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Abstract: We used the Mass Multivariate Method on structural, resting-state, and task-related fMRI
data from two groups of patients with schizophrenia and depression in order to define several regions
of significant relevance to the differential diagnosis of those conditions. The regions included the
left planum polare (PP), the left opercular part of the inferior frontal gyrus (OpIFG), the medial
orbital gyrus (MOrG), the posterior insula (PIns), and the parahippocampal gyrus (PHG). This
study delivered evidence that a multimodal neuroimaging approach can potentially enhance the
validity of psychiatric diagnoses. Structural, resting-state, or task-related functional MRI modalities
cannot provide independent biomarkers. Further studies need to consider and implement a model
of incremental validity combining clinical measures with different neuroimaging modalities to
discriminate depressive disorders from schizophrenia. Biological signatures of disease on the level of
neuroimaging are more likely to underpin broader nosological entities in psychiatry.

Keywords: mass multivariate analysis; neuroimaging; depression; schizophrenia

1. Introduction

The World Health Organization has noted a significant increase in the global preva-
lence of mental illness including conditions such as mood disorders and schizophrenia
(SCH). These disorders evoke an enormous social burden, since they cause chronic disabil-
ity, and also have a high comorbidity rate as well as pernicious consequences not only for
the individual but also for their immediate family. Yet, their diagnostic and therapeutic
framework has not been marked by scientific advancements to the same degree as that
observed for other medical disciplines. In particular, there are many discrepancies and
controversies in the currently existing ex convention taxonomies [1]. Therefore, it is of
vital necessity to provide pro-innovative methodological tools that can assist in the defi-
nition of the underlying mechanisms of psychiatric disease and thereby redefine medical
classifications applied in psychiatry [2].

A major predicament in contemporary Psychiatry remains the disconformity between
the traditional evidence-based medical framework and the inconsistent neuroscientific
explanation of the etiopathophysiology of mental illness [3]. Despite the tremendous
technological progress in medical diagnostics, psychiatrists still rely mostly on clinical
observation and patient evaluation in order to specify a mental disorder and determine
a therapeutic pathway. Furthermore, the categorization of psychiatric nosology is not
only biologically invalidated but also inadequate to explicitly discern conditions with
overlapping pathological behavioral patterns [4,5].
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One of the methods which can be the foundation of such a tool is Magnetic Resonance
Imaging (MRI). It allows the exploration of multiple imaging modalities, thus potentiating
not only the study of different pathophysiological mechanisms but also the discovery of
diagnostic and/or prognostic biomarkers [6]. However, the hitherto determined findings
in mental disorders, Major Depressive Disorder (MDD) and SCH in particular, have been
heterogeneous and inconsistent [7]. This is due to the variety of existing research limita-
tions such as the undefined norm in Psychiatry, the lack of standardized data processing
methodology, unavoidable confounding factors, etc. [8].

In our previous studies, we established the sensitivity of the various modalities of MRI
in the comparison of depressed patients and healthy controls (HC). We identified structural,
functional (resting-state connectivity), and functional (diagnostic task- related) differences
in brain structure and function [9–11].

On a structural level by means of voxel-based morphometry analysis, we determined a
significant grey matter volume (GMV) reduction in several regions in the left (medial frontal
and anterior cingulate cortex (ACC)) and in the right (middle frontal gyrus (MFG), medial
orbital gyrus, inferior frontal gyrus (IFG), middle temporal gyrus) hemisphere in patients
with depression compared to healthy controls [9]. The role of grey matter aberrations in the
fronto-limbic regions in the pathophysiology of MDD has also been confirmed in a recent
meta-analysis [12].

On a functional level of resting state, using spectral dynamic causal modeling to ex-
plore the brain connectivity patterns in depression, our research team found a significantly
decreased strength of the connection between the anterior insula (AI) and the middle
frontal gyrus (MFG) in patients with depressive syndrome in comparison with healthy
individuals, as well as a significant additional connection from the amygdala to the AI,
which was found in the patient sample but not in the HC group [10].

