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Abstract
Marine cyanobacteria are responsible for ~25% of the fixed carbon that enters the ocean biosphere. It is thought that
abundant co-occurring viruses play an important role in regulating population dynamics of cyanobacteria and thus the
cycling of carbon in the oceans. Despite this, little is known about how viral infections ‘play-out’ in the environment,
particularly whether infections are resource or energy limited. Photoautotrophic organisms represent an ideal model to test
this since available energy is modulated by the incoming light intensity through photophosphorylation. Therefore, we
exploited phototrophy of the environmentally relevant marine cyanobacterium Synechococcus and monitored growth of a
cyanobacterial virus (cyanophage). We found that light intensity has a marked effect on cyanophage infection dynamics, but
that this is not manifest by a change in DNA synthesis. Instead, cyanophage development appears energy limited for the
synthesis of proteins required during late infection. We posit that acquisition of auxiliary metabolic genes (AMGs) involved
in light-dependent photosynthetic reactions acts to overcome this limitation. We show that cyanophages actively modulate
expression of these AMGs in response to light intensity and provide evidence that such regulation may be facilitated by a
novel mechanism involving light-dependent splicing of a group I intron in a photosynthetic AMG. Altogether, our data
offers a mechanistic link between diurnal changes in irradiance and observed community level responses in metabolism, i.e.,
through an irradiance-dependent, viral-induced release of dissolved organic matter (DOM).

Introduction

Understanding the response of the biosphere to climate
change requires a detailed knowledge of the biological
transformation of carbon on Earth. It has become evident
that the ocean represents an important sink for atmospheric

carbon dioxide (CO2) [1]. Just two genera of picophyto-
plankton dominate open ocean regimes, Prochlorococcus
and Synechococcus [2–4]. Altogether, these closely related
genera are responsible for ~25% of oceanic CO2 fixation
[2]. These organisms have become a model for studying
the flow of carbon from CO2 to the microbial loop as well
as the functioning of planktonic marine communities
generally [5, 6]. However, biotic loss rates (antagonistic
interactions, grazing, viral lysis) of Prochlorococcus and
Synechococcus remain poorly understood. In the case of
viruses, this view is nuanced by the discovery of viral-
encoded genes that may act to maintain photosynthesis
during infection [7, 8], such that despite the ultimate loss
of fixed carbon to dissolved organic matter through lysis,
CO2 fixation may be maintained transiently during rela-
tively long viral latent periods. Recently, it has been
shown that in fact cyanophage shut-down CO2 infection
early during infection, yet maintain the photosynthetic
light reactions [9]. The prevailing view is that cyanophage
use excess ATP and reductant from photophosphorylation
to fuel DNA replication while inhibiting a costly Calvin
Benson cycle [10, 11]. Therefore, we speculated that DNA
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replication was the limiting factor to cyanophage mor-
phogenesis and that increases in the rate of photopho-
sphorylation resulting from increased irradiance would
dramatically alter phage DNA replication kinetics and the
resulting productivity of the phage. Such changes would
have important consequences for our understanding of
viral-induced lysis pressure of open ocean communities
given the wide range in light flux in situ.

Results

Light intensity modules infection kinetics and
photophysiology

We hypothesised that shifting infected Synechococcus cells
to high light (HL) would provide increased energy for
phage replication and as such, we would observe an
increase in cyanophage DNA replication rate. To test this
idea, we conducted light-shift experiments with Synecho-
coccus sp. WH7803, infected with cyanophage S-PM2d
[12], and monitored phage development. We conducted
qPCR assays quantifying copies of the phage chromosome,
from intracellular and extracellular fractions to measure the
rate of DNA synthesis inside cells and to determine latent
periods and burst sizes

