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The emergence of high-throughput RNA-seq data has offered unprecedented
opportunities for cancer diagnosis. However, capturing biological data with highly
nonlinear and complex associations by most existing approaches for cancer diagnosis
has been challenging. In this study, we propose a novel hierarchical feature selection and
second learning probability error ensemble model (named HFS-SLPEE) for precision
cancer diagnosis. Specifically, we first integrated protein-coding gene expression
profiles, non-coding RNA expression profiles, and DNA methylation data to provide
rich information; afterward, we designed a novel hierarchical feature selection method,
which takes the CpG-gene biological associations into account and can select a
compact set of superior features; next, we used four individual classifiers with significant
differences and apparent complementary to build the heterogeneous classifiers; lastly,
we developed a second learning probability error ensemble model called SLPEE
to thoroughly learn the new data consisting of classifiers-predicted class probability
values and the actual label, further realizing the self-correction of the diagnosis errors.
Benchmarking comparisons on TCGA showed that HFS-SLPEE performs better than
the state-of-the-art approaches. Moreover, we analyzed in-depth 10 groups of selected
features and found several novel HFS-SLPEE-predicted epigenomics and epigenetics
biomarkers for breast invasive carcinoma (BRCA) (e.g., TSLP and ADAMTS9-AS2), lung
adenocarcinoma (LUAD) (e.g., HBA1 and CTB-43E15.1), and kidney renal clear cell
carcinoma (KIRC) (e.g., IRX2 and BMPR1B-AS1).

Keywords: precision cancer diagnosis, hierarchical feature selection, ensemble model, transcriptome profiling,
DNA methylation, biomarker

INTRODUCTION

Cancer has the characteristics of concealed onset, low cure rate, and high mortality. Traditional
surgery, radiotherapy, and chemotherapy have limited effects on patients with advanced cancer.
The cancer diagnosis is currently a hot research topic. With the acquisition of numerous gene
expression profiles in various tissue samples, it is possible to perform cancer diagnosis at the
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molecular level. Early biology supposed that cancer is closely
related to the mutations of protein-coding genes (Stratton et al.,
2009). Thus, mass studies confirmed the feasibility of cancer
diagnosis based on messenger RNA (mRNA) expression profiles,
achieving some good results (Ben-Dor et al., 2000; Furey et al.,
2000; Li et al., 2001). Recently, biological studies have found that
without changing the sequence of the protein-coding genome,
there are a lot of epigenetic variations involving multiaspects such
as non-coding RNA (ncRNA) and DNA methylation in cancer
(Baylin and Ohm, 2006; Luo et al., 2016; Xiao et al., 2018a).
Numerous studies utilized epigenetic data such as microRNA
(miRNA) (Saha et al., 2015), long non-coding RNA (lncRNA)
expression profiles (Zhang et al., 2018), and DNA methylation
(Al-Juniad et al., 2018) for cancer diagnosis and subtype
classification, obtaining some achievements (Raweh et al., 2018;
Tang et al., 2018). However, the latest biological research indicates
that multibiomarkers can improve the accuracy and robustness
of cancer diagnosis (Modelska et al., 2015). Zhao et al. (2018)
integrated protein-coding gene, miRNA, and lncRNA expression
profiles for lung adenocarcinoma (LUAD) diagnosis. Alghunaim
and Al-Baity (2019) fused protein-coding gene expression
profiles and DNA methylation for breast invasive carcinoma
(BRCA) diagnosis. Classical genetics and epigenetics are two
separate mechanisms participating in carcinogenesis (Network,
2012). Additionally, epigenetics data such as ncRNA and DNA
methylation are not independent of each other, and they
often have synergistic effects (Xu et al., 2018). Therefore, only
using protein-coding gene expression profiles and/or ncRNA
expression profiles or DNA methylation data leads to the lack of
information and prevents the high-performance and robustness
of cancer diagnosis from being significantly improved.

The emergence of large-scale RNA-seq data and DNA
methylation data has offered unprecedented opportunities for
developing cancer diagnosis approaches. However, integrating
transcriptome profiling (i.e., protein-coding gene and ncRNA
expression profiles) and DNA methylation data for cancer
diagnosis faces challenges. Model et al. (2001); Ang et al. (2015),
Gao et al. (2017); Lu et al. (2017), and Sun et al. (2019) pointed
out that transcriptome profiling and DNA methylation data
are featured with high dimensionality, high redundancy, and
complex interaction associations. To solve the problem of high
dimensionality, feature scoring functions such as differences
and distances between normal and tumor samples, correlation
coefficients, and information metrics between features and
categories are commonly applied for filtering feature (Lazar
et al., 2012). For example, Yoon and Lim (2013) used t-test
and Euclidean distance, and Cao et al. (2015) adopted the
fold-change (FC) and false discovery rate (FDR) for filtering
feature. These filter methods efficiently remove irrelevant features
to reduce dimensions, which has the characteristics of strong
universality and low complexity and are suitable for processing
high-dimension data. However, these filter methods are from
the perspective of a single feature, without considering the
high redundancy between features. Subsequently, Peng et al.
(2005) proposed the minimal redundancy and maximal relevance
criterion, named mRMR, which based on the maximum
correlation between features and categories and the minimum

redundancy between features in feature subsets. Lyu et al.
(2017) designed LLRFCscore+ algorithm, which first sorts
features in descending order via LLRFC criteria and then
use the dynamic correlation analysis strategy to eliminate
redundant features further. Raweh et al. (2018) developed a
hybrid feature selection algorithm with a filtering method and a
new feature extraction algorithm. Based on informatics theory,
these methods can effectively remove redundancy for single-
type data. However, these methods calculated the many-to-many
modification associations between DNA methylation CpG sites
and genes as redundant correlations. Thus, feature selection
methods for transcriptome profiling and DNA methylation data
are necessary to study further.

