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Abstract: Human immunodeficiency virus type 1 (HIV-1) encodes four accessory genes: 

vif, vpu, vpr, and nef. Recent investigations using in vitro cell culture systems have shed light 

on the roles of these HIV-1 accessory proteins, Vif, Vpr, Vpu, and Nef, in counteracting, 

modulating, and evading various cellular factors that are responsible for anti-HIV-1 intrinsic 

immunity. However, since humans are the exclusive target for HIV-1 infection, conventional 

animal models are incapable of mimicking the dynamics of HIV-1 infection in vivo. 

Moreover, the effects of HIV-1 accessory proteins on viral infection in vivo remain unclear. 

To elucidate the roles of HIV-1 accessory proteins in the dynamics of viral infection in vivo, 

humanized mouse models, in which the mice are xenotransplanted with human 

hematopoietic stem cells, has been utilized. This review describes the current knowledge of 

the roles of HIV-1 accessory proteins in viral infection, replication, and pathogenicity in 

vivo, which are revealed by the studies using humanized mouse models. 
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1. Introduction 

Human immunodeficiency virus type 1 (HIV-1), a virus belonging to the genus Retroviridae, was 

identified in 1983 as the causative agent of acquired immunodeficiency syndrome (AIDS) [1,2].  

HIV-1 genome consists of nine genes (Figure 1, top), and five out of the nine genes, gag, pol, env, tat, 

and rev, are essential for viral replication [3]. On the other hand, the remaining four genes, vif, vpu, vpr, 

and nef, are not always required for viral replication in in vitro studies using cell culture  

system [3,4]. Recent investigations have shed light on the roles of these viral accessory proteins in 

counteracting, modulating, and evading various host restriction factors responsible for anti-HIV-1 

cellular intrinsic immunity [4,5].  

 

Figure 1. Roles of Human immunodeficiency virus type 1 (HIV-1) accessory proteins  

in vitro and in vivo. (Top) The scheme of HIV-1 genome. Three reading frames are 

respectively indicated. (Middle) Major roles of HIV-1 accessory proteins reported from the 

experiments using cell cultures. (Bottom) The roles of HIV-1 accessory proteins elucidated 

from the experiments using humanized mouse models. The numbers in parentheses indicate 

the references. *, as an exception; Vif is dispensable if a vif-deficient CXCR4-tropic HIV-1 

(strain LAI) is intravenously inoculated into BLT humanized mice [39]. APOBEC3, 

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3; UNG, Uracil-DNA 

glycosylase; SMUG1, single-strand-selective monofunctional uracil-DNA glycosylase 1; 

LTR, long terminal repeat; ULBP2, UL16 binding protein 2; SLX4, SLX4 structure-specific 

endonuclease subunit; BST2, bone marrow stromal cell antigen 2; SLAMF6, signaling 

lymphocyte activation molecule family member 6; PAK2, p21 protein (Cdc42/Rac)-activated 

kinase 2; HCK, hematopoietic cell kinase. 

For the basic research of HIV-1 infection, in vitro cell culture systems including cell lines and primary 

human CD4+ T cells have been extensively utilized (Figure 2). However, the cell lines are transformed and 

abnormal. Primary human CD4+ T cells are artificially activated by mitogens (e.g., phytohemaggluttinin 

and anti-CD3/CD28 antibodies) to allow efficient HIV-1 replication. On the other hand, only a small 

portion of cell subsets in CD4+ T cells are activated in vivo, especially after antigen stimulation [47]. 

Therefore, the expression patterns of cellular genes, which are positively or negatively associated with 

HIV-1 replication, may be quite different in in vitro and in vivo, and it is important to investigate the 

dynamic interplay between cellular factors and HIV-1 accessory proteins in vivo. However, the 



Viruses 2015, 7 1375 

 

 

observations on the roles of HIV-1 accessory proteins, which are summarized in Figure 1, are principally 

based on the investigations using cell culture system in vitro. 