We observed a major difference in cyanophage devel-
opment in HL compared with LL (Fig. 1). Under HL the
latent period was reduced by 5 h (40% decrease in length),

as evidenced both by an earlier reduction in copies of
intracellular DNA (Fig. 1a), and an earlier increase in
extracellular DNA copy number (Fig. 1b). This early burst
under HL conditions was also evident from monitoring
culture turbidity (Fig. 1c). In comparison, there was no
significant difference in burst size between the different
light treatments (Fig. 1b). Surprisingly, and contradicting
our proposed hypothesis, there was no difference in the
timing, length or rate of phage DNA synthesis between the
two conditions (Fig. 1a). We had postulated that increased
photochemically driven ATP synthesis under HL would
supply more energy and resources to fuel phage DNA
replication. Indeed, this idea has been implicated [13] and
explicitly modelled [14, 15] as explaining cyanophage
acquisition of photosynthesis genes, especially given that
other stresses such as phosphate limitation show marked
effects on cyanophage DNA synthesis [16]. Our hypoth-
esis relies on the assumption that photochemistry is
maintained such that excess absorbed photons can be used
to generate a transmembrane potential for ATP synthesis.
Therefore, we tested this by measuring photosystem II
(PSII) maximum quantum yield (Fv/Fm) during the
experiment. This assay measures the differences in the
chlorophyll ‘fluorescent transient’ from PSII. As dark-
adapted reaction centres become ‘closed’ by the reduction
of the primary electron acceptor, there is a concomitant
increase in chlorophyll fluorescence. Therefore, the Fv/Fm

parameter is proportional to the number of open reaction
centres at a given time [17]. Our measurements of PSII
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photochemical yield showed no change under LL condi-
tions in infected or uninfected cells (Fig. 2a). In compar-
ison, there was a rapid decline in Fv/Fm in uninfected cells
at HL indicative of photodamage to the PSII reaction
centre [18]. After 8 h at HL, Fv/Fm in uninfected cells
stabilises at approximately 65% of the level of LL cultures.
Similarly, under HL conditions there was an initial decline
in Fv/Fm in infected cells, at a similar rate to uninfected
cells (Fig. 2a). However, there was then an increase in Fv/
Fm 2 h after infection to ~90% of the level at LL where it
remained for the rest of the experiment. This observation
suggests that not only are PSII reaction centres active in
HL infected cells but also either their rate of damage is
reduced or the turnover of PSII is much greater to support
stable photochemistry at this irradiance.

The maintenance of PSII photochemistry under increased
irradiance suggests more energy was available in these cells
through photophosphorylation [19]. Yet despite this, we
observed no detectable change in the rate, timing or abso-
lute amount of phage DNA synthesis (Fig. 1a, b). We did
observe a reduction in the latent period however, and thus
we speculate that there may be some temporal control of
lysis in response to light. Indeed, bacteriophages have been
shown to possess sophisticated mechanisms to delay lysis in
response to potential stresses encountered during the
infection process [20].

Cyanophage transcriptional response to high light
conditions

To decipher potential regulatory mechanisms occurring at
the transcriptional level under HL compared to LL condi-
tions, we conducted RNA-Seq analysis of transcriptomes
from the same experiment. RNA was extracted from

triplicate cultures at 1, 3, 6, and 9 h after infection in HL and
LL infected cells and samples from each light treatment
pooled in equimolar quantities to assess total changes in
expression. Reads were mapped to both the S-PM2d and
Synechococcus sp. WH7803 reference genomes and mean
per base coverage estimated. There was a significant
increase in coverage of the phage transcriptome under HL
compared to LL conditions (2.34-fold increase, t3= 3.98, p
= 0.014), which was not apparent in the host (Fig. 2b). This
was despite a fraction of the cells undergoing lysis at 9 h in
HL compared with no lysis under LL conditions (Fig. 1a,
b). This suggests a generalised increased rate of phage
transcription at HL despite no change in DNA replication.
We used differential expression tests to find light-
responsive genes in the cyanophage genome. To our sur-
prise, only one cyanophage gene was proportionately dif-
ferentially expressed under HL, compared to LL,
conditions. This was the photosynthetic AMG psbA
encoding the D1 polypeptide located at the core of the PSII
reaction centre (Fig. 3a).

