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RIPK1-RIPK3-MLKL-dependent necrosis
promotes the aging of mouse male
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Xiaodong Wang*

National Institute of Biological Sciences, Beijing, China

Abstract A pair of kinases, RIPK1 and RIPK3, as well as the RIPK3 substrate MLKL cause a form

of programmed necrotic cell death in mammals termed necroptosis. We report here that male

reproductive organs of both Ripk3- and Mlkl-knockout mice retain ‘youthful’ morphology and

function into advanced age, while those of age-matched wild-type mice deteriorate. The RIPK3

phosphorylation of MLKL, the activation marker of necroptosis, is detected in spermatogonial stem

cells in the testes of old but not in young wild-type mice. When the testes of young wild-type mice

are given a local necroptotic stimulus, their reproductive organs showed accelerated aging.

Feeding of wild-type mice with an RIPK1 inhibitor prior to the normal onset of age-related changes

in their reproductive organs blocked the appearance of signs of aging. Thus, necroptosis in testes

promotes the aging-associated deterioration of the male reproductive system in mice.

DOI: 10.7554/eLife.27692.001

Introduction
Necroptosis is a form of programmed necrotic cell death caused by the tumor necrosis factor family

of cytokines (Christofferson and Yuan, 2010; Vandenabeele et al., 2010). In response to the acti-

vation of TNF receptor family members, receptor-interacting kinase 1 (RIPK1) is recruited to the

cytosolic side of the receptor and its kinase activity is activated (Holler et al., 2000). RIPK1 then

interacts with and phosphorylates a related kinase, RIPK3, leading to its activation (Cho et al., 2009;

Degterev et al., 2008; He et al., 2009; Zhang et al., 2009). If the cells also happen to have their

caspase-8 activity inhibited, either through interaction with its cellular inhibitor cFLIP or through the

action of viral or chemical inhibitors, RIPK3 drives the cell fate towards necroptosis (He et al., 2009;

Holler et al., 2000). Necroptosis can be inhibited by RIPK1 kinase inhibitor compounds, and can be

promoted by small molecule Smac mimetics, which shifts RIPK1 function from NF-kB activation to

activation of RIPK3 (Degterev et al., 2008; Wang et al., 2008). Once active, RIPK3 then phosphory-

lates a pseudokinase called mixed lineage kinase domain-like protein (MLKL) (Sun et al., 2012).

MLKL normally exists as an inactive monomer in the cytosol. Upon RIPK3 phosphorylation on serine

357 and threonine 358 of human MLKL or the mouse equivalent of serine 345, serine 347, and threo-

nine 349, MLKL forms oligomers and translocates to the plasma membrane, where it disrupts mem-

brane integrity, resulting in necrotic cell death (Cai et al., 2014; Chen et al., 2014;

Hildebrand et al., 2014; Murphy et al., 2013; Rodriguez et al., 2016; Sun et al., 2012;

Wang et al., 2014).

Necroptosis is known to have important functions under pathological conditions of microbial

infections or tissue damage since Ripk3 knockout mice show defects in defending microbial infec-

tions or manifest less tissue damage in a variety of chemical or ischemic reperfusion induced tissue

damage models (Cho et al., 2009; He et al., 2009; Robinson et al., 2012; Upton et al., 2010;

Zhou and Yuan, 2014). However, mice with Ripk3 or Mlkl gene knockout are remarkably normal
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without any noticeable developmental, physiological, or fertility defects (Murphy et al., 2013;

Newton et al., 2004; Wu et al., 2013). Therefore, under what physiological conditions necroptosis

happens in which tissue remains the biggest unanswered question in this research field.

While conducting a study investigating the impact of necroptosis on the progression of athero-

sclerosis (Meng et al., 2015), we serendipitously found that the male reproductive organ of mice

with Ripk3 and Mlkl gene knockout looked remarkably young even at advanced ages. A comprehen-

sive study present here revealed that necroptosis functions in promoting the aging of male repro-

ductive system in mice.

Results

The aging of reproductive organs is delayed in Ripk3-knockout mice
We first noticed that the 18-month-old Ripk3-knockout (Ripk3-/-) mice of the C57BL/6 strain looked

thinner than the age-matched wild-type (WT, Ripk3+/+) mice of the same strain that were housed

under the same conditions (Figure 1A). The average weight of 18-month-old wild-type mice was 46

grams, significantly more than of 37 grams of weight of the age-matched Ripk3-knockout mice

(Figure 1B). The weights of 4-month-old wild-type and Ripk3-knockout mice, on the other hand,

were indistinguishable (Figure 1B). In addition to differences in whole body weights, the seminal

vesicles, an auxiliary gland in the mouse male reproductive system, appeared to be quite different

between 18-month-old Ripk3-knockout and wild-type mice (Figure 1C). The weights of the seminal

vesicles from 18-month-old wild-type mice (n = 33) ranged from ~1,000 mg to 4,500 mg, while the

weights of the same organ from the age-matched Ripk3-knockout mice (n = 30) were mostly below

1,000 mg (Figure 1D).

It is known that seminal vesicles become enlarged as mice get old, presumably due to secondary

growth in response to declining of testis functions that is similar to prostate hypertrophy in human

(Finch and Girgis, 1974; Pettan-Brewer and Treuting, 2011). The difference in seminal vesicles

from wild-type and Ripk3-knockout mice become noticeable after one year of life, and become

increasingly evident over time. The seminal vesicles from wild-type mice continue to grow, whereas

the seminal vesicles from the Ripk3-knockout mice did not change in size from 4 months to 24

months (Figure 1—figure supplement 1A and B). There were no obvious differences in the overall

anatomical structure of seminal vesicles between wild-type and Ripk3-knockout mice (Figure 1C and

Figure 1—figure supplement 1A). Close examination revealed that the epithelium of the seminal

vesicles from 18-month-old wild-type mice showed irregularities, with spaces separating the epithe-

lium and the liquid compartment, whereas the seminal-vesicle epithelial cells from the age-matched

Ripk3-knockout mice were tightly packed, just as they are in young mice (Figure 1—figure supple-

ment 1C)

The seminal vesicles of mice are anatomically simple, consisting of only an epithelial layer that

envelopes a liquid compartment (Gonzales, 2001). Therefore, the difference in seminal vesicles

between wild-type and Ripk3-knockout mice did not offer much mechanistic insight what caused

such a phenotype. We further studied the testes of wild-type and Ripk3-knockout mice. By the time

mice reached 18 months of age, the wild-type testes started to appear atrophic, and weighed less

than Ripk3-knockout testes (Figure 1—figure supplement 1D and E). Consistently, the testosterone

level showed a dramatic drop as wild-type mice aged from 4 to 18 months, whereas the testoster-

one levels hardly decreased at all in Ripk3-knockout mice over the same period (Figure 1E). More-

over, the typical age-related increase in sex hormone-binding globulin (SHBG) (Vermeulen et al.,

1996) that is known to occur in wild-type mice was not observed in Ripk3-knockout mice (Figure 1—

figure supplement 2A). Interestingly, the levels of two endocrine factors secreted by the pituitary

gland, LH and FSH (Cooke and Saunders, 2002), did not differ between wild-type and Ripk3-knock-

out mice; both dropped significantly as mice aged from 4 months to 18 months (Figure 1—figure

supplement 2B and C). This finding indicated that the difference in aging of reproductive system

between old wild-type and Ripk3-knockout mice may result from local changes in testis.