 

Figure 2. Experimental system for HIV-1 infection. The detailed explanation of each 

experimental system is described in the text. *1, to perform HIV-1 replication assays, primary 

CD4+ T cells should be artificially activated by mitogens (e.g., phytohemaggluttinin and 

anti-CD3/CD28 antibodies); *2, because human thymocytes are efficiently educated in 

human thymic transplant (i.e., human MHC), the human T cells differentiated in BLT 

humanized mice may recognize the tissues of recipient mouse as foreign antigen, which can 

lead to the onset of graft-versus-host reaction; *3, these systems are capable of responding 

type I interferon stimulation, which can lead to the expression of interferon-stimulating 

genes. However, these systems are incapable of triggering innate immune sensing because 

of the absence of dendritic cells and macrophages; *4, because human thymocytes are 

educated in the thymus of recipient mouse (i.e., murine MHC), the human T cells 

differentiated in HSC-transplanted humanized mice are unable to efficiently receive the 

antigen stimulation from human antigen presenting cells; *5, the transplanted human PBMCs 

recognize the tissues of recipient mouse as foreign antigen and cause graft-versus-host 

reaction, which results in the aberrant xenoactivation. BLT, bone marrow/liver/thymus; 

CTL, cytotoxic T lymphocyte; HSC, hematopoietic stem cell; IFN, interferon; NAb, 

neutralizing antibody; PBMC, peripheral blood mononuclear cell. 

To closely mimic HIV-1 infection in in vivo conditions, human histoculture systems such as the tissue 

explants from tonsil [48], cervix [49,50], vagina [49,51], and thymus [52], have been used (Figure 2). 

Compared to the cell cultures in vitro, these ex vivo histoculture systems reflect physiological conditions 

more closely because of the intact tissue architecture with multiple human leukocyte lineages including 

human CD4+ T cell subsets (e.g., naïve, memory, and regulatory cells (Tregs)), monocytes/macrophages, 

dendritic cells, and stromal cells. However, because of its surgical technique and human donors are 

needed, it appears to be difficult to routinely use this system for basic HIV-1 research. Moreover, the 

organ culture can only study HIV-1 infection in the isolated small tissue pieces that might not be ideal 

for many other experimental purposes. 
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To reconstruct human immunity in vivo, mouse models xenotransplanted with human cells have  

been developed. One of the classical small animal models is the severe combined immunodeficient 

(SCID) mouse xenotransplanted with human peripheral blood mononuclear cells (PBMCs) (Figure 2). 

This PBMC-transplanted mouse model is relatively easy to construct and efficiently allows HIV-1 

replication [53]. Also, this model has been used for multiple purposes on HIV-1 research such as the 

efficacy evaluation of passive immunization of anti-HIV-1 antibodies [54]. However, since the human 

lymphocytes in this mouse model are aberrantly activated because of xenoreactions against murine 

antigens [55], the condition of human CD4+ T cells are not physiological. 

In order to reproduce more physiological condition of human immunity in vivo, a new generation 

mouse model, called “humanized mouse” has been developed [56–59]. One is the mouse 

xenotransplanted with human CD34+ hematopoietic stem cells (HSCs), while the other, which is called 

bone marrow/liver/thymus (BLT) mouse, is xenotransplanted with the tissue sections of human fetal 

thymus and liver as well as human HSCs (Figure 2) [60,61]. Notably, both HSC-transplanted and  

BLT humanized mouse models are capable of supporting human lymphopoiesis and thymopoiesis for 

6–12 months [60,61]. In addition, the human lymphocytes including human CD4+ T cell subsets, which 

are reconstituted in these humanized mouse models, are maintained in a physiological condition [42].  

In HSC-transplanted humanized mouse, human acquired immune response (e.g., antibody production 

and cytotoxic T cell responses) is poorly elicited because human T cells/thymocytes are educated in 

murine thymus (i.e., the mismatching of major histocompatibility complex [MHC]) (Figure 2) [62,63]. 

On the other hand, BLT humanized mouse can potently elicit human acquired immunity because human 

T cells/thymocytes are educated in transplanted human thymic organoid [64,65]. However, it should be 

noted that BLT humanized mouse may suffer from aberrant immune activation which is triggered by the 

highly educated human T cells (Figure 2). 