The cyanophage-encoded psbA is a ‘nearly core’ gene
in cyanomyoviruses [21], the result of repeated acquisi-
tion events from their immediate hosts [22]. It is possible,
therefore, that phage acquisition of host genes by
recombination has also co-opted the same light-
dependent regulatory features of psbA. Indeed, other
cyanophages have been shown to regulate expression of
phosphorus scavenging AMGs in response to phosphate
limitation though exploitation of the host’s own PhoBR
two-component system [16]. Cyanobacteria, including
marine Synechococcus, display light-dependent tran-
scription of psbAs [18, 23]. In model cyanobacteria,
several factors influence the light-dependent accumula-
tion of psbA transcripts, including alternative sigma
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factors [24–28] and DNA tertiary structure [29]. More-
over, D1 degradation products directly bind upstream of
psbA sequences, such that light-induced damage could
directly influence psbA transcription in a positive feed-
back manner [30]. We could not identify any conserved
motifs in the upstream region of S-PM2d psbA that are
shared with their Synechococcus hosts, perhaps suggest-
ing divergent regulation strategies between the host and
phage versions.

Furthermore, S-PM2d has an uncharacteristically long
intergenic sequence upstream of psbA (232 bp, compared
with a median of 6 bp across the genome; Fig. 3b). This
difference is also true for other cyanomyoviruses where the
psbA upstream regions vary between 125-453 bp. There-
fore, we also sought to discover DNA sequence motifs
shared amongst cyanomyoviruses that may be involved in
regulation of psbA. We discovered six high confidence
motifs (Fig. S1), of which two were present in S-PM2d
(Fig. 3c). These two motifs contain the −35 (motif 6) and
−10 (motif 3) elements of the σ70 transcription factor
binding sites typical in T4-like early phage genes [31]. In
addition, motif 3 contains the binding site for the T4-like
late gene sigma factor Gp55 [32] (Fig. 3c). Thus, S-PM2d
retains motifs required for coordinated expression of psbA
in early and late infection.

However, the S-PM2d psbA region contains a novel 3′
antisense ncRNA, cfrI which is known to be expressed [33],
as well as a previously unrecognised 36 bp inverted repeat
producing a probable RNA hairpin loop in the 5′ untrans-
lated region (5′-UTR; Fig. 3d). Structured 5′-UTRs are well
known to affect mRNA stability in bacteria and bacter-
iophage [34] as are cis-encoded antisense RNAs [35],
especially for cyanobacterial psbAs [36]. These features
may therefore contribute to regulation of the cyanophage
psbA in response to light.

In yet another twist, the S-PM2d psbA encodes a group I
self-splicing intron within its psbA transcript, a feature
found to be widespread in cyanophage psbA genes from
marine metagenomic libraries [33, 37]. The intron interrupts
the recognition sequence of a downstream homing endo-
nuclease F-CphI therefore providing self-immunity while
allowing the endonuclease to spread amongst intron-less
alleles [38]. The intron contains several in-frame stop
codons. Thus, it is unlikely that an unspliced transcript
encodes a functional D1 polypeptide [33]. Nevertheless, the
intron splices efficiently during infection [33].

To understand whether intron splicing played a role in
light-dependent psbA expression and indeed to validate our
RNA-Seq data we conducted reverse transcriptase quanti-
tative PCR (RT–qPCR) of the cyanophage psbA mRNA.
We designed a splicing assay to detect relative expression
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of both isoforms of the transcript (Fig. 4a). We employed a
5′ nuclease qPCR assay which gives specificity to each
transcript isoform using a 25–30 bp fluor-quencher linked
probe that is either internal to the intron (unspliced isoform
detection), or that bridges the exon 1/2 junction (spliced
isoform detection). The reverse primer is also located in
either the intron (unspliced isoform detection) or on exon 2
(spliced isoform detection) and is specific for cloned copies
of each isoform.

The RT–qPCR data validates that obtained from RNA-
Seq, showing increased expression of both spliced and
unspliced isoforms at HL (Fig. 4b, c). This increase is
particularly pronounced in the spliced isoform during late
infection, where we observed a 10.6-fold increase at HL
compared with LL (Fig. 4c), compared with only a 3.37 fold
increase of the unspliced isoform. Importantly, our assay
allows determination of the spliced: unspliced isoform ratio
(Fig. 4d), which shows that throughout early infection up to
4 h, the phage maintains a ~2-fold increase in the amount of
the spliced isoform (Fig. 4d). At HL this is maintained
throughout infection, whereas in LL we observed a rapid

decline to approximately equimolar amounts by 6 h. Thus,
the splicing of the intron appears to be responsive to light
intensity. To our knowledge, this is the first report of a
differentially spliced intron in a bacteriophage, though
interestingly the eukaryotic alga Chlamydomonas rein-
hardtii, contains four group I introns in its psbA gene [39],
which are known to be differentially spliced in response to
light [40]. Since unspliced transcripts likely do not encode
functional polypeptides, we suggest that differential splicing
of the psbA mRNA represents a mechanism of gene reg-
ulation, potentially in coordination with the antisense
ncRNA cfrI and/or the structured 5′-UTR affecting mRNA
stability.