The diagnosis models are also essential for cancer diagnosis.
Due to the diversity of classifiers, ensemble models tended to
have better performance than single models (Dietterich, 2000a;
Yang et al., 2010; Zhou and Jin, 2017). Generally speaking,
there are three common types of ensemble strategies in the
cancer diagnosis field, namely, the voting method, average
method, and learning method. For example, Huang et al.
(2017) proposed an support vector machine (SVM) ensemble
model, which constructed SVM base classifiers with different
kernel functions based on bagging and boosting sampling and
used majority voting and weighted average ensemble strategies.
The SVM ensemble model solves the problems of easy fitting
and limited generalization of a single model, but it is limited
to the same type classifiers and cannot fully guarantee the
difference between classifiers. Cho and Won (2003) trained
four different types of individual classifiers and obtained the
final ensemble model by majority voting method. This method
takes advantage of the complementarity among the different
individual classifiers and breaks through the limitation of the
application scope of single classifiers. Although it is relatively
simple to integrate homogeneous and heterogeneous classifiers
by the voting and average methods, it cannot ensemble the
nonlinear relationship between classifiers. To further ameliorate
the voting and average methods, Xiao et al. (2018b) utilized
the stacking learning ensemble strategy, which based on cross-
validation to train five different classifiers and put the training
results of the classifiers as the input of a deep learning algorithm.
The learning ensemble strategy effectively integrate the nonlinear
relationships between the heterogeneous classifiers. However, the
deep learning algorithm highly depends on the size of samples,
whose performance needs to be enhanced by a large increase in
the samples of data. Therefore, these ensemble methods show a
limited performance for precise cancer diagnosis.

To address the above limitations, we proposed a novel
hierarchical feature selection and second learning probability
error ensemble model, called HFS-SLPEE, for precision cancer
diagnosis. At the dataset level, we integrated protein-coding
genes expression profiles, ncRNAs expression profiles, and DNA
methylation data to construct a triple dataset that provides a
multiview perspective and diverse information. At the feature
selection level, due to the significant differences in dimensions,
abundance, and association relationships of the triple dataset,
we designed a novel hierarchical feature selection algorithm.
In stage 1, we developed a CpG sites aggregation feature
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selection algorithm, termed CSAFS, to non-destructively store
the biological associations between ultra-high dimensions DNA
methylation CpG sites and genes and rapidly reduce the nearly
500,000 dimensions DNA methylation data to nearly 30,000
dimensions methylated gene data. In stage 2 feature selection,
we used different thresholds to further select significantly
differentially features via FC and FDR. In stage 3 feature selection,
we adopted the mRMR algorithm to select a compact set of
superior features. At the model diagnosis level, we developed
a second learning probability error ensemble model, named
SLPEE. Specifically, we selected four individual classifiers with
significant differences and apparent complementary effects to
build heterogeneous classifiers and then obtain the classifiers-
predicted class probability predictions. To thoroughly learn the
nonlinear data, SLPEE integrated the classifiers-predicted class
probability predictions and the actual class label in the validating
set to construct a new training set, which implicitly included
the probability error of each classifier. Furthermore, we utilized
eXtreme Gradient Boosting (Xgboost) as ensemble learner to
secondly learn the new training set. Via training on three cancers
in The Cancer Genome Atlas (TCGA) based on 10-fold cross-
validation, HFS-SLPEE achieved 100% multi-indicators of LUAD
and kidney renal clear cell carcinoma (KIRC), and obtained
99.65% accuracy, 99.61% sensitivity, 100% specificity, and
99.81% F1-score of BRCA, outperforming previously published
approaches. The results indicate that HFS-SLPEE is an accurate
and robust approach for cancer diagnosis.

Theoretically, the three contributions of this work are as
follows: (i) we integrate protein-coding gene expression profiles,
ncRNA expression profiles, and DNA methylation data to solve
the problem of lacking information on cancer diagnosis; (ii) we
take the biological complex associations into account and develop
a novel hierarchical feature selection approach, which integrates
the proposed CSAFS, FC&FDR, mRMR, to efficiently select a
group of superior and compact features; and (iii) we design an
SLPEE model, which makes predictions by secondly learning the
error rules between the predicted class probability values of the
heterogeneous classifiers and the real values to realize the self-
correction of the diagnosis errors via the nonlinear ensemble of
heterogeneous classifiers.

MATERIALS AND METHODS

As shown in Figure 1, HFS-SLPEE consists of four parts: (i) the
construction of a triple dataset, (ii) the novel hierarchical feature
selection method, (iii) heterogeneous classifiers, and (iv) SLPEE.
First, we integrated three biological data including protein-
coding gene expression profiles, ncRNA expression profiles,
and DNA methylation data to construct a triple dataset, which
contains the rich information. Afterward, we hierarchically
selected features for the triple dataset. In the first-stage feature
selection, we designed the CSAFS algorithm, which could quickly
reduce nearly 500,000 dimensions of DNA methylation data to
tens of thousands of dimensions and non-destructively preserved
the biological complex modification associations between DNA
methylation CpG sites and genes. In the second-stage feature

selection, we adopted the FC and FDR to select the features
with the highest relevance to the target class. In the third-stage
feature selection, we applied the mRMR algorithm to select
a compact set of superior features with minimal redundancy
and maximal relevance. Next, we trained four heterogeneous
classifiers in the training set with the features selected via (ii) and
optimize the parameters of heterogeneous classifiers via the grid
search algorithm in the validating set. Finally, we developed the
SLPEE model to ensemble the class probability predictions of the
heterogeneous classifiers under the optimal parameters. SLPEE
was utilized to predict the testing set in each fold and obtained
the novel informative biomarkers.