Unlike what often happens in human upon reproductive organ aging, we did not notice any

apparent anatomical difference in the anterior, dorsal, ventral, or lateral prostate by an hematoxylin

and eosin (H and E) staining of mouse prostates (Pettan-Brewer and Treuting, 2011) sections of
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Figure 1. Ripk3-/- mice maintained their reproductive system function at an advanced age. (A, B) Macroscopic features and weights of Ripk3+/+ (wild-

type) and Ripk3-/- (Ripk3-knockout) male mice. Ripk3+/+ (4 Month, n = 16; 18 Month, n = 27) and Ripk3-/-(4 Month, n = 16; 18 Month, n = 27) male mice

were photographed and weighed. Data represent the mean ±the standard error of the mean (s.e.m). **p<0.01, ***p<0.001. p values were determined

with unpaired Student’s t-tests. NS, not significant. (C, D) Macroscopic features and weights of seminal vesicles. Mice were sacrificed at 18 months of

age, and the seminal vesicles from Ripk3+/+ (n = 33) and Ripk3-/- (n = 30) mice were photographed and weighed. Data represent the mean ±s.e.m.

***p<0.001. p values were determined with unpaired Student’s t-tests. (E) Serum testosterone levels of mice assayed using ELISA. Mice were sacrificed,

and the testosterone levels in serum from Ripk3+/+ (4 Month, n = 9; 18 Month, n = 9) and Ripk3-/- (4 Month, n = 9; 18 Month, n = 9) mice were

measured using an ELISA kit for testosterone. Data represent the mean ±s.e.m. *p<0.05, ***p<0.001. p values were determined with unpaired Student’s

t-tests. NS, not significant. (F, G) H and E of testis sections from Ripk3+/+ and Ripk3-/- mice. Ripk3+/+ (4 Months, n = 10; 18 Months, n = 10) and Ripk3-/-

(4 Months, n = 10; 18 Months, n = 10) mice were sacrificed and testes were harvested and stained with H and E in (F). The number of empty

seminiferous tubules was counted based on H and E staining and quantification in (G), empty seminiferous tubules were counted in five fields per testis.

Scale bar, 100 mm. Data represent the mean ± S.D. ***p<0.001. p values were determined with unpaired Student’s t-tests. NS, not significant. (H)

Summary of the fertility rates of Ripk3+/+ and Ripk3-/- mice. One male mice of a given age was mated with a pairs of 10-week-old wild-type female mice

Figure 1 continued on next page
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young (4 month) or old (18 month) mice of either the wild-type or Ripk3-knockout genotypes (Fig-

ure 1—figure supplement 3).

Knockout of Ripk3 prevents the depletion of cells in the seminiferous
tubules in aged testes
As a male mouse becomes sexually mature, the central lumens of seminiferous tubules in its testes

begin to fill with sperm generated from the surrounding spermatogonial stem cells. The spermato-

gonial stem cells and spermatocytes are supported by Sertoli cells, which provide trophic factors

and structural support for spermatogenesis (Cooke and Saunders, 2002). Sperm are then trans-

ferred and stored in the epididymis, from where mature sperm are ejected. After mixing with fluids

from the seminal vesicles and prostate, the sperm travel alone the ejaculation track, where semen is

formed (Cooke and Saunders, 2002).

When testes from 4-month-old and 18-month-old wild-type and Ripk3-knockout mice were dis-

sected and their cross sections were examined under a microscope, cells in many of the seminiferous

tubules from the 18-month-old wild-type mice were lost, given the seminiferous tubules an ‘empty’

appearance (Figure 1F and G). In contrast, the central lumens of the seminiferous tubules of 4-

month-old wild-type and Ripk3-knockout mice are fully surrounded with cells, and are filled with

sperm. Strikingly, the seminiferous tubules of 18-month-old Ripk3-knockout mice looked no different

than those of 4-month-old mice (Figure 1F and G). Even more dramatically, when testis sections

from 36-month-old mice were examined, close to half of seminiferous tubules of wild-type mice

were empty, while more than 90% of those from the Ripk3-knockout mice still appeared normal (Fig-

ure 1—figure supplement 4).

Sperm from the seminiferous tubules travel to the epididymis, where they mature and are stored

prior to ejaculation (Cooke and Saunders, 2002). Similar to the phenotypes observed in the seminif-

erous tubules, most of the epididymides from 18-month-old wild-type mice had few sperm, whereas

most of the epididymides of age-matched Ripk3-knockout mice were full of sperm (Figure 1—figure

Figure 1 continued

for 3 months; females were replaced every 2 weeks. The number of male mice with reproductive capacity was counted (see Materials and methods). p

values were determined using chi-square tests. (I) Reproductive longevity. When Ripk3+/+ (n = 12) and Ripk3-/- (n = 12) male mice were 2 months old,

they were continuously mated with a pairs of 10-week-old female mice until pregnancies ceased; females were replaced every 2 months. The ages of

the males at which their last litter was sired was recorded (calculated as the age at birth of the litter less 21 days, see Materials and methods). Data

represent the mean ± S.D. **p<0.01. p values were determined with unpaired Student’s t-tests.

DOI: 10.7554/eLife.27692.002

The following source data and figure supplements are available for figure 1:

Source data 1. Summary of the fertility rates and mortality rates of the offspring of 4- or 18-month-old Ripk3+/+ and Ripk3-/- male mice.

DOI: 10.7554/eLife.27692.003

Source data 2. Summary of the fertility rates and mortality rates of the offspring of 13-month-old Ripk3+/+ and Ripk3-/- male mice.

DOI: 10.7554/eLife.27692.004

Figure supplement 1. Morphological changes in seminal vesicles and testis during aging.

DOI: 10.7554/eLife.27692.005

Figure supplement 2. The levels of the pituitary endocrine hormones LH and FSH decline normally in Ripk3+/+ and Ripk3-/- mice.

DOI: 10.7554/eLife.27692.006

Figure supplement 3. No morphological differences were apparent in the prostates of Ripk3+/+ and Ripk3-/- mice.

DOI: 10.7554/eLife.27692.007

Figure supplement 4. Morphological changes in seminiferous tubules in 36-month-old mice.

DOI: 10.7554/eLife.27692.008

Figure supplement 5. Ripk3-/- mice have higher sperm counts than Ripk3+/+ mice at an advanced age.

DOI: 10.7554/eLife.27692.009

Figure supplement 6. Histological analysis of various organs of Ripk3+/+ and Ripk3-/- mice.

DOI: 10.7554/eLife.27692.010

Figure supplement 7. Increase of rates of birth defects and oxidative damage in sperm from aged Ripk3-/- mice.

DOI: 10.7554/eLife.27692.011

Figure supplement 8. Weights of fat and seminal vesicles from 18-month-old Ripk3+/+ and Ripk3-/- male mice.

DOI: 10.7554/eLife.27692.012
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supplement 5A). The sperm counts in epididymes increased steadily during development and

peaked at four months of age, and there was little difference in the sperm counts between wild-type

and Ripk3-knockout mice up to this time (Figure 1—figure supplement 5B). The sperm counts of

wild-type mice then started to decline, while those of Ripk3-knockout mice remained steady until 12

months of age. Even at 24 months, the sperm counts of Ripk3-knockout mice were still comparable

with those of 4-month-old wild-type mice (Figure 1—figure supplement 5B).