Differential expression of host genes reinforce
translational bottlenecks

In addition to the differential expression of cyanophage
genes, we also analysed light-responsive Synechococcus
host genes. Of the 39 genes upregulated under high light
conditions, 25 (64%) were involved in translation or
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posttranslational modification, protein turnover and cha-
perones (Table 1). This included 13/31 and 4/22 proteins
forming the 50 S and 30 S subunits of the ribosome,
respectively. Moreover, both subunits of the GroEL/
GroES complex as well as the DnaJ and DnaK chaperones
were upregulated (Table 1). Meanwhile, three of the four
copies of the host’s psbA gene were also upregulated in
high light (Table 1), perhaps complementing phage sup-
plies of psbA mRNAs. Downregulated genes mostly
included components of the light harvesting apparatus,
potential cell motility genes and subunits involved in lin-
ear electron transport—most notably photosystem I reac-
tion centre subunits (Table 1).

Discussion

Altogether, our data show that light intensity plays a key
role in modulating cyanophage development in their Syne-
chococcus host. In contrast to our prediction, there was no
change in the rate or amount of DNA replication. Instead,
increased irradiance induced an early burst phenotype.
Other than psbA, which was overexpressed under HL con-
ditions, there was no change detectable in cyanophage gene
expression. The encoded D1 protein binds all the proteins
and cofactors required for charge separation leading to the
oxidation of water [41]. The proximity to the charge
separation event means D1 is particularly susceptible to
damage and as such is rapidly turned over at HL [42]. Thus,
upregulation of cyanophage psbA under HL conditions may
increase the rate of delivery of D1 to PSII, restoring activity
of the reaction centre, which in turn is manifest as the
observed increase in PSII photochemistry (Fig. 2a). The
resulting effect is an increase in the rate of photopho-
sphorylation and more energy for cyanophage development.
Taken together, and with no obvious change in expression
of other cyanophage genes, we suggest that it is this
increase in energy that supports an earlier burst under HL
conditions, and therefore that translation is the rate limiting
step for cyanophage development during late infection. In
this respect, we calculated the energy requirement of cya-
nophage DNA replication assuming a burst size of 10. This
calculation is based on known pathways of pyrimidine and
purine deoxyribonucleotide biosynthesis in Synechococcus
(Fig. S2). In total, we estimate a requirement of 2.2× 10−17

mol ATP per infection (Supplementary Information). This
assumes that all dNTPs are synthesised de novo, which is
therefore an overestimate due to the several pathways pre-
dicted for nucleotide salvage in the S-PM2d genome [43].
In comparison, we computed the energy cost of production
of just the detected structural proteins of cyanophage S-
PM2 [44]. This includes both the biosynthesis (7.4× 10−19

mol ATP per infection) but also crucially the polymerisation

of amino acids (4.4× 10−17 mol ATP per infection) (Sup-
plementary Information). Thus, there is a 2-fold increase in
energy required for translation of just the known structural
proteins that form the phage particle compared with that of
DNA synthesis. This must underestimate the overall
increase in energy required as it does not include structural
proteins that have yet to be identified, or the non-structural
proteins critical for particle assembly, genome replication or
subversion of host metabolism. Clearly then, translation
represents the major energetic cost for cyanophage devel-
opment. This conclusion is supported both by recent mod-
elling studies into the energetics of development of
coliphage T4 [45] and our own analysis of the host tran-
scriptional response during infection under higher irra-
diance. The latter specifically showed upregulation of
components of the bacterial ribosome as well as several
chaperone proteins presumably involved in aiding correct
folding of nascent polypeptides. We predict that upregula-
tion of these genes will cause increases in the local con-
centration of ribosomes which would support an increased
translation rate at higher light [46]. Unfortunately, this has
largely been overlooked in previous cyanophage work since
acquisition of AMGs has been proposed to overcome
metabolic bottlenecks to increase cyanophage genome
replication [7, 14, 15]. Our data suggests that the energy