In terms of the condition of human CD4+ T cells, we can say that these two humanized mouse models 

are the best choices to reproduce and investigate the dynamics of HIV-1 infection in vivo (i.e., under the 

physiological condition) at present. However, special facilities (e.g., specific pathogen-free condition), 

surgical technique, and appropriate recipient mice (e.g., NOG and NSG mice; [62,66]) are required for 

the construction of humanized mouse models. Furthermore, due to the ethical issues in the use and 

acquisition of the tissues from abortive fetuses for basic investigations, it is difficult to construct BLT 

humanized mouse model in many countries except for the United States. To circumvent this problem 

and for better understanding the mechanisms of the development of human immunity, lines of studies to 

improve the genetic background of the recipient mouse for the establishment of more efficient and 

appropriate humanized models have been pursued [67–70]. 

Because HIV-1 infects and causes disorders only in humans and chimpanzees, there is no perfect 

animal model to investigate the roles of HIV-1 accessory proteins in viral infection, replication, and 

pathogenesis in vivo so far. In this review, we describe the current state-of-the-art of novel findings on 

the roles of HIV-1 accessory proteins in vivo, which are obtained from the investigations using  

HSC-transplanted and BLT humanized mouse models. 

2. Viral Infectivity Factor (Vif) 

Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins are  

cellular cytidine deaminases that convert cytosines in the viral minus-strand cDNA to uracils, which  

results in the alternation of guanines to adenine in the nascent viral DNA (i.e., G-to-A mutation) [6,7,9]. 

Human cells encode 7 APOBEC3 genes, APOBEC3A, B, C, D, F, G and H [6,8]. Extensive studies using 
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in vitro cell cultures have revealed that certain APOBEC3 proteins, particularly APOBEC3D, 

APOBEC3F, and APOBEC3G, exhibit robust anti-HIV-1 activity principally depending on their 

enzymatic activity [6,8]. To counteract the anti-viral actions of APOBEC3 proteins, HIV-1 arms its own 

weapon, Vif. Vif recruits cellular E3 ubiquitin ligase complex, which is composed of cullin 5 (CUL5), 

elongin B/C (ELOB/C), and core binding factor beta (CBF-β), and degrades APOBEC3 proteins via the 

ubiquitin/proteasome-dependent pathway (Figure 1) [7]. Moreover, Izumi et al. revealed that Vif elicits 

cell cycle arrest at G2 phase (G2 arrest) independently of its anti-APOBEC3 activity (Figure 1) [10]. To 

investigate the dynamic interplay between endogenous APOBEC3 proteins and Vif in vivo, three 

previous studies have addressed this issue by using humanized mouse models (Table 1) [39–41]. First, 

Sato et al. inoculated CCR5-tropic wild type (WT) HIV-1 (strain JRCSF) and its vif-deficient derivative 

into hHSC-transplanted humanized mice (designated to NOG-hCD34 mice) [40]. Though WT HIV-1 

efficiently expanded in humanized mice, vif-deficient HIV-1 did not show viremia, strongly suggesting 

that the replication of vif-deficient HIV-1 in humanized mice is canceled by endogenous APOBEC3 

proteins expressed in human CD4+ T cells of humanized mice. In addition, the accumulation of G-to-A 

mutations in provirus genome was observed, and notably, lethal mutations (i.e., mutations to stop 

codons) were preferred. Furthermore, the mRNA expression levels of APOBEC3 genes in the human 

CD4+ T cells of humanized mice were comparable to those in human peripheral blood (PB) [40]. 

Therefore, this report suggests that endogenous APOBEC3 proteins expressed in human CD4+ T cells 

can abrogate HIV-1 infection in vivo as a result of accumulating G-to-A mutations in proviral DNA, and 

that Vif counteracts this robust anti-viral activity of endogenous APOBEC3 proteins even in vivo. 

Table 1. HIV-1 mutants used in the studies of humanized mouse models. 