With task-related functional MRI, we found significant differences in the BOLD pat-
terns during the implementation of a task between patients with a depressive syndrome
and healthy controls. The task itself consisted in the application of self-assessment scales
(namely, the von Zerssen self-assessment depression scale as a diagnostically specific con-
dition, and items from a questionnaire about general interests and likes as a diagnostically
neutral condition) during MRI scanning (with an MRI protocol including a structural,
resting-state sequence and a block design task) [11]. The results obtained from contrasting
the diagnostically specific versus the neutral blocks yielded residual activations in brain
regions such as the left middle frontal gyrus, the middle temporal gyrus, the right pre- and
postcentral gyrus, and the triangular part of the left inferior frontal gyrus in the patient
group as opposed to the HC.

These results encouraged us to continue our endeavor in defining the biological un-
derpinnings of depression, and we expanded the paradigm by adding blocks comprised
of paranoia-specific items from the von Zerssen’s paranoid subscale. Considering the
phenomenological overlap between the clinical presentation of depression and the negative
symptoms of SCH [13], we recognized the comparison between the depressive and the
paranoid syndromes as a viable tool for exploring the specificity of the paradigm. However,
the direct contrast between the depression-specific and paranoia-specific blocks did not re-
sult in the expected between-group differentiating residual signal, but did show promising
findings at the within-group level [14].

In order to resolve this issue, we decided to approach the problem not only by im-
plementing an innovative paradigm design but also by analyzing the data by means of
machine learning [11,14,15]. Our method of choice was the Multivariate Linear Model
(MLM), since it can be employed in the analysis of various neuroimaging techniques [16,17]
and allows the processing of multidimensional data sets [18].

In an earlier publication, we used MLM to investigate the differentiating capacity of
several MRI modalities (namely, structural, resting-state, and functional) combined into
principal components (PC) in order to define and discriminate between two syndromes:
paranoid and depressive [19]. We defined three signatures comprising different correlations
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of the three modalities. It was demonstrated that the regions with the highest discriminative
power belonged to the Effort Mode Network (EMN) and the Default Mode Network
(DMN), as well as the Limbic System. Considering the role of these loci in cognition,
emotion processing, decision-making, etc., our findings appear to be consistent with the
hitherto acquired knowledge on depression and psychosis, since the phenomenology of
both conditions includes dysfunction in some or all of the aforementioned domains [20–22].

These findings encouraged the expansion of this method towards a more explicit
definition of the active neural domains with a capacity to differentiate the studied paranoid
and depressive syndromes. Therefore, we decided to extend the mass-univariate approach
hypothesizing that it would allow the determination of a multivariate signature comprising
all existing modalities for each region. Having in mind our previous investigations with
case–control design, which revealed certain patterns of unimodal (univariate) differences
between patients and control subjects, the clinical and scientific rationale of the present
study was to determine potential multimodal brain signatures of mental disorders on the
level of differential diagnosis of depression, i.e., its specificity.

The Kraepelinian dichotomy asserts manic depression (now incorporated in the cate-
gory of mood disorders) as a fundamentally independent entity from dementia praecox
(which evolved to be the primary concept of psychosis) [23]. However, contemporary
science has challenged this historical landmark via researching converse concepts such as
the comorbid approach (explaining the similar phenomenology of the depressive syndrome
and the negative symptoms of schizophrenia), the existence of common pathophysiological
pathways, the dimensional approach which sets the depressive and psychotic syndromes
as the opposite ends of the same spectrum, etc. [24] Therefore, we made the decision to
determine the specificity of our paradigm by including patients with psychosis. Subse-
quently, various multimodal signatures were to be explored in order to allow a validated
differentiation of the depressive syndrome.