I I

I I

I

I

I

Fig. 5 The ecological significance of light-dependent lysis delay. a
Seasonal and inter-annual changes in irradiance with depth at a coastal
observatory (the data shown here is from station L4 in the Western
English Channel, the site of isolation of cyanophage S-PM2d). White
lines correspond to the contours of the irradiances used in this study.
The red line shows seasonal trends in Synechococcus loss rates [51]. b
Diurnal changes in irradiance. Delayed lysis at low light results in a
reduction in the rate of DOC release. Lysis at increased irradiances
increases the rate of DOC release through the viral shunt
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required for translation during late infection imposes such a
metabolic block, and that acquisition and coordinated
expression of the cyanophage S-PM2 psbA AMG over-
comes this energy bottleneck. We predict that energy lim-
itation scales with light intensity such that reduced latent
periods would be expected during the day and at shallower
depths (Fig. 5). Indeed, cyanophage development has been
shown to be inhibited by darkness [7, 47] and infections
with cyanosiphoviruses over a simulated diel cycle show
that latent period length is correlated with light intensity
[48]. Moreover, isolation studies show increased abundance
of cyanophages at mid-day, but only at shallower depths
with increased irradiance [49]. In addition, recent lagran-
gian metagenomics sampling of viral communities in waters
of the north Pacific subtropical gyre suggest cyanophages
exhibit diel rhythmicity, peaking in intracellular abundance
between mid-day to early evening [50]. Given that Syne-
chococcus and the closely related Prochlorococcus are
dominant members of the photoautotrophic community in
the global ocean, and that natural gradients of light intensity
occur with depth, time of day and season, it is likely that
energy limitation of cyanophage development would have
important implications for the control of the Synechococcus
community. For instance, it has recently been shown than
Synechococcus exhibits a regular spring bloom in coastal
waters off Woods Hole, USA [51]. This bloom is driven by
increases in Synechococcus cell division rates in response to
warmer water temperature (but importantly not light) and
decoupling from loss rates in early spring. It may be that
extended viral latent periods caused by light limitation are
prominent in early spring. These would cause reduced
Synechococcus loss rates, contributing to bloom formation.
Conversely, the Synechococcus loss rate is maximal during
mid-summer [51], when increased irradiance may shorten
viral latent periods (Fig. 5a). This is particularly relevant in
a warming ocean where Synechococcus blooms have
already been shown to be occurring earlier in the year [51].
The effect of light on latent periods of Synechococcus likely
also affect the daily and depth-dependent cycling of carbon
in the oceans, with diurnal, depth and seasonal variability in
the release of dissolved organic carbon (DOC) via the viral
shunt (Fig. 5b) [52, 53]. Recently, whole-community
metatranscriptomics has revealed reproducible daily trends
in the expression of genes involved in oxidative phos-
phorylation and translation amongst the heterotrophic
component of surface ocean communities [54, 55]. Peak
expression coincides with daily maxima in irradiance and
are subsequent to expression of photosynthetic genes by the
phototrophic community members. Therefore, high light-
induced lysis by viruses of phototrophs could link these two
processes. Future studies should seek to determine the
generality of this phenomenon amongst cyanophage and

understand the relationship between rates of photopho-
sphorylation and the energy requirement for lysis over a
range of irradiances and varying host nutrient status so that
such information can be integrated into models of oceanic C
cycling.

Methods

Infection conditions

Synechococcus sp. WH7803 was grown in ASW medium
[56] to 1× 108 cells ml−1 at 23˚C under continuous illu-
mination of 15 µmol photons m−2 s−1. Cultures were then
infected with cyanophage S-PM2d [12] at a VBR of 10 and
samples incubated at LL (15 µmol photons m−2 s−1) for 1 h
to allow adsorption. Three biological replicates were then
shifted to 210 µmol photons m−2 s−1 (HL) while three
control cultures were maintained at 15 µmol photons m−2 s
−1 (LL). The HL treatment was selected based on the ability
to induce transient photoinhibition in uninfected cells
without being lethal. Photoinhibition was assessed by
determining the PSII maximum photochemical yield (Fv/
Fm) after treatment with lincomycin following [18]. The rate
of photoinhibition for the HL treatment is shown in Fig. S3.