Gene Strain Coreceptor Usage Mutation Type Reference a 

vif 

JRCSF CCR5 Deletion [40] 

JRCSF CCR5 Deletion [39] 

JRCSF CCR5 Frame shift [39] 

LAI CXCR4 Deletion [39] 

NLCSFV3 CCR5 DRMR/AAAA substitution (4A) [41] 

NLCSFV3 CCR5 YRHHY/AAAAA substitution (5A) [41] 

NLCSFV3 CCR5 Both of above (4A5A) [41] 

vpr 
JRCSF CCR5 Deletion [42] 

NL4-3 CXCR4 Deletion [42] 

vpu 

AD8 CCR5 Deletion [44] 

NLADA b CCR5 Deletion [43] 

NLADA b CCR5 S52D, S56D substitution [43] 

nef 

LAI CXCR4 Deletion [46] 

LAI CXCR4 Frame shift [45] 

LAI CXCR4 fsΔ-1 c [45] 

LAI CXCR4 fsΔ-13 c [45] 

LAI CXCR4 P72A, P75A substitution [45] 

a References, which corresponds to those in Figure 1, are shown; b The virus used in this study contains GFP 

reporter via internal ribosome entry site; c Reverted nef ORFs, which are obtained in the mice infected with 

HIV-1 carrying a frame shift mutation in nef. 
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Second, Krisko et al. inoculated WT and certain kinds of vif mutant HIV-1 into BLT humanized  

mice [39]. Similar to the previous report [40], vif-deficient CCR5-tropic HIV-1 (strain JRCSF) was 

unable to propagate in BLT mice [39]. On the other hand, 6 out of the 16 BLT mice intravenously 

inoculated with the virus carrying a frame shift mutation in vif (HIV-1 vifFS, strain JRCSF) exhibited 

viremia. Since vif open reading frame (ORF) is restored in the six mice displayed viremia, these results 

further suggest that Vif is prerequisite for viral spread in vivo to counteract APOBEC3-mediated  

anti-viral effect. 

When CCR5-tropic HIV-1 vifFS was directly injected into the spleen, liver, lung, or human thymic 

organoid of BLT mice, only the mice injected the virus solution into human thymic organoid exhibited 

systemic viremia with the reversion of vif ORF [39]. Moreover, the authors revealed that the mRNA 

expression levels of APOBEC3F and APOBEC3G in the human thymocytes of humans and BLT mice 

was significantly lower than those in the human CD4+ T cells in peripheral tissues [39]. Therefore, these 

findings suggest that thymocytes can allow the partial replication of CCR5-tropic HIV-1 vifFS and its 

vif restoration, which leads to the systemic spread of the restored viruses. These further suggest that 

CCR5-tropic HIV-1 is unable to exhibit systemic infection without Vif regardless of infection route. 

In contrast to the observations in CCR5-tropic HIV-1-infected BLT mice, it was surprising that the 

BLT mice intravenously inoculated with CXCR4-tropic vif-deficient HIV-1 (strain LAI) showed a 

prolonged (until 14 weeks postinfection [wpi]) viremia [39]. More importantly, this virus spread 

occurred without vif restoration, suggesting that Vif is dispensable for the replication of CXCR4-tropic 

vif-deficient HIV-1 in BLT mice. In this regard, CCR5 is limitedly expressed in the thymus, whereas 

30%–40% of thymocytes express CXCR4 [71-73]. Since human thymocytes express low levels of 

APOBEC3F and APOBEC3G, as mentioned above, human thymus can be susceptible to CXCR4-tropic 

vif-deficient HIV-1 propagation. However, it should be noted that the majority of HIV-1 isolated from 

patients is CCR5-tropic, while CXCR4-tropic HIV-1 can infrequently emerge during the onset of  

AIDS [74,75]. Since the replication of CCR5-tropic vif-deficient HIV-1 infection in BLT mouse needs 

the restoration of vif and is achieved only via artificial infection route (i.e., direct injection into the human 

thymic organoid, which is a unique organ in BLT mouse), it would be infeasible for CCR5-tropic  

HIV-1 to propagate in vivo via relatively natural infection routes (e.g., intrarectal, intravaginal, or 

intravenous infections). Further, the observations in CXCR4-tropic vif-deficient HIV-1-infected BLT 

mice may occur only the late stage of HIV-1 infection in patients. 

Third, Sato et al. have recently utilized three kinds of site-directed Vif mutants: DRMR/AAAA (4A), 

YRHHY/AAAAA (5A), double mutant (4A5A), respectively [41]. Vif interacts with APOBEC3D and 

APOBEC3F via 14DRMR17 motif, while interacts with APOBEC3G via 4°YRHHY44 motif [76,77]. 