2. Materials and Methods
2.1. Participants

For the current study, 44 patients were recruited either with a current psychotic (n = 19,
mean age 39.3 ± 14.8 y, 9 males) or a depressive (n = 25, mean age 44.2 ± 12.1 y, 9 males)
episode. The psychotic patients had a first-axis diagnosis of schizophrenia, whereas the
depressed patients were diagnosed with major depressive disorder (n = 10, mean age
43.7 ± 13.2 y, 5 males) or bipolar disorder (n = 15, mean age 44.5 ± 11.8 y, 4 males). All
individuals were assessed by experienced psychiatrists (D.S., S.K.) using the general clini-
cal interview and the structured Mini International Neuropsychiatric Interview (M.I.N.I
6.0) [25] and Clinical Global Impression (CGI) scale [26]. The Montgomery–Åsberg Depres-
sion Rating Scale (MADRS) [27] and the Positive and Negative Syndrome Scale (PANSS) [28]
were also used. Patients with depression with a total MADRS score of at least 20 were
included, as well as psychotic patients with at least 3 on P1 (delusions) or P6 (suspicious-
ness) PANSS. Both groups had been on stable medication for the past 14 days. Detailed
data on the various medications taken are available at https://zenodo.org/record/5865628
(accessed on 1 February 2022), along with the results and code used for the analysis.

We adhered to the following exclusion criteria: age under 18 years or over 65 years,
presence of MRI-incompatible metal implants or body grafts (e.g., pacemaker), severe
somatic or neurological disease, comorbid mental disorder, (e.g., substance or alcohol
use disorder, obsessive compulsive disorder, etc.), and traumatic brain injury with loss of
consciousness. Each participant provided a written informed consent in compliance with
the Declaration of Helsinki. The study protocol was approved by the University’s Ethics
Committee.

2.2. Image Acquisition

The scanning protocol was implemented on a 3T MRI system (GE Discovery 750w)
with 3 different MRI sequences: high-resolution structural scan (Sag 3D T1 FSPGR se-

https://zenodo.org/record/5865628
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quence), with slice thickness of 1 mm, matrix 256 × 256, TR (relaxation time) of 7.2 ms, TE
(echo time) of 2.3 ms, and flip angle 12◦, with two functional scans (2D EPI sequence) while
resting with the eyes closed—slice thickness 3 mm, 36 slices, matrix 64 × 64, TR—2000 ms,
TE, 30 ms, flip angle 90◦, 192 volumes—and during the task (see following paragraph)—
slice thickness 3 mm, matrix 64 × 64, TR 2000 ms, TE 30 ms, and flip angle 90◦, 256 volumes.
The functional scan initiated with 5 dummy time series which were automatically excluded.

2.3. FMRI Task

The paradigm was designed via E-prime software (Psychology Software Tools, Inc.,
Sharpsburg, PA, USA) and included 32 s blocks with three different active conditions. Each
active block was followed by 20 s block with the rest (off) condition (fixation cross). The
stimuli were presented using the Nordic Neuro Lab Visual System. There is a detailed
description of the task in our previous work [15,19]; therefore, here we will only summarize
it briefly.

All active blocks contained four written statements from the von Zerssen Paranoid-
Depression Scale with a duration of 8 s each. There were Depression-Specific (DS) blocks
with items such as “I often feel simply miserable”, “I don’t have any feelings anymore”,
and Paranoid-Specific (PS) blocks with items such as “Other people constantly follow
and control me”. The Diagnostically Neutral (DN) blocks included statements from a
general interest and likes questionnaire (e.g., “I like to write books or plays”, “I like to
repair household appliances”, etc.). There were four possible answers (“completely true”,
“mostly true”, “somewhat true”, “not true”) corresponding to four response buttons (upper
left, lower left, lower right, upper right). The description of the possible answers and the
respective buttons was presented under each statement. The whole task consisted of four
blocks of each type, alternating between the three active conditions and followed by the
rest condition (DS__rest__DN__rest__PS__rest . . . ). The participants were instructed to
read the statements carefully and to respond with a button press according to their level
of agreement. During the rest condition, they had to focus on the fixation cross without
thinking of anything in particular.

2.4. MRI Data Analysis
2.4.1. Structural Data Analysis—Voxel-Based Morphometry

The analysis of the MRI images was performed using the SPM 12 (Statistical Parametric
Mapping, http://www.fil.ion.ucl.ac.uk/spm/ (accessed on 1 February 2022)) toolbox
running on MATLAB R2021a for Windows. The preprocessing of the T1 weighted images
included segmentation and normalization to standardized MNI space, followed by spatial
smoothing with an 8 mm (FWHM) Gaussian kernel. In addition, the total intracranial
volume (TIV) was calculated for each subject using the result of the segmentation step.

