blood flow within the internal 
carotid and vertebral arteries until moderate exercise intensi-
ty is achieved. However, blood flow does not increase during 
high-intensity exercise.38,39 Some studies have suggested that 
high-intensity aerobic exercise can lead to a decline in cere-
bral blood flow.40 However, global cerebral blood flow is only 
15% of the cardiac output,41 and changes in regional cerebral 
blood flow can be represented by heavy or high-intensity ex-
ercise.42 Few studies have suggested a direct correlation be-
tween regional cerebral blood flow and changes in brain 
function. In addition, the cumulative effects of aerobic exer-
cise on brain activity should be estimated in future studies.

Considering the disadvantages of regional cerebral blood 
flow studies, further studies on brain connectivity between 
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networks may provide new insights into cognitive and brain 
activity changes in response to aerobic exercise.

Limitations
The current study has several limitations. First, the results 

obtained using a small all-male sample could not be general-
ized to the general population. Therefore, future studies with 
larger sample sizes are warranted. However, the current sam-
ple size could accurately reflect brain activity in response to 
aerobic exercise. Second, the participants in the current study 
were limited to young men. Future studies should assess the 
effects of aerobic exercise on the brain activity of individuals 
with a wide age range. Finally, although we monitored the 
heart rate and removed signal artifacts via image preprocess-
ing techniques, respiration and heart rate could affect the re-
sults of brain activity.

In conclusions, cognitive accuracy and speed are lower 
during high-intensity exercise than during moderate-intensi-
ty exercise. During moderate-intensity exercise, the FC be-
tween the DMN and DAN was most efficiently activated. 
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