Assessment of infection dynamics

Infection dynamics were assayed using qPCR to enumerate
both intracellular and extracellular cyanophage genome
copy number (GCN) [11, 16, 57]. Samples were taken
immediately after addition of cyanophage S-PM2d and then
at 1, 2, 3, 5, 7, 9, 12, 15 and 18 h. For quantification of
extracellular cyanophages 100 µl cell suspension was dilu-
ted to 500 µl by addition of ASW medium. This was syringe
filtered through a 0.2 µm pore size disposable filter (Min-
isart, Sartorius, Goettingen, Germany). The filtrate was
collected, snap frozen in liquid nitrogen, and then stored at
−80 ˚C before quantification. Intracellular cyanophages
were quantified by vacuum filtration of infected cells onto a
0.2 µm pore size polycarbonate filter (Isopore, Millipore,
Billerica, USA). Filters were washed three times with 1 ml
preservation solution (10 mM Tris-HCl, 100 mM EDTA,
500 mM NaCl, pH 8.0) and after their removal from the
filtration tower added to a ribolyser tube (Lysing Matrix E,
MP Bioproducts, CA, USA) and snap frozen in liquid
nitrogen for DNA extraction.

DNA extraction

DNA extraction was extensively optimised and the fol-
lowing was found to yield optimal results. 650 µl Tris-HCl,
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pH 8.0 was added to a ribolyser tube (Lysing Matrix E, MP
Bioproducts, CA, USA). The tube was then lysed three
times for 30 s in a Tissue Lyser (Qiagen, Hilden, Germany)
at 30 Hz. In between disruption the tubes were incubated on
ice for 1 min. The lysate was subjected to centrifugation for
30 s at 10,000×g and 100 µl of the supernatant subse-
quently frozen at −80 ˚C. Samples were diluted 1/10 and 1
µl was used as the template for qPCR reactions.

qPCR

qPCR enumeration of cyanophage S-PM2d genome copies
was achieved using a PrimeTime 5′ nuclease assay (IDT,
Coralville, USA). Primer/probe sequences are shown in the
Supplementary Information and were directed towards the
psbA intron of S-PM2d. 20 µl reaction volumes were used
containing 1×Brilliant III Ultra-Fast qPCR Master Mix
(Agilent, CA, USA), 500 nM primers and 250 nM probe, 1
µl template and nuclease free water. Each qPCR plate
contained a triplicate dilution series from the initial phage
stock from 2.5× 1010 −2.5× 102 pfu ml−1. Cycling con-
ditions were 3 min at 95 ˚C, followed by 40 cycles of
denaturing for 15 s at 95 ˚C and annealing for 15 s at 60 ˚C.

Photophysiology

The maximum quantum yield of PSII photochemistry (Fv/
Fm) was measured according to [18]. All measurements
were made using a pulse amplitude-modulated fluorometer
(PhytoPAM, Walz, Effeltrich, Germany). Subsamples (2
ml) were incubated for ~5 min in the dark to completely
oxidise the primary electron acceptor QA. 500 µl subsample
was added to a PhytoPAM cuvette (Waltz, Effeltrich,
Germany) and immediately diluted to 2 ml with ASW
medium. A weak modulating light was then applied at 520
nm with intensity of 1 µmol photons m−2 s−1 and the basal
fluorescence measured (F0). 3-(3,4-dichlorophenyl)-1,1-
dimethylurea (DCMU) was added to the cuvette to a final
concentration of 100 µM, and an actinic light was supplied
at ~1300 µmol photons m−2 s−1. Chlorophyll fluorescence
rose rapidly followed by a slower period of increase until
saturation. A saturating pulse of ~2600 µmol photons m−2 s
−1 was then delivered for 200 ms to completely reduce QA.
The fluorescence was simultaneously measured (Fm) and
Fv/Fm calculated as (Fm−F0)/Fm.