Construction of the Triple Dataset
The central dogma of classical genetics indicated that genetic
information was stored in protein-coding genes (Crick et al.,
1961). It had been thought that the formation of tumors is due
to the mutations of protein-coding genes. In recent years, plenty
of evidence showed that epigenetics also played an essential
role in tumor progression (Xu et al., 2019, 2020; Meng et al.,
2020). Epigenetics did not involve the DNA sequence changes but
changed the structure of chromosomes via different mechanisms
that affected the activity of surrounding genes to induce cancer.
These known mechanisms commonly included the regulation
of ncRNA, DNA methylation, and histone modification, but
there are many mechanisms that are unknown so far. Herein,
we integrated protein-coding gene expression profiles, ncRNA
expression profiles, and DNA methylation data to construct a
triple dataset, which contained rich information and provided a
multiview perspective for precision cancer diagnosis.

The Novel Hierarchical Feature Selection
The triple dataset exhibits complex characteristics: (i) There
were many-to-many complex modification associations between
methylation CpG sites and genes; (ii) DNA methylation data were
nearly 500,000 dimensions, while the transcriptome profiling
were nearly 60,000 dimensions; (iii) there were many noise
and redundancy features, and only a small part of the features
was positively related to the two phenotypes as tumor and
normal tissues; and (iv) the expression abundance of the
transcriptome profiling was significantly different from the
DNA methylation data. We proposed a novel hierarchical
feature selection algorithm against the complex characteristics of
the triple dataset.

Stage 1: CpG Sites Aggregation Feature Selection
In this study, we used Illumina Human Methylation 450 array
methylation chip data, which measures the level of methylation
at known CpG sites as follows:

β =
M

M + U
(1)

where M denotes the methylated array intensity, M + U denotes
the unmethylated array intensity, and β represents the ratio
between the methylated array intensity and the total array
intensity, ranging from 0 to 1. A CpG site could modify
multigenes, while a gene might be related to multi CpG
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FIGURE 1 | A flowchart of HFS-SLPEE. We first integrate the protein-coding gene expression profiles, non-coding RNA expression profiles, and DNA methylation
data to get rich information. Afterward, considering the CpG-gene biological associations, we design a novel hierarchical feature selection method to get a compact
group of superior features. Next, we train four heterogeneous classifiers in the training set with the selected features and optimize the parameters of heterogeneous
classifiers via the grid search algorithm in the validating set. Finally, we develop a second learning probability error ensemble model (named SLPEE) to ensemble the
class probability predictions of the heterogeneous classifiers under the optimal parameters. SLPEE is utilized to predict the testing set in each fold. HFS-SLPEE is a
precision cancer diagnosis framework, which is powerful tool for precision cancer diagnosis.

sites. To rapidly reduce the dimensions of the ultra-high
dimensionality DNA methylation data and preserve the many-
to-many complex biological associations between CpG sites and
genes in advance, we proposed a novel CpG sites aggregation
feature selection method, called CSAFS, as the stage 1 feature
selection algorithm to obtain methylated genes. Specifically, we
defined the methylated genes as MGgj , which represents the
arithmetic mean value of the methylation level of all CpG sites
related to the gene gj. The MGgj is calculated as follows:

MGgj =

∑P
i=1 CpGi

P
(2)

where P denotes the dimensions of the DNA methylation
data, P = 485, 577, CpGi(i = 1, 2...,P) represents the level of
methylation at the known ith CpG site, and

∑P
i=1 CpGi denotes

the aggregate value of all relevant CpG sites of the gene gj.

Stage 2: FC and FDR
The dimensions of methylated genes data and protein-coding
gene and ncRNA expression profiles belonged to tens of
thousands of dimensions after the stage 1 feature selection.
However, the dimensions were still relatively high. Therefore,
we utilized FC and FDR statistical methods to further perform
overall rapid dimension reduction.

Fold Change
FC is a well-known method to screen the differentially expressed
genes of microarray data (DeRisi et al., 1996; Schena et al., 1996),
which measures the difference through calculating the ratio of the
mean value of two groups data (DeRisi et al., 1997). The FC value
of the gth gene is calculated as follows:

FCg =

∑T
t=1 xt

g
T∑N

n=1 yn
g

N

(3)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 June 2021 | Volume 9 | Article 696359

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-696359 June 28, 2021 Time: 14:12 # 5

Meng and Jin Precision Cancer Diagnosis and Biomarkers

FIGURE 2 | Heatmap analysis of differentially methylated genes and volcano plot analysis of differentially expression genes for the BRCA dataset. In panel (A), the
row represents the methylation level of the genes, and the column represents the normal and tumor samples. Dark red shades indicate the higher level of
methylation, and dark blue shades indicate the lower level of methylation. Color keys indicate the intensity associated with normalized beta values. In panel (B), the
x-axis represents the log2FC, and the y-axis represents −log10(FDR), and each dot represents a gene. The significantly upregulated genes are highlighted in red,
and the significantly downregulated genes in blue.

where T is the size of tumor samples, N is the size of normal
samples, xt

g is the gth gene expression value of the tth tumor
sample, yn

g is the gth gene expression value of the nth normal
sample. Similarly, the FC values of methylated genes are obtained
by calculating the ratio of the mean methylation level of
methylated genes in normal and tumor samples. In this study, the
thresholds for screening significantly differentially methylated
genes and expressed genes are, respectively, (

∣∣log2FC
∣∣ > 0.5) and

(FDR < 0.05) and (
∣∣log2FC

∣∣ > 3) and (FDR < 0.05). Although
the differential features selected by FC method have strong
repeatability, the false-positive results rate is relatively high in the
absence of false-positive control (McCarthy and Smyth, 2009).