2.4.2. Task-Related Functional Data Analysis

The functional images first underwent realignment for correction of head motion,
co-registration with the high-resolution anatomical image, normalization to MNI (Montreal
Neurological Institute) space, and spatial smoothing with an 8 mm full-width-at-half-
maximum (FWHM) Gaussian kernel.

After preprocessing, a first-level analysis of the functional times series was conducted
using a general linear model (GLM) that included the conditions convolved with a canonical
hemodynamic response function. In the GLM model, covariates of no interest included the
six rigid body motion correction parameters. In order to summarize the functional brain
activity of each individual, we calculated the Individual F-contrasts using the first-level
GLM. The Individual F-contrasts compared the active and passive condition in order to
generate input for multivariate analyses.

http://www.fil.ion.ucl.ac.uk/spm/
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2.4.3. Resting State Data Analysis

For the resting state data after preprocessing (which was the same as for the task-
related data), a general linear model (GLM) applied to the time series was conducted for a
first-level analysis. Nuisance covariates included the six rigid body motion parameters,
average white matter, and cerebrospinal fluid signal time series. The individual residual
mean-square images were also used for the analysis. More information can be found in our
previous study (see [29]).

2.5. Mass Multivariate Analysis

Our multivariate method extended the mass-univariate approach widely used in
the field, in which each dependent variable is considered at a time, to take into account
multiple variables. Rather than analyzing each modality separately and determining their
association with the diagnosis, as we have done so far, we hypothesized that a multivariate
signature based on all of the modalities exists for each brain region. The multivariate linear
model fitted here aims to identify the combination that maximizes the square difference
(variance) between the two groups; as for the interpretation, the important aspect is the
combination rather than individual elements, in contrast to univariate models. The details
of the method are described below.

2.5.1. Defining the Regions of Interest and Individual Multivariate Features

In order to derive regional measures based on the Neuromorphometrics atlas re-
leased by “MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling” (www.
neuromorphometrics.com (accessed on 1 February 2022)), we applied the following pro-
cedure: (1) we obtained the individual atlas for the modality. Each T1w image of each
individual was first segmented into three brain tissue classes (cerebral spinal fluid, gray
matter, and white matter),and then labeled using SPM12’s diffeomorphic “geodesic” shoot-
ing; (2) we computed the mean values of the regions for each of the three modalities using
the individualized atlas. We were able to construct an array for each region Y_reg contain-
ing a row for every subject and a column for each modality, with the mean value for that
subject in that modality.

2.5.2. Statistical Analysis and Model Estimation

The statistical analysis was based on a Multivariate General Linear Model imple-
mented in Matlab as an SPM12 toolbox (code available in Github see below). Using the
multivariate method, we estimated the significance of the association between observations
(Y_reg) and the diagnostic outcome encoded in a design matrix X. The Ordinary Least
Squares (OLS) procedure yielded a matrix representation of the parameter estimates of B
in the multivariate general linear formula. Labels for the different diagnoses were imple-
mented in the analysis. In addition to the diagnostic indicators, we added age, gender, and
total intracranial volumes as confounding factors.

2.5.3. Statistical Analysis and Model Testing

To test the significance of the difference between the diagnostic categories, an analysis
of the eigenvalues of the variance matrices was used to derive the canonical vector that
corresponded to the linear combination that best explained the variance of the data, together
with an F-test of the Wilks lambda (see [30]). Detailed data on the analysis code and results
are available at https://zenodo.org/record/5865628 (accessed on 1 February 2022).

3. Results
3.1. Demographic and Clinical Characteristics

The two patient groups did not differ significantly in their clinical and demographic
features (Table 1).

www.neuromorphometrics.com
www.neuromorphometrics.com
https://zenodo.org/record/5865628
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Table 1. Demographic and clinical characteristics of the participants.