RNA extraction and RNA-Seq library preparation

Total RNA was isolated following Logemann et al. [58].
Briefly, 50 ml of Synechococcus sp. WH7803 was cen-
trifuged at 3220× g at 4°C and flash frozen in liquid N2.
Pellets were thawed in 1.5 ml Z buffer (8 M guanidinium

hydrochloride; 50 mM β-mercaptoethanol; 20 mM EDTA)
at room temperature for 30 min. 2 volumes of acidified
phenol (pH 4.5) were added and heated to 65˚C for 30 min,
followed by the addition of chloroform:isoamyl alcohol for
15 min. The aqueous phase was transferred to separate
microcentrifuge tubes. RNA was precipitated by the
addition of 1 vol. isopropanol followed by incubation
overnight at 4˚C and subsequent centrifugation at
16,060×g (Biofuge Pico, Heraeus) at 4 ˚C for 30 min. The
pellet was then washed with 70% (v/v) ethanol and further
centrifuged for 15 min. Pellets were resuspended in 50 µl
H2O. DNA was removed using the TURBO DNA-free kit
(Ambion/Life Technologies, Carlsbad, USA) following
the manufacturer’s instructions. gDNA contamination was
tested by PCR using primers phoH_F/phoH_R (Table S1).
Any samples that yielded a PCR product were further
treated using the TURBO DNA-freeTM kit (Ambion,
Forster City, USA).

Strand-specific library preparation

For each biological replicate, total RNA from time points 1,
3, 6, and 9 h after infection were pooled in equimolar
quantities. RNA-Seq libraries were prepared using the
ScriptSeq v2.0 kit (Illumina, San Diego, USA) by the
Centre for Genomic Research, University of Liverpool and
sequenced at the same facility using an Illumina GAIIx
platform generating 100 bp paired-end reads. Raw reads
have been submitted to ArrayExpress (EMBL-EBI) under
accession E-MTAB-5840.

Read-mapping, read counts and differential
expression tests

Paired-end reads were trimmed using Sickle [59] using
default settings. Trimmed reads were mapped to the S-PM2d
(E.B.I. Accession no. LN828717) and Synechococcus sp.
WH7803 genome (Acc. No. NC_009481) using Bowtie 2
[60]. Mapping was done in –end-to-end mode using the
following parameters: -D 20 -R 3 -N 0 -L 20 -i S,1,0.50.
SAM files were converted to BAM files and sorted using
SAMtools v0.1.18 [61] and reads counts of genomic features
were calculated using BEDtools v2.26.0 [62]. Only reads
which overlapped across 10% of the read length into the
genomic feature were counted. Differential expression tests
were conducted using EdgeR [63] in the Degust online form.

RT–qPCR

cDNA synthesis was carried out with SuperScript III
reverse transcriptase (Life Technologies, Carlsbad, USA) in
20 µl volumes with 2 µg total RNA. Each reaction contained
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0.5 mM dNTPs, 2 pM gene-specific primer, 1× SuperScript
III buffer, 5 mM DTT and 200U SuperScript III. The RNA,
dNTP and primers were mixed and heated to 65˚C for 5
mins before being cooled on ice for 5 mins. SuperScript III,
DTT and buffer were then added, mixed, and incubated at
55˚C for 60 mins. The reaction was inactivated by heating
to 70 ˚C for 15 mins. qPCR reactions were in 20 µl volumes
containing 1× Brilliant III Ultra-Fast qPCR Master Mix
(Agilent, Santa Clara, USA), 1× relevant primer/probe
assay (500 nM primers and 250 nM probe), 1 µl cDNA and
nuclease free water to 20 µl. An Applied Biosystems 7500
Fast Real-Time PCR System (Life Technologies, Carlsbad,
USA) was used for quantification. Cycling parameters were
95 ˚C for 1 min followed by 40 cycles of 15 s at 95˚C and
15 s at 60˚C. Raw CT values were exported and analysed
using the efficiency corrected ΔΔCT method [64] as com-
puted using the REST software [65]. The calibrator gene
was the host 16S rRNA gene when quantifying spliced and
unspliced transcripts and the unspliced transcript when
calculating the ratio shown in Fig. 4d. Primer sequences and
assay validations are in the Supplementary Information. The
specificity of the spliced and unspliced psbAs were vali-
dated using cloned copies of each isoform.

Motif discovery

Motifs upstream of psbAs were detected using MEME [66]
using a minimum width of 6 bp and maximum of 50 bp and
an eval cutoff of 10−5.
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