False Discovery Rate
Without any control, the probability of making the type I error
will increase rapidly with the number of hypothesis tests. The
FDR could test as many features as possible and effectively
control the overall false-positive rate within an acceptable
range (Norris and Kahn, 2006). In this study, we applied
the Benjamini–Hochberg method to perform multihypothesis
test FDR correction on the significant p-value. We adopted
FDR < 0.05 as the threshold of screening the significant
difference feature.

In the stage 3 feature selection, we used FC and FDR as the
stage 2 feature selection algorithm to balance the repeatability
and false positive rate of the differential features. To test whether
methylated genes and transcriptome profiling are significantly
different between normal and tumor samples, we performed
heatmap analysis on the differentially methylated genes of BRCA
with 892 samples after the stage 2 feature selection (Figure 2A).
We found that the level of the methylated gene in each normal or
tumor samples was similar, and differentially methylated genes
after stage 2 feature selection showed significant differences in
normal and tumor tissues. Similarly, we implemented the volcano
plot analysis on the transcriptome profiling of BRCA with 1,211
samples after the stage 2 feature selection (Figure 2B). Figure 2B

indicates that the joint screening of
∣∣log2FC

∣∣ and FDR not only
ensured the difference of features but also effectively controlled
the overall false-positive rate.

Stage 3: mRMR
We adopted the mRMR algorithm (Peng et al., 2005) as the
stage 3 feature selection, which could remove redundant features
on the premise of preserving the regulation, modification, and
collaborative associations in the triple dataset to the utmost
extent. The mRMR algorithm maximizes the relevance between
features xi and categorical target variables t while minimizing the
redundancy between features by solving the equation as follows:

max

 1
|S|

∑
xi∈S

I (xi; t)−
1
|S|2

∑
xi,xj∈S

I
(
xi; xj

) (4)

where I(; ; ) is the mutual information of the two random
variables, S is a feature subset, and ‖ S
parallel is the number of features in S. I(; ) is defined in terms of
the probabilistic density functions p (x),p

(
y
)
, and p

(
x, y

)
:

I
(
x; y

)
=

x
p
(
x, y

)
log

p
(
x, y

)
p (x) p

(
y
)dxdy (5)

The input data of the mRMR algorithm needed to be discrete.
We defined the discrete function as follows:

xi,j
∗
=


2 xi,j ≥ xj + k ∗ δj,

0 others,
−2 xi,j ≤ xj − k ∗ δj,

(6)

where δj represents the standard deviation of the jth feature, xj
is the average value of the jth feature, and k is the threshold
parameter. In this study, we set k = 0.5, and the dataset has been
discretized into three states{−2, 0, 2}.
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Heterogeneous Classifiers
After the hierarchical feature selection, we used four different
models, i.e., SVM, decision tree (DT), random forest (RF),
and AdaBoost, to capture the inherent information of the
data with the characteristics of low dimension, nonlinear,
imbalance class, and singular values. The large differences and
obvious complementarity of the four models are as follows.
First, SVM mapped data to higher dimensional space by
kernel function and found the best separation hyperplane to
maximize the margin between two types of training samples
(Noble, 2006). SVM is good at solving the problems of low-
dimension and nonlinear inseparable data. However, SVM is
sensitive to the singular value, and its performance mainly
depends on the selection of kernel function and related
parameters. Second, DT was a tree structure, starting from
the root node and recursively constructing from top to
bottom. Non-leaf nodes were attribute features, with each
branch representing the output of the judgment result, and
leaf nodes were categories (Quinlan, 1986; Safavian and
Landgrebe, 1991). DT was suitable for dealing with all kinds
of discrete data. It has the characteristics of simple structure,
strong interpretability, and few parameters. However, DT was
biased toward the class with a large number of samples, was
susceptible to singular values, and ignored the correlation
between features (Breiman, 1996; Bauer and Kohavi, 1999;
Dietterich, 2000b). Third, RF and AdaBoost were ensemble
classifiers that used decision trees as individual classifiers.
RF considered the correlation between features and had a
high tolerance for singular values. However, if the training
set of each tree was unbalanced in the process of random
sampling, the performance would be very low on the small
sample dataset (Breiman, 2001). Fourth, AdaBoost has certain
adaptability for the unbalanced dataset, but it is sensitive to the
abnormal samples.

Second Learning Probability Error
Ensemble Model
Existing ensemble strategies could not fully integrate the
nonlinear relationships between different classifiers and
unbiasedly estimate the nonlinear change rules of the triple
dataset. Thus, we proposed the SLPEE. First, we combined
the class probability prediction values of the first-learning
heterogeneous classifiers and the actual class labels of the
validating set to form a new dataset, so the diagnosis errors
of individual classifiers were implicit in the new dataset.
Then, we conducted a second-learning on the new data
set via Xgboost, which used the residual between the real
value and the predicted value as the next iteration of the
learning goal. Xgboost could effectively learn errors and
had a strong ability of nonlinear fitting, self-learning, and
self-correction (Chen and Guestrin, 2016). Algorithm 1
described the SLPEE in detail. D was the data matrix, y was
the label set that has two labels {−1,1}, corresponding to
the normal and tumor samples, h was the heterogeneous
classifier, and E represented the SLPEE model. Lf was the
learning set in the f th fold, Testf was the testing set in the

f th fold, and Tfk represented the k-fold training set in the
f -fold learning set.