Knockout of Ripk3 prevents age-associated decline of reproductive
capacity
To test if the morphologically ‘young’ reproductive system from aged Ripk3-knockout mice remain

functional, we set up breeding experiments that mated 4-month-old, 13-month-old, and 18-month-

old male mice with pairs of 10-week-old wild-type female mice. As summarized in Figure 1H, both

wild-type and Ripk3-knockout 4-month-old male mice were fully fertile, and both groups sired a simi-

lar number of pups (Figure 1—source data 1). However, for 13-month-old mice, only 9 of the 20

(45%)wild-type male mice sired pups, while 18 out of 23 (78%)Ripk3-knockout males remained fertile

(Figure 1H and Figure 1—source data 1 and 2). The difference was even more obvious with the 18-

month-old male mice. Only 4 out of 22 (18%)wild-type male mice were still fertile at this age,

whereas 15 out of 22 (68%)Ripk3-knockout male mice remained fertile (Figure 1H and Figure 1—

source data 1). We subsequently measured the reproductive longevity of wild-type and Ripk3-

knockout male mice by pairing a pair of 10-weeks-old female mice with each male in a cage and

switch out a fresh pair of females every other month (Hofmann et al., 2015). Monitoring of the age

at which each male sired its last litter showed that wild-type mice on average lost the ability to sire

offspring around 16 months, while the Ripk3-knockout mice did not lose this ability until 22 months

(Figure 1I).

To see if delay of aging phenotype was restricted to the reproductive system, we conducted his-

tological analysis of major organs including small intestines, spleen, lung, liver, large intestines, kid-

ney, heart, and brain of wild-type and Ripk3-knockout mice aged 8 weeks, 4 months, 18 months,

and 24 months. We observed no differences between wild-type and age-matched Ripk3-knockout

mice during the aging process (Figure 1—figure supplement 6).

However, when we examined the progenies sired by the aged Ripk3-knockout mice at a time

wild-type mice had lost most of their reproductive activity, we found that they were less healthy no

matter they were sired by wild-type or Ripk3-knockout mice than the progenies sired by young

males, with higher rates of prenatal and postnatal death (Figure 1—figure supplement 7A and Fig-

ure 1—source data 1). A study into the possible reason for the unhealthy offspring revealed accu-

mulated oxidative damage in the sperm DNA of aged Ripk3-knockout mice, measured as the level

of 8-hydroxydeoxyguanosine (8-OHdG), a biomarker for the oxidative damage of DNA

(Chigurupati et al., 2008; Johnson et al., 2015; Paul et al., 2011), was significantly higher in the

sperm of 18-month-old wild type and Ripk3-knockout mice than in 4-month-old mice (Figure 1—fig-

ure supplement 7B and C).

The difference in whole body weight of 18-month-old wild-type and Ripk3-knockout mice was

mainly due to the difference in their seminal vesicles and fat tissues (Figure 1—figure supplement

8A–D).

RIPK3 expression in Spermatogonia, spermatocytes and Sertoli cells in
testis
To investigate the underlining mechanism responsible for the delayed reproductive system aging

phenotype, we first examined RIPK3 expression using immunohistochemistry methods (IHC). We

noted that the cells inside wild-type seminiferous tubules were stained positively with anti-RIPK3

antibody (Figure 2—figure supplement 1A). In contrast, no staining was seen in the seminiferous

tubules of Ripk3-knockout mice, confirming the specificity of the antibody (Figure 2—figure supple-

ment 1A).

The specific cell types from testes were further analyzed by co-immunostaining of testis sections

from sexually-mature wild-type mice (8 weeks) with antibodies against RIPK3 and other previously-

described cell-type specific markers. RIPK3 expression was apparent in germ line spermatogonia

expressing UTF1 (Jung et al., 2014; van Bragt et al., 2008) and in Sertoli cells expressing GATA-1
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(Tsai et al., 2006). The testosterone-producing Leydig cells (marked by the HSD3B1(Chang et al.,

2011) located outside of seminiferous tubules, however, did not express RIPK3 (Figure 2A). The

RIPK3 expression in each of these cell types was further confirmed when testes were dissected and

the cells were spread on a slide and analyzed again with co-immunostaining. The cell shapes

changed due to spreading with this method, but the individual cells were more clearly visible. Con-

sistent with the IHC staining results, spermatogonia and Sertoli cells were positive for RIPK3 staining

while Leydig cells were not (Figure 2B). Moreover, the primary spermatocytes within seminiferous

tubules that were not marked by IHC were now clearly visible when stained with the specific marker

SMAD3 (Hentrich et al., 2011), and these cells expressed RIPK3 (Figure 2B). The fact that the cells

within seminiferous tubules, the sperm-producing unit of testis, are all positive for RIPK3 expression

raised a possibility that the age-associated depletion of these cells is through necroptosis.

The RIPK3 substrate MLKL is phosphorylated in the seminiferous
tubules of aged wild-type mice
Recall that RIPK3 transduces the necroptosis signal by phosphorylating the serine 345 of pesudoki-

nase MLKL, we used an antibody against phospho-serine 345 of MLKL to analyze the testes of young

and old mice. Phosphorylated MLKL (phospho-MLKL) was detected in seminiferous tubules in cells

surrounding the center lumens in testes of 18-month-old wild-type mice, whereas no phospho-MLKL

was detected in the same tissue area of 4-month-old wild-type mice, nor in 18-month-old Ripk3-

knockout or Mlkl-knockout mice (Figure 2C and Figure 2—figure supplement 1B). A quantitative

analysis of the phospho-MLKL staining of each age and genotype group is shown in Figure 2D. Con-

sistently, phospho-MLKL was detected by western blotting in extracts from testes of 18- and 24-

month-old wild-type mice but not in extracts from age-matched Ripk3-knockout mice (Figure 2E).

To further identify the exact cell type in the aged seminiferous tubules that show positive marker

of necroptosis, we co-stained the testis sections with antibodies that specifically mark the different

cell types in seminiferous tubules. As shown in Figure 2F, spermatogonia that specifically expressing

UTF1 were co-stained with the anti-phospho-MLKL antibody. On the other hand, Sertoli cells did not

show phospho-MLKL staining even though they do express RIPK3. Not surprisingly, Leydig cells that

do not have RIPK3 expression also did not stain with the phosphor-MLKL antibody.

Activation of apoptosis in Leydig cells during aging
The sex hormone-producing Leydig cells in testes do not express RIPK3, yet in old mice testis, the

hormone level drops and Leydig cells are also gone. We therefore checked the cleavage status of

procaspase-3 (a known marker of apoptosis) and procaspase-8 in the aged testes of wild-type and

Ripk3-knockout mice using IHC. Cleaved procaspase-3 and cleaved procaspase-8 was detected in

the wild-type Leydig cells of 18, and 36 month old mice, while no such signal was observed in age-

matched Ripk3-knockout mice (Figure 3A–D and Figure 3—figure supplement 1A and B). The

cleaved-caspase-3 was also detected by western blotting using extracts from the aged wild-type tes-

tes but not in Ripk3-knockout testes (Figure 3—figure supplement 1C). It is thus likely that Leydig

cells undergo apoptosis, as a secondary response to necroptosis in seminiferous tubules during

aging process.

Caspase-8 levels decrease during aging in empty seminiferous tubules
We also used immunohistochemistry methods to examine the caspase-8 level in relative to RIPK3 in

testes of wild-type mice of advanced age. In aged wild-type mice, caspase-8 levels decreased in the

seminiferous tubules showing the sign of cell depletion (Figure 3E and F), and increased in the Ley-

dig cells (Figure 3—figure supplement 2). This reduction in caspase-8 may explain how it is that

necroptosis, but not apoptosis, occurs in the seminiferous tubules of aged mice.