Schizophrenia
Patients (n = 19)

Depressed Patients
(n = 25)

Statistical
Significance

Age (mean ± SD) 39.3 ± 14.8 44.2 ± 12.1 0.231 a

Sex (M/F) 9/10 9/16 0.542 b

Education (years) 13.5 ± 2.8 14.1 ± 3.5 0.548 a

Age at onset (years) 27.1 ± 9.1 33.8 ± 12.4 0.139 a

Illness duration (months) 142.8 ± 121.6 121.8 ± 84.5 0.505 a

Episode duration (weeks) 15.4 ± 14.1 11.9 ± 10.4 0.403 a

MADRS score - 30.5 ± 6.0 -
PANSS score 58.5 ± 13.6 - -
CGI-S score 4.14 ± 0.66 4.18 ± 0.75 0.891 a

SD—Standard Deviation, MADRS—Montgomery–Åsberg Depression Rating Scale, PANSS—Positive and Nega-
tive Syndrome Scale, CGI-S—Clinical Global Impression—Severity, a Independent samples t-test, b χ2-test.

3.2. Mass Multivariate Analysis Results

We extracted the brain regions from an atlas, presented in the previous section, and
implemented them in each modality. Following this, we conducted a Mass Multivariate
Analysis. This resulted in the definition of 119 regions with a calculated p value, chi-square
value, and canonical vectors. Canonical vectors refer to the three modalities—CV 1 to the
functional MRI data, CV 2 to the resting-state fMRI data, CV 3 to the structural MRI data.
In Table 2, we present 44 regions out of 119 with a range of p < 0.01–p < 0.05. Moreover, in
Figure 1, the Chi-statistics between the tested groups is presented.

According to our methodology, the regions with highest weight appeared to be as
follows: left planum polare, left opercular part of the inferior frontal gyrus, medial or-
bital gyrus, posterior insula, and parahippocampal gyrus (See Table 2). These regions
demonstrated a level of significance p < 0.01, corrected. However, the p-values of the PP
demonstrated a level of significance below 0.001.

The differences between the two groups in the planum polare were predominantly
driven by the functional imaging modalities (functional and resting state) and a negative
weighting for anatomical measures. The canonical vector for the left lateral orbitofrontal
cortex (OFC) demonstrated the highest discriminative value between schizophrenia and
depression. In addition, the analysis showed resting-state and task-related driven dysfunc-
tion of the medial orbital gyrus. The contribution of the parahippocampal region in our
analysis had the most significant differentiating capacity in its resting-state activity

Figure 2 presents all of the above regions according to their canonical vectors and their
contribution in each modality. It depicts how the three modalities correspond in the region.
This will be discussed in the following section for the first five regions.

The results from the MLM are presented in Figure 3 with their canonical weighting for
the three modalities (structural MRI, functional MRI, resting-state MRI).
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Table 2. Significant regions and their canonical vectors.

Regions p-Value Chi Statistics Canonical Vector

CV1 CV2 CV3

1 Left planum polare 0.0008 16.7299 0.6319 0.7613 −0.1453

2 Left opercular part of the inferior
frontal gyrus 0.0022 14.5809 −0.4026 −0.8402 0.3633

3 Left medial orbital gyrus 0.0039 13.3569 −0.2124 −0.9564 0.2005
4 Left posterior insula 0.0077 11.9015 −0.3233 −0.9339 0.1530
5 Left parahippocampal gyrus 0.0092 11.5353 −0.3229 −0.9040 0.2800
6 Right lateral orbital gyrus 0.0121 10.9252 0.2551 0.8937 −0.3690
7 Right supramarginal gyrus 0.0134 10.7141 0.0964 −0.6804 0.7265
8 Right anterior orbital gyrus 0.0169 10.2093 0.1428 −0.7306 0.6677
9 Right supplementary motor cortex 0.0197 9.8746 −0.0688 −0.7482 0.6599

10 Left supplementary motor cortex 0.0203 9.8031 −0.0859 0.7082 −0.7007
11 Left superior temporal gyrus 0.0208 9.7535 −0.2775 −0.8334 0.4779
12 Left temporal pole 0.0211 9.7250 0.3911 0.8486 −0.3563
13 Left anterior orbital gyrus 0.0238 9.4530 −0.1262 0.7232 −0.6790
14 Right middle frontal gyrus 0.0243 9.4139 0.3836 −0.4898 0.7829
15 Left Amygdala 0.0263 9.2404 −0.2334 −0.9612 0.1474
16 Left frontal operculum 0.0267 9.2025 0.2479 0.9685 0.0226
17 Right angular gyrus 0.0274 9.1444 0.0716 −0.7811 0.6202
18 Right middle temporal gyrus 0.0277 9.1216 0.2095 −0.9312 0.2982