Algorithm 1: The SLPEE based on F-fold CV.

Input: D, y

Output: ACCbest, Sbest, nbest

1: ACCbest ← 0

2: for n← 5 to 30 do

3: step 1: divide D into Lf and Testf (f = 1, ..., F) adopting F-fold CV

4: for f← 1 to F do

4: step 2: hierarchical feature selection from Lf

5: S1 ← stage-one CSAFS (Lf)

6: S2 ← stage-two FC&FDR (Lf(S1))

8: step 2.1: update Lf by S2 and discretize the updated Lf into Lf
∗

7: S3 ← mRMR (Lf
∗, n)) and update Lf according to S3

8: step 3: train the SLPEE model

9: divide Lf into Tfk and Vfk (k = 1, ..., K) adopting K-fold CV

10: for k← 1 to K do

11: step 3.1: learn the heterogeneous classifiers

12: for t← 1 to T do

13: learn an individual classifier hkt on Tfk

14: optimize parameters by cross-validated grid-search on Vfk

15: end for

16: step 3.2: construct a new training set

17: for xi ∈ Vfk do

18: get a record
{
x
′

i , yi

}
, where x

′

i = {hk1 (xi) , , hkT (xi)}

20: end for

21: end for

22: step 3.3: train classifier h
′

and second learning probability error

23: E← h
′

(
{
x
′

i , yi

}
)

24: step 4: predict the testing set

25: Testf ← update Testf according to S3

26: predictf ← E(Testf)

27: end for

28: step 5: get the highest accuracy

27: ACCn ← accuracy (predict)

29: If ACCbest < ACCn then

30: ACCbest ← ACCn

31: Sbest ← Sselect

32: nbest ← n

33: end if

34: end for

Datasets and Preprocessing
We downloaded the protein-coding gene expression profiles,
non-coding RNA expression profiles, and DNA methylation data
of BRCA, LUAD, and KIRC from the TCGA official website1.
For the transcriptome profiling, the amount of gene expression
is HTSeq-Counts, and the total dimension of protein-coding
gene and ncRNA expression profiles is 60,244. For the DNA
methylation data, we used Illumina Human Methylation 450
array methylation chip data. The chip has 485,577 probes,

1https://portal.gdc.cancer.gov/
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TABLE 1 | Summary of the original different datasets for three cancers.

Datasets No. of
tumor

No. of
normal

Total
samples

Dimensions

BRCA

Protein-coding gene 1,109 113 1,222 19,676

ncRNA 1,109 113 1,222 40,568

DNA methylation 796 96 892 485,577

The triple dataset 783 83 866 545,821

LUAD

Protein-coding gene 535 59 594 19,676

ncRNA 535 59 594 40,568

DNA methylation 475 32 507 485,577

The triple dataset 465 21 486 545,821

KIRC

Protein-coding gene 539 72 611 19,676

ncRNA 539 72 611 40,568

DNA methylation 325 160 485 485,577

The triple dataset 321 24 345 545,821

The triple dataset is the integrated data of the protein-coding gene expression
profiles, non-coding RNA expression profiles, and DNA methylation.
No. of tumor means the number of tumor samples.
No. of normal means the number of normal samples.
Total samples mean the total number of all the samples.
Dimensions means the dimensions of every type of data.

which can detect nearly 450,000 methylation CpG sites in the
entire human genome, covering 96% of CpG islands. Based
on the same sample ID, we integrated the protein-coding gene
expression profiles, non-coding RNA expression profiles, and
DNA methylation data to construct a triple dataset. The sample
numbers of the original datasets for the three cancers are shown
in Table 1.

We preprocessed the samples and data successively. First,
due to the limitations of experiments conditions and manual
operation, some metastatic samples are wrongly classified as
primary tumor samples, resulting in one patient who may
correspond to multiple tumor samples. For example, in the
DNA methylation dataset of BRCA, patient TCGA-BH-A1ES
corresponds to two tumor samples, of which TCGA-BH-A1ES-
06A-12D-A244-05 is a metastatic sample. In this work, we
kept the primary tumor sample and the solid tissue normal
sample related to the study and excluded outliers. Second, we
preprocessed the data, including removing duplicate features,
removing features with severe missing values, and correcting the
normalized data. For example, when the missing value of a feature
accounts for 100% of the total sample size, we think that the
missing feature is too serious and should be deleted. We used the
normalizeBetweenArrays function of the limma package in R to
correct the normalized data. The datasets after preprocessing of
the three cancers are shown in Table 2.

Parameter Settings
In order to reproduce all experimental results in our paper, we
set the specific random seeds for BRCA, KIRC, and LUAD as 14,
14, 20, and the other parameters setting of three cancers were
same. In the stage 3 feature selection, we assumed that the size

TABLE 2 | Summary of preprocessed datasets for three cancers.