Knockout of Mlkl also delays the aging of mouse reproductive organs
The delayed testis aging phenotype of Ripk3-knockout mice and detection of necroptosis activation

marker in spermatogonia in aged wild-type mice suggest that necroptosis might be part of the

underlying cause of testis aging. To further investigate this possibility, we also characterized the

aging-associated phenotype of Mlkl-knockout (Mlkl-/-) mice. We first weighed 15-month-old wild-

type, Ripk3-knockout, and Mlkl-knockout mice. There was no significant difference between the

Li et al. eLife 2017;6:e27692. DOI: 10.7554/eLife.27692 6 of 21

Research article Cell Biology

http://dx.doi.org/10.7554/eLife.27692


A B

C D

RIP3 RIP3 RIP3 RIP3

HSD3B1 GATA-1 UTF1 SMAD3

DAPI DAPI DAPI DAPI

Merge Merge Merge Merge

R
IP

3
+

/+
R

IP
3

-/
-

p-MLKL

4 Month 18 Month

RIP3+/+ RIP3 -/-

Month:

NS

*** ***

4 18 4 18
0

5

10

15

20

25

30

M
e

a
n

 n
u

m
b

e
r 

o
f 

p
-M

LK
L+

 c
e

ll
s 

p
e

r 
e

ld
 o

f 
vi

e
w

E F

RIP3 UTF1 DAPI Merge

RIP3 GATA-1 DAPI Merge

RIP3 HSD3B1 DAPI Merge

p-MLKL UTF1 DAPI Merge

p-MLKL

p-MLKL GATA-1

DAPI

DAPI

HSD3B1

Merge

Merge

RIP3+/+ RIP3-/-

8
W

e
e

k

1
8

M
o

n
th

2
4

M
o

n
th

8
W

e
e

k

1
8

M
o

n
th

2
4

M
o

n
th

70

55

55

55

35GAPDH

RIP3

MLKL

RIP1

p-MLKL

*

Lane :    1    2   3   4    5   6   

180

Figure 2. Necroptosis in seminiferous tubules of aged wild-type mice. (A) RIPK3 expression in spermatogonia, Sertoli cells, and spermatocytes.

Immunofluorescence in an 8-week-old testis with antibodies against RIPK3 (red), HSD3B1 (Leydig cells specific protein, green), GATA-1 (Sertoli cells

specific protein, green), and UTF1 (spermatogonium specific protein, green). Scale bar, 100 mm. (B) RIPK3 expression in germ line cells and Sertoli cells.

Primary testis cells were isolated from wild-type testes, Immunofluorescence of Leydig cells, Sertoli cells, spermatogonia, and primary spermatocytes

Figure 2 continued on next page
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weights of Mlkl- and Ripk3-knockout mice, and mice of these knockout genotypes weighed less than

wild-type mice at this age (Figure 4A). We also analyzed seminal vesicles and seminiferous tubules

in aged Mlkl-knockout mice (15-month-old). Compared to the obvious aging that had occurred in

wild-type mice, the seminal vesicles of Mlkl-knockout mice maintained a youthful appearance, exhib-

iting the same phenotype as Ripk3-knockout mice (Figure 4B). Furthermore, while the majority of

seminal vesicles from 15-month-old wild-type mice weighed more than 1000 milligrams, almost all of

the seminal vesicles from age-matched Mlkl- and Ripk3-knockout weighed less than 1000 milligrams

(Figure 4C). Consistently, the testosterone levels of both Mlkl- and Ripk3-knockout mice were also

significant higher than those of age-matched wild-type mice (Figure 4D). Further, very few (<2%) of

the seminiferous tubules from Mlkl-knockout mice were empty at 15 months of age, similar to the

tubules of Ripk3-knockout mice, while more than 12% of seminiferous tubules from the age-matched

wild-type mice were already empty (Figure 4E and F). Finally, the fertility rates of both 16-month-

old Mlkl- and Ripk3-knockout mice were also significant higher than those of age-matched wild-type

mice (Figure 4G).

Although the wild-type, Ripk3-knockout, and Mlkl-knockout mice analyzed in this study were all

C57BL/6 strain and were housed under the same condition, they were not littermates and their dif-

ference in aging should be interpreted with caution. We therefore used pharmacological means to

further investigate the role of necroptosis in male reproductive system aging in the following

experiments.

Induction of necroptosis in testis depleted cells in seminiferous tubules
To directly demonstrate that necroptosis in testes is sufficient to cause the aging of the male repro-

ductive system, we injected a combination of TNF-a, Smac mimetic, and caspase inhibitor z-VAD-

FMK (henceforth ‘TSZ’)(He et al., 2009), a known necroptosis stimulus to the testes of 2-month-old

mice. Injection of TSZ directly into the testis induced MLKL phosphorylation (Figure 5A and B).

Phospho-MLKL was obviously present within the seminiferous tubules of TSZ-injected wild-type tes-

tes, but not TSZ-treated Ripk3-knockout or Mlkl-knockout testes, confirming the activation of nec-

roptosis in testes following TSZ injection (Figure 5C). Moreover, when the cells were isolated from a

wild-type testis and then treated with TSZ prior to staining with antibodies against phospho-MLKL

and cell-type specific markers, cells in the seminiferous tubules, including spermatogonia, Sertoli

cells, and spermatocytes, were stained positive for phospho-MLKL, whereas Leydig cells outside

seminiferous tubules were negative (Figure 5—figure supplement 1). The consequences of necrop-

tosis induction in testes became apparent 72 hr after a single TSZ injection. By this point, about 25%

of wild-type seminiferous tubules were empty, whereas almost none of the seminiferous tubules

from Ripk3- and Mlkl-knockout mice were affected (Figure 5D and E).

Induction of necroptosis in testes accelerates aging of the male
reproductive system
In addition to monitoring these short-term effects following a TSZ injection of 3-month-old mice, we

waited for three additional months following the injection and assessed the long-term effects of

induced necroptosis in mouse testes. Interestingly, three months after TSZ injection, the seminal

Figure 2 continued

with antibodies against RIPK3 (red), HSD3B1 (green), GATA-1 (green), UTF1 (green), and SMAD3 (primary spermatocytes specific protein, green).

Counterstaining with DAPI, blue. Scale bar, 10 mm. (C, D) Immunohistochemistry (IHC) of testes from Ripk3+/+ and Ripk3-/- mice with phosphor-MLKL (p-

MLKL) antibody. Ripk3+/+ (4 Months, n = 6; 18 Months, n = 6) and Ripk3-/- (4 Months, n = 6; 18 Months, n = 6) mice were sacrificed and testes were

harvested and stained with p-MLKL antibody in (C) (black arrows indicate cells with p-MLKL staining). p-MLKL+ cells were counted in five fields per testis

and quantification in (D). Scale bar, 100 mm. Data represent the mean ± s.e.m. ***p<0.001. p values were determined with unpaired Student’s t-tests.

NS, not significant. (E) Western blot analysis of RIPK1, RIPK3, MLKL, and p-MLKL levels in the testis after perfusion, each group is representative of at

least three mice. GAPDH was used as loading control. The asterisk (*) indicates non-specific bands. (F) Immunofluorescence in an 18-month-old testis

with antibodies against p-MLKL (red, purple arrows indicate spermatogonium with p-MLKL staining), HSD3B1, GATA-1, and UTF1. Scale bar, 50 mm.

DOI: 10.7554/eLife.27692.013

The following figure supplement is available for figure 2:

Figure supplement 1. RIPK3 expression in seminiferous tubules.

DOI: 10.7554/eLife.27692.014
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Figure 3. Activation of apoptosis in Leydig cells during aging. (A, B) IHC of testis from Ripk+/+ and Ripk3-/- mice with Cleaved-Caspase-3 antibody.