19 Left superior frontal gyrus medial
segment 0.0285 9.0578 0.0298 −0.7775 0.6282

20 Left superior parietal lobule 0.0305 8.9095 0.4082 −0.4644 0.7859
21 Left Hippocampus 0.0307 8.9001 −0.2239 −0.9630 0.1502
22 Right superior temporal gyrus 0.0332 8.7205 0.1746 −0.8503 0.4964
23 Right posterior insula 0.0341 8.6677 −0.0524 −0.9878 0.1469
24 Left central operculum 0.0348 8.6178 −0.2178 −0.9620 0.1649
25 Left fusiform gyrus 0.0350 8.6045 −0.4066 −0.8550 0.3219
26 Left middle cingulate gyrus 0.0351 8.5999 −0.1485 −0.9698 0.1935
27 Left medial frontal cortex 0.0366 8.5070 0.0482 −0.9819 0.1833
28 Right parietal operculum 0.0378 8.4347 −0.0461 −0.9966 0.0686
29 Right middle cingulate gyrus 0.0388 8.3761 −0.2403 −0.9456 0.2196
30 Left middle frontal gyrus 0.0395 8.3418 0.2894 −0.5013 0.8154
31 Left gyrus rectus 0.0403 8.2928 −0.3306 −0.8902 0.3133
32 Left entorhinal area 0.0406 8.2803 −0.7626 −0.5786 0.2894
33 Left posterior cingulate gyrus 0.0441 8.0939 −0.2762 −0.9312 0.2378
34 Left middle temporal gyrus 0.0451 8.0429 −0.0043 −0.9256 0.3785
35 Right superior frontal gyrus 0.0453 8.0345 0.6047 −0.3385 0.7209
36 Left anterior cingulate gyrus 0.0471 7.9465 −0.1187 −0.8082 0.5768
37 Right anterior cingulate gyrus 0.0493 7.8452 −0.0797 −0.6843 0.7249
38 Right medial orbital gyrus 0.0501 7.8105 −0.0785 −0.9286 0.3626
39 Left Basal Forebrain 0.0508 7.7787 −0.6022 −0.7983 0.0046
40 Right gyrus rectus 0.0513 7.7589 −0.4299 −0.8586 0.2792

41 Right superior frontal gyrus medial
segment 0.0521 7.7212 0.1002 −0.7965 0.5963

42 Right CO central operculum 0.0526 7.7016 −0.0305 −0.9853 0.1684
43 Right medial frontal cortex 0.0544 7.6275 0.0393 0.9953 0.0889
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the left and right views, the middle row shows the top view, and the bottom row shows the front and
rear views. Blue represents a negative contribution, and red represents a positive contribution (please
note that the signs are arbitrary, as with any multivariate decomposition).

4. Discussion

Using the Mass Multivariate Method on structural, resting-state, and task-related
fMRI data from two groups of patients with schizophrenia and depression, we were able
to define several brain regions with significant relevance to differential diagnosis. Those
regions included left planum polare, left OpIFG, MOrG, posterior insula (PIns), and PHG.
Our interpretation of these findings is given below.

The planum polare is a part of the superior temporal gyrus, located just anterior to
the Heschl’s gyrus, and is considered to encompass two of the five non-primary auditory
areas (the anterior and the medial area). The enhanced connectivity between the thalamus
and the right planum polare (among other regions) has been demonstrated to be associated
with a higher proprioceptive drift (bottom-up processing) during exteroception in HC [31].
Meanwhile, increased activity in the left planum polare has been related to attentional
processes during audiovisual dialogues [32]. One of the major symptoms in depression is
the subjective perception of reduced attention and memory as well as a decreased ability
to participate in a conversation. Our results showing the significance of the left planum
polare for differentiation signatures is in line with the phenomenological presentation of
disrupted self-perception in depression.