Datasets No. of
tumor

No. of
normal

Total
samples

Dimensions

BRCA

Protein-coding gene 1,098 113 1,211 19,676

ncRNA 1,098 113 1,211 40,568

DNA methylation 792 96 888 485,577

The triple dataset 778 83 861 545,821

LUAD

Protein-coding gene 517 59 576 19,676

ncRNA 517 59 576 40,568

DNA methylation 464 32 496 485,577

The triple dataset 457 21 478 545,821

KIRC

Protein-coding gene 531 72 603 19,676

ncRNA 531 72 603 40,568

DNA methylation 321 160 481 485,577

The triple dataset 318 24 342 545,821

The triple dataset is the integrated data of the protein-coding gene expression
profiles, non-coding RNA expression profiles, and DNA methylation.
No. of tumor means the number of tumor samples.
No. of normal means the number of normal samples.
Total samples mean the total number of all the samples.
Dimensions means the dimensions of every type of data.

of the optimal feature subset is n, which increased from 5 to 30
with a step of one. Our proposed model optimizes the parameters
of individual classifiers via grid-search over a parameter grid.
For DT, we used the default parameters. For SVM, we set the
kernel function as RBF, C = {0.001, 0.01, 0.1}, and gamma =
{1.0, 10.0, 100.0}. For RF, we set n_estimators = {50, 100}. For
Xgboost and AdaBoost, we, respectively, set n_estimators =
{100, 200, 300} and n_estimators = 50.

Performance Evaluation of HFS-SLPEE
Prediction of Cancer Diagnosis
In this work, we implemented 10-fold cross-validation (CV) on
three cancers in TCGA to evaluate the prediction performance
of HFS-SLPEE. In the 10-fold CV experiment, the triple dataset
was randomly divided into 10-folds with equal size, 9 of which
were taken as the learning set, and the remaining 1-fold was the
testing set. The process is repeated 10 times until all samples are
predicted once. In each learning set, we divided the learning set
into K disjoint subsets by performing K-fold CV again, of which
K−1 subsets were the training set and the remaining one subset
was the validating set.

Evaluation Metrics
We considered that the primary tumor was a positive class,
and the solid normal tissue was the negative class. There
were four results of cancer diagnosis in the testing set: true
positive (TP), true negative (TN), false negative (FN), and
false positive (FP). Among the results, TP represented the
number of correctly classified tumor tissue samples, TN denoted
the number of correctly classified normal tissue samples, FN
indicated the number of samples predicted to be normal tissue
but actually tumor tissue, and FP stood for the number of samples
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predicted to be tumor tissue but actually normal tissue. Therefore,
accuracy, sensitivity/recall, specificity, and F1-score were defined
as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Sensitivity/Recall =
TP

TP + FN
(8)

Specificity =
TN

TN + FP
(9)

F1− score = 2 ·
Precison · Recall

Precision+ Recall
=

2TP
2TP + FP + FN

(10)

RESULTS

Performance of HFS-SLPEE Based on
the Cross-Validation
To verify whether HFS-SLPEE can generalize the diagnosis
of different cancers, we researched on three high-incidence
cancers BRCA, LUAD, and KIRC. We recorded the accuracy
corresponding to the feature variable n (see Figure 3). It indicates
that as n continues to increase, the accuracy increases; when
n = 21, n = 12, n = 16, the accuracy reached the peak value
and then show a downward trend, which means that the added
features contain more noise than information. In this study,
we take the features subset when the highest point is reached
at first as the optimal. That is, n = 21, n = 12, n = 16,
respectively, as the number of features finally selected for the
BRCA, LUAD, and KIRC.

The predicted results of HFS-SLPEE for three cancers in
TCGA are shown in Table 3. We used 21 key features to
make BRCA achieve 99.65% accuracy, 99.61% sensitivity, 100%
specificity, and 99.81% F1-score, and only three samples were
misdiagnosed. For LUAD and KIRC, we selected 12 and 16 key
features to achieve four-indicator 100% precision diagnosis. The
results show that HFS-SLPEE achieves an excellent performance
and has the generalization ability for three high-incidence
cancers diagnosis.

TABLE 3 | The diagnosis results of three cancer by HFS-SLPEE (%).

Metrics BRCA LUAD KIRC

No. of features 21 12 16[
TN FP

FN TP

] [
83 0

3 775

] [
21 0

0 457

] [
24 0

0 318

]
Accuracy 99.65% 100% 100%

Sensitivity 99.61% 100% 100%

Specificity 100% 100% 100%

F1-score 99.81% 100% 100%

Performance of HFS-SLPEE by Ablation
Analysis
Our proposed approach mainly consists of three parts, namely,
the triple dataset (TDS), the novel hierarchical feature selection
algorithm, and SLPEE model. To examine the contribution of
each component, we compared the proposed approach with
several combinations.

First, we compared the triple dataset with the other seven
datasets, including mRNA, miRNA, lncRNA, ncRNA, DNA
methylation, transcriptomic, and mRNA and DNA methylation,
to inspect the contribution of the triple dataset. We found
that the triple dataset achieved the best performance compared
with the other seven datasets (see Figures 4A,B). Specifically,
miRNA, mRNA, ncRNA, and DNA methylation are all single-
type datasets with no absolute dominance, and their contribution
rates in different cancers and diagnostic performances are
different. The duplex-type datasets (transcriptomic, mRNA, and
DNA methylation) have improved performance in many cases
compared with the contained single-type dataset. The results
indicated that the triple dataset contained more comprehensive
and useful information and provided a robust data support.

Next, to examine the contribution of CSAFS, which saves the
information of all methylation CpG sites related to genes in an
aggregated form, we compared the hierarchical feature selection
algorithm without and with CSAFS. Owing to the BRCA with the
largest number of samples among three cancers, we take BRCA
as an example, when the feature variable n is 21, to compare the
performance of diagnosis and the time of the feature selection

FIGURE 3 | The relationship curves of the features and the accuracy of three cancers.
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FIGURE 4 | The comparison results of different datasets. (A) The histogram of comparison results. (B) The annotated heatmap of comparison results. As is shown,
compared with the other seven datasets, the integrated data of the protein-coding gene expression profiles, non-coding RNA expression profiles, and DNA
methylation can improve the performance of the model.