Mice were sacrificed, testes from Ripk3+/+ (4 Month, n = 6; 18 Month, n = 6) and Ripk3-/- (4 Month, n = 6; 18 Month, n = 6) mice were harvested and

stained with Cleaved-Caspase-3 antibody in (A) (black arrows for Leydig cells with Cleaved-Caspase-3 staining). Cleaved-Caspase-3+ cells were counted

in six fields per testis and quantification in (B). Scale bar, 100 mm. Data represent the mean ± s.e.m. *p<0.05, ***p<0.001. p values were determined

with unpaired Student’s t-tests. (C, D) IHC of testis from Ripk+/+ and Ripk-/- mice with Cleaved-Caspase-8 antibody. Mice were sacrificed, testes from

Ripk+/+ (4 Month, n = 6; 18 Month, n = 6) and Ripk3-/- (4 Month, n = 6; 18 Month, n = 6) mice were harvested and stained with Cleaved-caspase-8

antibody in (C) (black arrows for Leydig cells with Cleaved-caspase-8 staining). Cleaved-caspase-8+ cells were counted in six fields per testis and

quantification in (D). Scale bar, 100 mm. Data represent the mean ± s.e.m. *p<0.05, ***p<0.001. p values were determined with unpaired Student’s t-

tests. (E, F) Caspase8 levels decrease during aging in empty seminiferous tubules. Immunofluorescence of testes from 4-month-old and 18-month-old

wild-type mice with caspase8 and RIPK3 antibody in (E). The caspase8 levels were quantified in (F). Counterstaining with DAPI, blue. Scale bar, 100 mm.

DOI: 10.7554/eLife.27692.015

The following figure supplements are available for figure 3:

Figure supplement 1. Activation of apoptosis in Leydig cells during aging.

DOI: 10.7554/eLife.27692.016

Figure supplement 2. Caspase8 levels increase during aging in Leydig cells.

DOI: 10.7554/eLife.27692.017
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vesicles of wild-type recipient mice were as enlarged as those from mice older than 15 months. How-

ever, no such enlargement of seminal vesicles was observed in Ripk3- and Mlkl-knockout mice after

the same TSZ treatment of their testes (Figure 6A and B). Additionally, more than 30% of the wild-

type seminiferous tubules remained empty three months after the injection, while those of Ripk3-

and Mlkl- knockout mice appeared completely normal without any observable loss of cells
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Figure 4. Aging of reproductive organs is delayed in Mlkl-/- mice. (A) Weight of WT (wild-type), Ripk3-/-, and Mlkl-/- male mice. WT (15 Month, n = 10),

Ripk3-/-(15 Month, n = 10) and Mlkl-/- (15 Month, n = 8) male mice were weighed. Data represent the mean ± s.e.m. **p<0.01. p values were determined

with unpaired Student’s t-tests. NS, not significant. (B, C) Macroscopic features and weights of seminal vesicles. WT (15 month, n = 10), Ripk3-/- (15

Month, n = 10) and Mlkl-/-(15 Month, n = 8) male mice were sacrificed and the seminal vesicles were photographed and weighed. Data represent the

mean ± s.e.m. **p<0.01. p values were determined with unpaired Student’s t-tests. NS, not significant. (D) Serum testosterone levels of mice assayed

using ELISA. Mice were sacrificed and the level of testosterone in serum from WT (15 Month, n = 8), Ripk3-/-(15 Month, n = 8) and Mlkl-/-(15 Month,

n = 8) mice was measured using a testosterone ELISA kit. Data represent the mean ± s.e.m. *p<0.05, **p<0.01. p values were determined with unpaired

Student’s t-tests. NS, not significant. (E, F) H and E of testis sections from WT, Ripk3-/-, and Mlkl-/mice. Testes from WT (15 Months, n = 8), Ripk3-/- (15

Months, n = 8), and Mlkl-/-(15 Month, n = 8) mice were harvested and stained with H and E in (E). The number of empty seminiferous tubules was

counted based on H and E staining and quantification in (F), empty seminiferous tubules were counted in five fields per testis. Scale bar, 100 mm. Data

represent the mean ± S.D. **p<0.01. p values were determined with unpaired Student’s t tests. (G) Summary of the fertility rates of WT, Ripk3+/+ and

Mlkl-/- mice. One male mice of a given age was mated with a pairs of 10-week-old wild-type female mice for 3 months; females were replaced every 2

weeks. The number of male mice with reproductive capacity was counted (see Materials and methods). p values were determined using chi-square

tests.
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(Figure 6C and D). The lack of regeneration of cells in the seminiferous tubules indicated that nec-

roptosis induction indeed has taken out their stem cells.

We also tested the fertility rate of TSZ-treated mice 3 month after the TSZ treatment. Control

injection of saline into the testes of wild-type mice did not affect the fertility rate and the mice

remained 100% fertile, but TSZ injection reduced the fertility rate by 87.5% (only 1 of 8 was fertile)

(Figure 6E). In contrast, 6 out of 8 Ripk3-knockout mice and 7 out of 8 Mlkl-knockout mice were still

fertile following TSZ injection (Figure 6E).

A

E

CB

D

p-MLKL

WT RIP3-/- MLKL-/-

S
a

li
n

e
T

S
Z

Seminiferous tubules 

WT RIP3-/- MLKL-/-

S
a

li
n

e
T

S
Z

S
a

li
n

e

T
S

Z

S
a

li
n

e

T
S

Z

S
a

li
n

e

T
S

Z

WT RIP3-/- MLKL-/-

0

5

10

15

20

25

30

E
m

p
ty

 o
f 

se
m

in
if

e
ro

u
s 

tu
b

u
le

s(
%

)

*** ***
***

NS NS

WT RIP3-/-

S
a

li
n

e

T
S

Z

S
a

li
n

e

T
S

Z

GAPDH

RIP3

MLKL

RIP1

p-MLKL

Lane :    1    2    3    4

70

55

55

55

35

WT MLKL-/-

S
a

li
n

e

T
S

Z

S
a

li
n

e

T
S

Z

GAPDH

RIP3

MLKL

RIP1

p-MLKL

Lane :   1    2     3    4

70

55

55

55

35

Figure 5. Induction of necroptosis in testis depleted cells in seminiferous tubules. (A–E) Testes of WT (2 Months, n = 6), Ripk3-/- (2 Months, n = 6), and

Mlkl-/-(2 Month, n = 6) mice were injected with TSZ or saline (see Materials and methods); 72 hr after the injection, mice were sacrificed and the testes

were harvested. The proteins were extracted from testes and were analyzed with western blotting in (A, B). GAPDH was used as a loading control. The

testes were stained with p-MLKL antibody in (C) (black arrows indicate cells with p-MLKL staining). Scale bar, 100 mm. The testes were stained with H

and E in (D). The number of empty seminiferous tubules was counted based on H and E staining and quantification in (E), empty seminiferous tubules

were counted in five fields per testis. Scale bar, 100 mm. Data represent the mean ± S.D. ***p<0.001. p values were determined with unpaired Student’s

t-tests. NS, not significant.

DOI: 10.7554/eLife.27692.019

The following figure supplement is available for figure 5:

Figure supplement 1. Activation of necroptosis in germ line stem cells and Sertoli cells in seminiferous tubules.