The involvement of the auditory cortex in the pathophysiology of schizophrenia has
been demonstrated in both structural and functional MRI studies [33–37]. A progressive
reduction of gray matter volume of the superior temporal gyrus (including planum polare
and planum temporale) has been detected in a longitudinal study of patients with ultra-
high risk for psychosis and first episode [38]. On the other hand, a smaller GMV of the
PP was found in patients with bipolar depression compared to patients with unipolar
depression [39].

In healthy individuals, the acute administration of a dopamine precursor (L-DOPA)
was followed by a reduction of functional connectivity between the right anterior insula
and the left auditory cortex planum polare [40]. In addition, there was a strong positive
correlation between the score on a scale assessing psychotic-like experiences and the
functional connectivity between right AI and planum polare. The findings suggest that
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psychotic-like experiences are associated with a dopamine-induced disruption of auditory
input to the salience network (SN), which may lead to aberrant attribution of salience.
Thus, the existing evidence of the involvement of planum polare in the pathophysiology of
psychosis points to both functional and structural abnormalities. Our results highlight a
contribution with a slight prevalence of resting-state rather than task-related fMRI function
of this area to the differential diagnosis of schizophrenia and affective disorders.

The orbital part of the inferior frontal gyrus is known as Brodmann area 47, the
major functions of which are related to language processing and comprehension as well
as emotion recognition [41]. Along with Brodmann area 45, it is part of the semantic
network. The latter is demonstrated to be dysfunctional in schizophrenic patients, where
the disruption is found to correlate with the severity of formal thought disorder [42]. On the
other hand, delusion misattribution was associated with cortical thickness in Brodmann’s
area (BA) 11/47 in first-episode psychosis [43]. Moreover, the duration of illness was
inversely related to regional gray matter volume in the left inferior frontal gyrus, more
specifically, BA 11/47 [44].

On the other hand, depression has been characterized by increased functional con-
nectivity of the lateral orbitofrontal cortex (OFC)—BA 47/12 (non-reward/punishment
system)—with the precuneus (involved in the sense of self and agency) and the angular
gyrus (involved in language) related to the negative sense of the self and of self-esteem [45].
Similar findings of disturbed function of the lateral OFC led to the formulation of the
so-called non-reward attractor theory of depression [46]. According to it, the non-reward
system is more easily triggered and maintains its attractor-related firing for longer, which
leads to negative cognitive states, having positive feedback to the lateral OFC non-reward
system once again [45]. In our study, the resting-state component of the canonical vector for
the left lateral OFC demonstrated the highest discriminative value between schizophrenia
and depression, which is in line with the abundant data on connectivity disruption of this
brain area in depression.

The orbitofrontal cortex (OFC) has been associated with complex physiological pro-
cesses such as reward-based decision making, regulation of the affect, etc. [47,48]. Further-
more, connectivity patterns of the medial and lateral OFC have been related to goal-directed
behavior, and existent aberrations in the anatomical or functional connections have been
implicated in various mental disorders such as MDD and obsessive-compulsive disorder
(OCD) [49]. In relation to MDD, in a previous study utilizing voxel-based morphometry
analysis, our research group found a significant decrease of the GMV in the right medial
orbital gyrus (MOG) in depressed patients as compared to healthy individuals [9]. In
addition, GMV reduction in the right MOG and the right parahippocampal region was
found in schizophrenic patients with persistent negative symptoms (PNS) as compared to
non-PNS patients and healthy controls [50]. Spalletta et al. also implicated impaired white
matter structural integrity of the MOG in the pathophysiology of schizophrenia [51], thus
providing further substantiation for the role of this locus in the pathophysiology of these
severe conditions.

In terms of functional aberrations, increased functional connectivity between the OFC
and the medial prefrontal cortex, as well as hyperconnectivity between the amygdala and
the hippocampus, were demonstrated in individuals with a paranoid syndrome compared
to HC [52]. Fronto-limbic circuitry impairment has also been a consistent finding in
MDD [53]. Therefore, our findings, suggesting a resting-state and task-related driven
dysfunction of the MOG, are concordant with the hitherto acquired knowledge on the
pathophysiology of MDD and SCH.