FIGURE 5 | The comparison results of SLPEE and the other four models.

process. On the one hand, the experimental results showed that
the hierarchical feature selection with CSAFS achieved better
performance, and the accuracy, sensitivity, specificity, and F1-
score of BRCA are improved by 0.23, 0.12, 1.2, and 0.13%,
respectively. In the final feature subset selected by the hierarchical
feature selection with CSAFS, we screened out 11 methylated
genes such as WT1-AS and AL513523.2, accounting for about
30% of the final feature subset. On the other hand, the time
consumed by the hierarchical feature selection without and
with CSAFS is 2.6 and 0.15 h, respectively. It indicated that
CSAFS, as the stage 1 feature selection approach, is capable of
non-destructively preserving the complex and essential many-to-
many modification associations between methylation CpG sites
and genes and improving the efficiency of cancer diagnosis.

Finally, to verify the contribution of SLPEE further, we
compared the accuracy of SLPEE with DT, RF, SVM, and
Adaboost by using the triple dataset and the proposed
hierarchical feature selection algorithm that traversed each
feature in the range of 5–30. The results showed that the
four models have different accuracies for different cancers

with different feature numbers and have significant differences
and complementary effects (see Figure 5). We found that
the SLPEE accounts for 61.5, 88.5, and 92.3% with higher
accuracy than the other four models for BRCA, KIRC, and
LUAD datasets, respectively. That is, the accuracies of SLPEE
model for three cancers are generally better than the other
four models, which fully reveals that SLPEE absorbs the
advantages of four models and overcomes their respective
shortcomings. SLPEE breaks through the limitation of the
single model with a limited scope of application and enhances
the generalization of different features and different types of
cancer diagnoses.

Comparison With the Published
State-of-the-Art Research
We compared the performance of HFS-SLPEE with state-of-the-
art research (Raweh et al., 2018; Xiao et al., 2018b; Alghunaim
and Al-Baity, 2019; see Table 4). Table 4 shows that most of the
latest studies generally gave a single performance indicator and at
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TABLE 4 | Comparison results with the state-of-the-art approaches (%).

Cancer Datasets Methods Accuracy Sensitivity Specificity F1

BRCA mRNA Xiao et al., 2018b 98.41 – – –

mRNA Proposed 99.17 99.45 96.46 99.54

DM Raweh et al., 2018 98.33 – – 94.90

DM Proposed 98.42 98.86 94.79 99.11

mRNA + DM Alghunaim and Al-Baity, 2019 97.33 96.82 100 –

mRNA + DM Proposed 99.30 99.36 98.80 99.61

Transcriptome + DM Proposed 99.65 99.61 100 99.81

LUAD DM Raweh et al., 2018 99.25 – – 96.50

DM Proposed 99.60 99.78 96.88 99.78

Transcriptome + DM Proposed 100 100 100 100

KIRC DM Raweh et al., 2018 99.55 – – 99.40

DM Proposed 99.58 99.69 99.38 99.69

Transcriptome + DM Proposed 100 100 100 100

DM is the abbreviation of DNA methylation; The best performance in each case is given in boldface.

TABLE 5 | The summary of selected features for the three cancers.

Cancer Protein-coding genes ncRNAs Methylated genes

BRCA MME, C1QTNF9, FIGF, SDPR, CHL1,
MAMDC2, FMO2, PAMR1, ADAMTS5,
TSLP, CD300LG, GLRA4, PGM5P4(9),
HPSE2(9), LYVE1(9), CLEC5A(3), WISP1(3),
SCARA5(3), BTNL9(2), ADH1C(2), CILP2(1),
HAGHL(1), CCL11(1), RP11-138I17.1(1)

ADAMTS9-AS2| antisense, RP11-159H22.2|
antisense

WT1-AS (5), AL513523.2(5), F13A1(4),
ABCB10P4(4), PABPC5(2), OR14I1(1),
NID2(1), AC005796.2(1),
AC079922.3(1), CCDC181(1),
IGHV3OR16-10(1)

LUAD FAM107A, HBA1, CD5L, GPM6A, ODAM(9),
GRHL3(6), RAB26(5), ANKRD1(3),
CTD-3214H19.16(3), HBM(3),SSTR4(3),
ADRB1(2), MB(1), SERTM1(1), FPR2(1),
SH3GL3(1), MYOC(1), UPK3B(1), TFAP2A(1),
LYVE1(1), SLC4A1(1), SLC6A4(1), ALKAL2(1)

CTB-43E15.1| lincRNA, RP11-371A19.2|
antisense(8), RP11-203H2.2| lincRNA(6),
LL22NC03-104C7.1| antisense(2), GS1-600G8.5|
lincRNA(2), FGF10-AS1| antisense(1), PACRG-AS3|
antisense(1), RPL13AP17|
transcribed_processed_pseudogene(1),
RP11-416I2.1| lincRNA(1), RP11-35J10.7|
sense_intronic(1), LINC00163| lincRNA(1)

RP11-344B5.3(1)

KIRC IRX2, PRR35, ACPP, KNG1(9), SCNN1B(9),
PIK3C2G(9), SLC9A4(9), KCNJ10(8),
TFAP2B(7), AQP2(6), TMEM45B(5), TRPV6(4),
AIF1L(2), SCNN1G(2), C9orf135(1),
RASL11B(1), DUSP9(1), GABRA2(1),
FAM46D(1), CASR(1), NELL1(1), CLDN8(1),
ACOT12(1), RP11-536G4.1(1), FAM19A4(1)