DOI: 10.7554/eLife.27692.020
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Figure 6. Induction of necroptosis in testes accelerates aging of the male reproductive system. (A–D) Testes from

WT (3 Months, n = 9), Ripk3-/- (3 Months, n = 9), and Mlkl-/-(3 Month, n = 7) mice were injected with TSZ or saline

(see Materials and methods) and were maintained in SPF facility for 3 months. Mice were then sacrificed and the

seminal vesicles were photographed and weighed. Macroscopic features and weights of seminal vesicles form

mice in (A, B). Data represent the mean ± s.e.m. ***p<0.001, p values were determined with unpaired Student’s t-

tests. Testes were harvested and stained with H and E in (C). The number of empty seminiferous tubules was

counted based on H and E staining and quantification in (D). Empty seminiferous tubules were counted in five

fields per testis. Scale bar, 100 mm. Data represent the mean ± S.D. ***p<0.001, p values were determined with

unpaired Student’s t-tests. NS, not significant. (E) Summary of the fertility rate of WT, Ripk3-/-, and Mlkl-/- male

mice after injection with TSZ. Testes from WT (3 Months, n = 8), Ripk3-/- (3 Months, n = 8), and Mlkl-/-(3 Month,

n = 8) male mice were injected with TSZ or saline (see Materials and methods) and mice were maintained in SPF

Figure 6 continued on next page
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An RIPK1 kinase inhibitor blocks aging of the male reproductive system
The identification of the role of necroptosis in the aging of the mouse male reproductive system sug-

gests the feasibility of a pharmaceutical intervention against the aging process. We therefore evalu-

ated the effects of a newly-identified, highly-potent, and highly-specific RIPK1 kinase inhibitor from

our laboratory (henceforth ‘RIPA-56’)(Ren et al., 2017) by incorporating it into mouse food at 150

mg/kg and 300 mg/kg doses. We first tested the effect of RIPA-56 on necroptosis in testes by inject-

ing TSZ into testes of 2-month-old mice after feeding the mice with increasing concentrations of

RIPA-56-containing chow for one week. RIPA-56 blocked the appearance of TSZ-induced phospho-

MLKL in the testes in a dose-dependent manner, and was able to completely block necroptosis at

the 300 mg/kg dose (Figure 7A, lane 4).

We subsequently chose the 300 mg/kg dose to continuously feed 13-month-old male wild-type

mice for 5 months and analyzed these mice after 2 and 5 months to study the long-term effects of

blocking necroptosis on testes. After two months, the mice fed with RIPA-56-containing diet

weighed less than mice fed with control chow diet (Figure 7B). The seminal vesicles of the RIPA-56-

treated mice retained the mass (mostly around 1000 milligrams), while the seminal vesicles from

mice on normal chow grew significantly during the same period, with majority of them weighing

more than 2000 milligrams (Figure 7C and D). Additionally, the testosterone level of RIPA-56-

treated mice remained high, while that of control mice decreased (Figure 7E). Consistently, more

than 12% of the seminiferous tubules of the control mice were empty, whereas hardly any seminifer-

ous vesicles were empty in the RIPA-56-treated mice (Figure 7F and G). Finally, the fertility rates of

the RIPA-56-treated mice were much higher than those of control mice with 19 out of 25 mice (76%)

on the RIPA-56 diet were fertile while only 6 out of 23 mice (26%) on normal diet produced progeny

(Figure 7H).

After 5 months, the difference in fertility was even more dramatic between mice on RIPA-56-con-

taining and the ones on normal chow diet. At age of 18 months, 10 out of 15 mice (67%) on RIPA 56

diet still produced progenies while only 2 out of 15 mice (13%) on normal chow diet did (Figure 7I).

Consistently, when we stained the testes from these mice with the anti-phospho-MLKL antibody, we

observed abundant signals from the testes of mice on normal chow whereas hardly any phospho-

MLKL signal was seen in mice on RIPA-56-containing diet (Figure 7J and K).

Discussion

Necroptosis promotes the aging phenotype of mouse male
reproductive system
The above presented data indicated that the previously unknown physiological function of necropto-

sis is to promote the aging of male reproductive organs. We detected for the first time under physi-

ological conditions the activation marker of necroptosis in spermatogonia of old testis. Consistently,

mice with either of their core necroptosis execution components Ripk3 and Mlkl deleted from their

genome showed dramatic delay of male reproductive aging phenotype, both morphologically and

functionally.

Interestingly, one dose of TSZ treatment applied locally to the young testes resulted in the male

reproductive system aging phenotype, including the enlargement of seminal vesicles, the depletion

of cells in the seminiferous tubules, and decreases in fertility rates in wild-type but not Ripk3-knock-

out or Mlkl-knockout mice, strongly suggests that necroptosis happening within testis is the cause of

symptomatic male reproductive system aging.

However, the cellular and molecular events that lead to the eventual aging phenotype warrant

extensive future studies. Although only in spermatogonia cells the phospho-MLKL signal was

observed in aged testis, Sertoli cells in seminiferous tubules were also depleted. Sertoli cells do

Figure 6 continued

for 3 months. One male mouse was mated with a pairs of 10-week-old female wild-type mice for 2 months;

females were replaced every 2 weeks. The number of male mice with reproductive capacity was counted (see

Materials and methods). p values were determined using chi-square tests.

DOI: 10.7554/eLife.27692.021
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Figure 7. An RIPK1 inhibitor blocks aging of the male reproductive system. (A) Western blot analysis of RIPK1, RIPK3, MLKL, and p-MLKL levels in testes

after injection with TSZ. The 2-month-old wild-type male mice continuously feed with RIPA-56 (0 mg/kg, n = 6; 150 mg/kg, n = 3; 300 mg/kg, n = 3) for

one week. Testes were injected with TSZ (see Materials and methods); 72 hr after the injection, mice were sacrificed and the testes were harvested. The

proteins were extracted from testes and were analyzed with western blotting. GAPDH was used as a loading control. (B–H) 13-month-old wild-type

Figure 7 continued on next page
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express RIPK3 and undergo necroptosis in response to TSZ, however, whether these cells undergone

necroptosis during the natural aging process and how their death related to necroptosis of sper-

matogonia are not known. Moreover, as testis age, the hormonal producing Leydig cells also lost.

Leydig cells do not express RIPK3 thus unable to undergo necroptosis. Interestingly, in Ripk3- and

Mlkl-knockout mice, and in mice fed with the RIPK1 inhibitor, Leydig cells are spared. The death of

Leydig cells, mostly like through apoptosis since active caspase-8 and caspase-3 were seen on these

cells in aging testis, is obviously subsequential to necroptotic death somewhere else. We have no

idea how and what signal Leydig cells receive from necroptotic cells to activate apoptosis of their

own. In addition to the depletion of spermatogonium stem cells, Sertoli cells, and Leydig cells during

testis aging, the most striking feature of aging mouse male sex organ is the enlargement of seminal

vesicles. Such an enlargement clearly involves growth of epithelial cells of this auxiliary organ. What

growth signal the epithelial cells of seminal vesicle receive in response to the depletion of cells in

testis is also enigmatic.

Necroptosis-promoted male reproductive system aging offers an
evolutionary advantage at species level
The fact that knocking out either of the core necroptosis executing component from mouse genome

or feeding mice with a chemical necroptosis inhibitor results in prolonged male reproductive longev-

ity indicates that necroptosis actively promotes male reproductive system aging in wild-type mice.

However, the progeny produced by aged mice with artificially extended reproductive longevity were

not healthy. The cause for these unhealthy pups may be multiple, including age-related accumulation

of DNA damages in the old sperm and other organs. Therefore, although mice without the core

components of the necroptosis pathway maintain their reproductive activity into advanced ages

(well beyond the age when wild-type mice have largely lost such capacity), these age-associated

changes still caused deleterious effects on their progeny.