Another corresponding result is the contribution of the parahippocampal region,
which in our analysis has the most significant differentiating capacity in its resting-state
activity. The parahippocampal gyrus (PHG) encompasses a large part of the medial tem-
poral lobe and is a known node of the limbic system. Even though its precise functions
are not yet fully understood, evidence suggests that the PHG is an integral factor in cog-
nition, specifically in memory encoding—e.g., object location [54], events, facts [55]. In
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addition, it is hypothesized that the PHG is a moderating hub of the DMN in the medial
temporal lobe [56]. According to Razi et al., in patients with chronic schizophrenia there is
a significant GMV reduction in the left parahippocampal gyrus in comparison with healthy
controls [57]. Moreover, another study determined that parahippocampal deactivation pre-
cedes auditory hallucinations in patients with SCH [58–60]. According to our methodology,
PHG is more significant in the resting state modality than in the task-based fMRI.

The posterior insula primarily has connections with posterior temporal, parietal, and
sensorimotor areas and retains somatosensory representations of touch to one’s own body
in contrast with other somatosensory areas, being activated by the sight of touch [61].
PIns is linked to the perception of pain and temperature. In addition, during auditory
perception, the responses of PIns are similar to the ones registered in Heschl’s gyrus. The
posterior insula has functional connectivity with the somatosensory cortices, posterior
and middle cingulate, and temporo-parietal regions, suggesting a more predominant role
in somatosensory recognition, homeostatic processing, and monitoring of inner bodily
states [62]. A meta-analysis of gray matter changes in schizophrenia revealed a medium-
sized reduction in insula volume, of greatest magnitude in the anterior subregion compared
to the posterior subregion [63]. In addition, in our analysis, we found that PIns has higher
significance during resting-state fMRI.

In first-episode schizophrenia (FES) patients, aberrant differential activation in the pos-
terior insula for first-person tactile experiences and observed affective tactile stimulations
was found, suggesting that social perception in FES at a pre-reflective level is characterized
by disturbances of self-experience, including impaired multisensory representations and
self–other distinction [64]. In addition, the PIns showed reduced functional coupling with
the posterior cingulate cortex (PCC) and the postcentral gyrus and increased functional
interactions with the anterior insula. These results suggest an imbalance in the processing
between internally and externally guided information and its abnormal integration with
self-referential processing as mediated by the PCC [65].

5. Limitations of the Study

This study has several limitations. The first is related to the small sample size of
each of the included groups. This is also characteristic of most pro-innovative research on
medical biomarkers related to diagnosis and prognosis of disease, which initially report
small groups [66]. Nonetheless, the predictive power of these biomarkers has been later
confirmed in larger cohorts [67].

In addition, the current neuro-psychiatric research based on big data collection has not
delivered the expected progress in the field. Therefore, we aspire to use as many tools as
possible to define small but homogenous cohorts and to achieve incremental validity, which
entails additional measures to be intensely applied to small samples in order to achieve
increased evidence strength [68]. Another limitation is the arbitrary sign defining the
values of the different modalities’ contribution to diagnosis in the relevant figure (Figure 2).
Although it is evident that for most of the regions the contribution of resting-state MRI was
opposite to the contribution of structural and t-r functional MRI, further investigations are
needed to specify the extent to which those canonical vectors have the potential to identify
specific diagnostic classes.

6. Conclusions

This study delivers evidence in support of multimodal neuroimaging approaches
that may add incremental validity to psychiatric diagnosis. Data acquired with struc-
tural, resting-state, and task-related functional MRI modalities are limited and sometimes
controversial as to their potential integration as biomarkers of diagnosis. In multivariate
integration, one can identify robust components based on the evidence accumulated along
the different imaging modalities, even if they are individually highly variable.

Further studies need to consider and implement a convergent cross-validation of
clinical measures incorporated in multivariate analysis to discriminate depressive disorders
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from other clinical conditions and healthy states. Biological signatures of disease on the
level of neuroimaging in psychiatry may underpin new nosological entities in psychiatry,
when considered on a broader basis of nomothetic networks [1,2,69].
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