BMPR1B-AS1| lincRNA, RP11-527L4.6|
lincRNA, RP11-469H8.6| antisense,
RP11-35J10.6| sense_intronic(6), RP1135J10.7|
sense_intronic(2), AC103563.7| antisense(2),
PTCSC3| lincRNA(1), LINC01020| lincRNA(1),
IGKV3OR2-268| IG_V_gene(1), AC008991.1|
lincRNA(1), LINC00864| lincRNA(1),
CTD-2626G11.2| lincRNA(1), CTD-2007H18.1|
lincRNA(1)

RP11-266E6.3(1), PIK3IP1-AS1(1)

The bold font indicates the feature appears in each fold in the 10-fold cross-validation experiment. LYVE1 (9) represents that LYVE1 appears nine times in the 10-fold
cross-validation.

most three performance indicators. In this study, we presented
four performance indicators to comprehensively measure the
performance of HFS. Alghunaim and Al-Baity (2019) used
protein-coding gene expression profiles, DNA methylation, and
their integrated data in TCGA and treated all data as features with
SVM, DT, and RF three models for BRCA diagnosis. Comparing
with Alghunaim and Al-Baity (2019), Table 4 shows that the
accuracy and sensitivity of the HFS-SLPEE based on the protein-
coding gene expression profiles and DNA methylation data are
improved by 1.97 and 2.54%, respectively. The triple dataset
was an effective solution to the shortcomings of the duplex
dataset, which not only achieved the same 100% specificity but
also improved the accuracy and sensitivity by 2.32 and 2.79%,

respectively. Raweh et al. (2018) proposed a hybrid feature
selection algorithm based on the DNA methylation data and
applied naive base, RF, and SVM for BRCA, LUAD, and KIRC
diagnosis. Comparing with Raweh et al. (2018), we found that
HFS-SLPEE steadily improved the accuracy and F1-score by
0.03–0.35% and 0.29–4.21% for the three cancers, respectively.
Xiao et al. (2018b) utilized the DESeq feature selection method
to screen for the differentially expressed genes and adopted a
deep neural network to learn the predictions of KNN, SVM, DT,
RF, and GBDT. It was indicated that HFS-SLPEE improved the
accuracy by 0.76%, comparing with the results of Xiao et al.
(2018b). In summary, the proposed approach is a powerful
framework for precision cancer diagnosis, which refers to the
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three aspects of the dataset, feature selection, and diagnosis
model, outperforming the previously published state-of-the-
art methodologies.

HFS-SLPEE Uncovers New Potential
Biomarkers for Three Cancers
According to the optimal feature variable, we obtained 10
group features corresponding to the BRCA, LUAD, and KIRC
with a total of 210, 120, and 160 features. After removing
the overlapping features, the optimal features subsets were,
respectively, reduced to 37, 35, and 40 features for the three
cancers. The average repetition rate of the 10 group features for
three cancers is 70.83–82.38%. On the one hand, the features
selected in each fold is different, verifying that cancer does not
generate along a fixed trajectory, but there are many different
signal pathways. On the other hand, although the features subset
selected in each fold changes dynamically, some feature genes
recurring, and part of them will appear steadily in every fold.

We organized the features into three categories: protein-
coding genes, ncRNAs, and methylated genes (see Table 5).
We have two findings. First, the proportion of epigenetic
factors containing DNA methylation and non-coding genes in
carcinogenesis is not less than 1/3. Specifically, the proportion
of epigenetic factors (including methylated genes and non-
coding genes) in features subset are 40.54, 34.29, and 37.5%
for BRCA, LUAD, and KIRC, respectively. Second, a limited
number of specific protein-coding genes and lncRNAs (antisense
and or lincRNA) appear steadily in each cross-validation
experiment, which can be regarded as potential biomarkers for
these three cancers.

DISCUSSION

In this work, we developed a novel hierarchical feature selection
and second learning probability error ensemble model, called
HFS-SLPEE, for cancer diagnosis. HFS-SLPEE is a precision
cancer diagnosis framework, constituted by the integrated data
of protein-coding gene expression profiles, non-coding RNA
expression profiles, and DNA methylation data, the novel HFS
algorithm, and the SLPEE model. We experimentally studied
three high-incidence cancer as BRCA, LUAD, and KIRC in

the TCGA database. The results have demonstrated that HFS-
SLPEE achieves higher performance in comparison to several
state-of-the-art methodologies. Therefore, HFS-SLPEE could be
a powerful tool for cancer diagnosis. Moreover, HFS-SLPEE
is universal, not limited to the field of cancer diagnosis.
It is also suitable for cancer subtype classification, tumor
origin detection, etc.

Herein, we acknowledge some limitations of our proposed
method. Since a recent related study (Liang et al., 2020) has
demonstrated that sufficient samples may enhance performance
of models. Despite the enormous availability of cancer datasets
in TCGA, the number of samples is still not enough. As
a machine-learning-based model, HFS-SLPEE needed much
time to train because of the high number of combinations of
trainable hyperparameters. The number of normal samples is
much less than that of tumor samples in practice, which has
been a big challenge when building a gold-standard dataset
for cancer diagnosis. A study by Liang et al. (2017) showed
that somatically acquired structural variation (SV) may induce
tumor formation; we will explore some other data, such as copy
number alteration (CNA) and SV, for better performances of
HFS-SLPEE in future work.
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