We therefore propose that necroptosis in testis is a physiological response to yet-to-be-identi-

fied, age-related, TNF family of cytokine(s) that transduces necroptosis signal through the canonical

RIPK1-RIPK3-MLKL pathway. The necroptotic death of cells in testis then triggers the other down-

stream age-related phenotypes such as enlargement of seminal vesicles, decreased testosterone lev-

els and weight gain. Indeed, we observed an elevated TNF-a level in the old testis of wild-type mice

(Figure 7—figure supplement 1). Interestingly, no such elevation was seen in the testis of age-

matched Ripk3-knockout mice, indicating that such an elevation may be augmented through a feed

forward mechanism. Whether TNF-a or other members of the TNF family of cytokines truly contrib-

utes to testis aging is not known and should be an interesting research topic for the future studies.

Figure 7 continued

male mice were feed with AIN93G (RIPA-56:0 mg/kg) or AIN93G-RIPA-56 (RIPA-56:300 mg/kg) for 2 months in SPF facility. Mice were weighed before

and after feed with RIPA-56 in (B). Data represent the mean ± s.e.m. *p<0.05, ***p<0.001. p values were determined with unpaired Student’s t-tests.

Mice were sacrificed and the seminal vesicles were photographed and weighed. Macroscopic features and weights of seminal vesicles form mice in (C,

D). Data represent the mean ± s.e.m. ***p<0.001. p values were determined with unpaired Student’s t-tests. Testosterone levels in serum from mice

were measured using a testosterone ELISA kit in (E). Data represent the mean ± s.e.m. **p<0.01. p values were determined with unpaired Student’s t-

tests. The testes were harvested and stained with H and E in (F). The number of empty seminiferous tubules was counted based on H and E staining

and quantification in (G). Empty seminiferous tubules were counted in five fields per testis. Scale bar, 100 mm. Data represent the mean ± S.D. **p<0.01.

p values were determined with unpaired Student’s t-tests. The fertility rate of each RIPA-56-treated (0 mg/kg, n = 23; 300 mg/kg, n = 25) male mice was

assessed by mating it with four 10-week-old wild-type female mice successively (see Materials and methods). The number of mice with reproductive

capacity was counted in (H). p values were determined using chi-square tests. (I–K) 13-month-old wild-type male mice were feed with AIN93G (RIPA-

56:0 mg/kg) or AIN93G-RIPA-56 (RIPA-56:300 mg/kg) for 5 months in SPF facility. The fertility rate of each RIPA-56-treated (0 mg/kg, n = 15; 300 mg/kg,

n = 15) male mice was assessed by mating it with four 10-week-old wild-type female mice successively (see Materials and methods). The number of

mice with reproductive capacity was counted in (I). p values were determined using chi-square tests. After fertility test, mice were sacrificed and testes

were harvested and stained with p-MLKL antibody in (J) (black arrows indicate cells with p-MLKL staining). p-MLKL+ cells were counted in five fields per

testis and quantification in (K). Scale bar, 100 mm. Data represent the mean ± s.e.m. ***p<0.001. P values were determined with unpaired Student’s t-

tests.

DOI: 10.7554/eLife.27692.022

The following figure supplement is available for figure 7:

Figure supplement 1. TNF-a increased in the testes from aged wild-type mice.

DOI: 10.7554/eLife.27692.023
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Necroptosis-instigated reproductive system aging effectively eliminates old animals from the

reproductive pool. Given that aged animals carry significantly more DNA damage than younger ani-

mals, their elimination from the mating pool results in healthier pups overall, an outcome that would

confer an evolutionary advantage over (a population) of animals that do not thusly employ a necrop-

tosis program in their testes.

Interestingly, when wild-type mice were fed with food containing an RIPK1 inhibitor prior to the

onset of reproductive system aging (13 months), the aging of the male reproductive system could

be blocked and the effect lasted for 5 months when the experiment was terminated. This finding not

only further confirms that necroptosis is the mechanism underlying male reproductive system aging,

but also demonstrates an apparently-effective way to delay it.

Materials and methods

Mice
The Ripk3-/- (Ripk3-knockout) mice (C57BL/6 strain) were generated as described previously

(Newton et al., 2004). The Mlkl-/- (Mlkl-knockout) mice were generated by co-microinjection of in

vitro-translated Cas9 mRNA and gRNA into the C57BL/6 zygotes. Founders were screened with

T7E1 assays and were validated by DNA sequencing. Founders were intercrossed to generate bi-

allelic Mlkl-/- mice. The gRNA sequence used to generate the knockout mice was GTAGCAG

TTGCAAATTAGCGTGG. C57BL/6 wild-type (WT, Ripk3+/+) mice were obtained from Vital River Lab-

oratory Co (Beijing, China). WT, Ripk3-/-, and Mlkl-/- mice were produced and maintained at the SPF

animal facility of the National Institute of Biological Sciences, Beijing. Animals for the aging study

were produced by mating wild-type males with wild-type females purchased from Vital River Labora-

tory Co; Ripk3-/- mice were produced by mating Ripk3-/- males with Ripk3-/- females; Mlkl-/- mice

were produced by mating Mlkl-/- males with Mlkl-/- females. Animals (male) for the aging study were

housed under the same conditions after birth. Animals used for the hormone and the fertility tests

were housed individually in an SPF barrier facility.

Antibodies and reagents
The Antibody against RIPK3 (#2283; WB, 1:1000; IHC, 1:100) were obtained from ProSci (San Diego,

CA). Other antibodies used in this study were: anti-GAPDH-HRP (M171-1, MBL (Nagoya, Jpan),

1:5000), anti-RIPK1 (#3493S, Cell Signaling (Danvers, MA), 1:2000), anti-MLKL (AO14272B, ABGENT

(San Diego, CA), 1:1000), anti-Mouse-phospho-MLKL (ab196436; WB, 1:1000; IHC, 1:100), anti-

GATA-1 (sc-265, IHC, 1:200), anti-cleaved-caspase-3 (#9661, Cell Signaling; WB, 1:1000; IHC 1:100),

anti-caspase-8 (proteintech, 66093–1-Ig, 1:100), anti-cleaved-caspase-8 (8592T, Cell Signaling; IHC

1:100), anti-HSD3B1 (ab150384, 1:200) (Abcam, Cambridge Great Britain), anti-SMAD3 (MA5-15663,

Thermo (Waltham, MA), 1:200), 8-OHdG (N45.1; Genox (Baltimore, MD); 1:200), and anti-UTF1

(#MAB4337, EMD Millipore (Billerica, MA), 1:200). DPBS (Dulbecco’s Phosphate-Buffered Saline) was

purchased from Thermo. Lectin from Datura stramonium, Sodium L-lactate, Deoxyribonuclease I

from bovine pancreas, and MEM Non-essential Amino Acid Solution (100�) were purchased from

Sigma. RIPA-56 (RIPK1 inhibitor) was generated as described in Ren et al. (2017).

Cell cultures
Primary testis cells were cultured in DMEM:F12 Medium (Hyclone) supplemented with 10% FBS (Invi-

trogen, Carlsbad, CA) and penicillin/streptomycin (Invitrogen).

Harvesting of tissues
Mice were euthanized using avertin (20 mg ml�1). Animals were euthanized one by one immediately

before dissection, and the dissection was performed as rapidly as possible by a team of several

trained staff members working in concert on a single mouse. Major organs were removed, cut into

appropriately-sized pieces, and either flash-frozen in liquid nitrogen and stored at �80˚C or placed

in formalin (Using Bouin’s fixative for testis) for preservation. After several days of formalin fixation

at room temperature, tissue fragments were transferred to 70% ethanol and stored at 4˚C. Blood
was collected by cardiac puncture, and was allowed to coagulate for the preparation of serum.
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Western blotting
Western blotting was performed as previously described (Wang et al., 2014). Briefly, cell pellet sam-

ples were collected and re-suspended in lysis buffer (100 mM Tris-HCl, pH 7.4, 100 mM NaCl, 10%

glycerol, 1% Triton X-100, 2 mM EDTA, Roche complete protease inhibitor set, and Sigma phospha-

tase inhibitor set), incubated on ice for 30 min, and centrifuged at 20,000 � g for 30 min. The super-

natants were collected for western blotting. Testes tissue samples were ground and re-suspended in

lysis buffer, homogenized for 30 s with a Paddle Blender (Prima, PB100), incubated on ice for 30

min, and centrifuged at 20,000 � g for 30 min. The supernatants were collected for western

blotting.

ELISA
Mice (male) used for the hormone tests were housed individually in an SPF barrier facility. Mice were

sacrificed and blood was clotted for two hours at room temperature before centrifugation at approx-

imately 1,000 � g for 20 min. Mice blood sera was collected and assayed immediately or was stored

as sample aliquots at �20˚C. The testosterone/FSH/LH levels were measured with ELISA kits (BIO-

MATIK, EKU07605, EKU04284, EKU05693); the SHDG level was measured with an ELISA kit

(INSTRUCTION MANUAL, SEA396Mu). The ELISA assays were performed according to the manufac-

turer’s instructions.

Histology, immunohistochemisitry, and immunofluorescence
Paraffin-embedded specimens were sectioned to a 5 mm thickness and were then deparaffinized,

rehydrated, and stained with haematoxylin and eosin (H and E) using standard protocols. For prepa-

ration of immunohistochemistry samples, sections were dewaxed, incubated in boiling citrate buffer

solution for 15 min in plastic dishes, and subsequently allowed to cool down to room temperature

over 3 hr. Endogenous peroxidase activity was blocked by immersing the slides in hydrogen perox-

ide buffer (10%, Sinopharm Chemical Reagent) for 15 min at room temperature and were then

washed with PBS. Blocking buffer (1% bovine serum albumin in PBS) was added and the slides were

incubated for 2 hr at room temperature. Primary antibody against phospho-MLKL, cleaved-caspase-

3, and 8-OHdG was incubated overnight at 4˚C in PBS. After three washes with PBS, slides were

incubated with secondary antibody (polymer-horseradish-peroxidase-labeled anti-rabbit, Sigma) in

PBS. After a further three washes, slides were analyzed using a diaminobutyric acid substrate kit

(Thermo). Slides were counter stained with haematoxylin and mounted in neutral balsam medium

(Sinopharm Chemical).

Immunohistochemistry analysis for RIPK3 was performed by incubating the tissue slides with the

indicated antibodies overnight at 4˚C in PBS. After three washes with PBS, slides were incubated

with DyLight-561 conjugated goat anti-rabbit secondary antibodies (Life) in PBS for 8 hr at 4˚C. After
additional three washes, slides were incubated with HSD3B1, GATA-1, or UTF1 antibody overnight

at 4˚C in PBS. The slides were then washed three more times before incubated with DyLight-488

conjugated goat anti-mouse/rat secondary antibodies (Life) for 2 hr at room temperature in PBS.

The slides were then washed in PBS, and cell nuclei were then counter-stained with DAPI (Invitrogen)

in PBS. The fluorescence images were observed using a Nikon A1-R confocal microscope.

TSZ injection of testis
WT, Ripk3-/-, and Mlkl-/- mice were anaesthetized with injection of 20 ml g�1 avertin (20 mg ml�1).

The abdomen was opened with surgical scissors and the testes were taken out one-by-one. Each tes-

tis was then injected with 20 ng ml�1 TNF-a in the presence of Smac mimetic (100 nM) and z-VAD-

fmk (10 mM) in 20 ml. Each testis was then put back into the cavity, and the abdomen was sutured

(Hooley et al., 2009). Mice were maintained in an SPF animal facility.

Sperm count
Mice were sacrificed and their epididymides were harvested. Each epididymis was punctured with a

25-gauge needle. Sperm were extruded with tweezers from the epididymis and collected in 2 ml of

PBS. The solution was strained with a cell strainer (40 mm, BD Falcon), and 5 ml was taken out and

diluted in 95 ml PBS. The number of sperm was counted using a cell-counting chamber under a

microscope (Schürmann et al., 2002).

Li et al. eLife 2017;6:e27692. DOI: 10.7554/eLife.27692 17 of 21

Research article Cell Biology

http://dx.doi.org/10.7554/eLife.27692


Mating and fertility test
Mice (male) used for the fertility tests were housed individually in an SPF barrier facility. To assess

vaginal patency, mice were examined daily from weaning until vaginal opening was observed. The

fertility rate of males was determined via a standard method (Cooke and Saunders, 2002;

Hofmann et al., 2015) by mating a male with a series of pairs of 10-week-old wild-type females for

3 months; females were replaced every 2 weeks (females were either from our colony or purchased

from Vital River Laboratory Co(C57BL/6)). Each litters was assessed from the date of the birth of

pups; when pups were born but did not survive, we counted and recorded the number dead pups;

for females that did not produce offspring, the number of pups was recorded as ‘0’(did not produce

a litter with a proven breeder male for a period of 2 months). The number of male mice with repro-

ductive capacity was recorded.

The reproductive longevity of males was determined by continuously housing 2-month-old

Ripk3+/+ and Ripk3-/- males with a pairs of 10-week-old wild-type females, the females being

replaced every 2 months, until males ceased reproducing (calculated as the age at birth of the litter

less 21 days) (Hofmann et al., 2015).

Isolation of cells from testes
Testes from 8 week old mice were collected using a previously-reported protocol (Chang et al.,

2011). Briefly, a testis was placed in Enriched DMEM:F12 (Hyclone) media and placed on ice. After

removal of the tunica albuginea of a testis, the seminiferous tubules were dissociated and trans-

ferred immediately into 10 mL of protocol enzymatic solution 1. Tubules were incubated for 15–20

min at 35˚C in a shaking water bath at 80 oscillations (osc)/min and were then layered over 40 mL

5% Percoll/95% 1 � Hank’s balanced salt solution in a 50 mL conical tube and allowed to settle for

20 min. Leydig cells were isolated from the top 35 mL of the total volume of Percoll. The bottom 5

mL of Percoll was transferred to a fresh 50 mL conical tube containing 10 mL enzymatic solution 2.

Tubules were incubated for 20 min at 35˚C and 80 osc/min. After incubation, 3 mL charcoal-stripped

FBS was immediately added to halt the digestion. All fractions were mixed and immediately centri-

fuged at 500 � g at 4˚C for 10 min. Pellets were re-suspended in PBS and washed three times, then

cultured in DMEM:F12(10%FBS) medium at 37˚C.

RIPA-56 feeding experiment
RIPA-56 in the AIN93G (LAD3001G) at 150 or 300 mg/kg was produced based on the Trophic Ani-

mal Feed High-tech Co’s protocol. Cohorts of 13-month-old wild-type male mice were fed with

AIN93G or AIN93G containing RIPA-56 (RIPA-56:300 mg/kg) for 2 months in an SPF facility; each

male mouse was then mated with four 10-week-old wild-type female mice successively. The number

of male mice with reproductive capacity were recorded.

Statistical analysis
All experiments were repeated at least twice. Data represent biological replicates. Statistical tests

were used for every type of analysis. The data meet the assumptions of the statistical tests described

for each figure. Results are expressed as the mean ± s.e.m or S.D. Differences between experimental

groups were assessed for significance using a two-tailed unpaired Student’s t-tests implanted in

GraphPad prism5 or Excel software. Fertility rates were assessed for significance using chi-square

tests (unpaired, two-tailed) implemented in GraphPad prism5 software. The *p<0.05, **p<0.01, and

***p<0.001 levels were considered significant. NS, not significant.
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