Hence, 4A HIV-1 is susceptible only to APOBEC3D and APOBEC3F, while 5A HIV-1 is susceptible 

only to APOBEC3G. By using these CCR5-tropic viruses (strain NLCSFV3) and NOG-hCD34 

humanized mouse model, the authors demonstrated that endogenous APOBEC3D, APOBEC3F, and 

APOBEC3G exert strong anti-HIV-1 activity in vivo [41]. In addition, the growth kinetics of 4A HIV-1 

negatively correlated with the expression level of APOBEC3F but not of APOBEC3D, suggesting that 

endogenous APOBEC3F more critically modulates 4A HIV-1 replication in vivo than APOBEC3D. It 

was of particularly noteworthy that the viral RNA in the plasma of 4A HIV-1-infected mice was 

significantly diversified compared to those of WT, 5A, and 4A5A HIV-1-infected mice [41]. 

Furthermore, a mutated virus (E25K mutation in the V3 region of envelope glycoprotein), which is 

capable of using both CCR5 and CXCR4 as entry coreceptor, has specifically emerged in 4A  

HIV-1-infected mice [41]. Altogether, these findings suggest that endogenous APOBEC3D, 
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APOBEC3F, and APOBEC3G fundamentally are intrinsic restriction factors against HIV-1 in vivo, but, 

at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and 

evolution in vivo. This is the first report in vivo demonstrating that endogenous APOBEC3D and 

APOBEC3F potently promote viral diversification and evolution, which can be beneficial for viruses 

(e.g., emergence of quasispecies resistant to anti-HIV-1 drugs anti-viral immunity). 

3. Viral Protein R (Vpr) 

Vpr is a small (96 amino acids) protein, but potentially possesses multiple biological functions.  

Major roles of Vpr in vitro are G2 arrest and apoptosis (Figure 1) [11,12]. Although the mechanisms of 

action of Vpr leading to G2 arrest and apoptosis remain controversial [11], a paper has recently suggested 

that Vpr induces the activation of the cellular structure-specific endonuclease regulator SLX4 complex, 

which results in G2 arrest (Figure 1) [18]. Also, Vpr has the potential to enhance HIV-1 long terminal 

repeat-driven transcription [16,17]. In the field of immunology, Vpr expressed in the infected cells 

upregulates UL16 binding protein 2 (ULBP2; also known as NKG2D ligand), a counter receptor for 

natural killer cell-specific receptor, which leads to natural killer cell-mediated killing [78,79]. Moreover, 

Vpr recruits a cellular E3 ubiquitin ligase complex, which is composed of cullin 4 (CUL4), damage-

specific DNA binding protein 1 (DDB1), and Vpr binding protein (VPRBP), and degrades some cellular 

proteins such as Uracil-DNA glycosylase (UNG; also known as UNG2) [13,14] and single-strand-

selective monofunctional uracil-DNA glycosylase 1 (SMUG1) (Figure 1) [15]. When compared to the 

observations in Vif (described above) and Vpu (described below), however, the virological significance 

of Vpr-mediated ubiquitin ligase complex still remains unsolved. 

To address the role of Vpr in HIV-1 infection in vivo and its contribution to disease development, 

Sato et al. inoculated CCR5-tropic vpr-deficient HIV-1 (strain JRCSF) into NOG-hCD34 humanized 

mice (Table 1) [42]. CCR5-tropic vpr-deficient HIV-1-infected mice showed a significantly lower level 

of viremia during the acute phase of infection (4 and 7 days postinfection [dpi]) compared with WT 

HIV-1 [42]. In addition, the level of infected Tregs in vpr-deficient HIV-1-infected mice was 

significantly lower than that in WT HIV-1-infected mice [42]. Moreover, WT but not vpr-deficient  

CCR5-tropic HIV-1-infected mice displayed the acute depletion of Tregs in PB and spleen [42]. 

Furthermore, Vpr-dependent G2 cell cycle arrest and apoptosis are predominantly observed in infected 

Tregs [42]. Importantly, these were observed in the mice infected with CCR5-tropic HIV-1  

(strain JRCSF), whereas there were no significant differences in the case of CXCR4-tropic HIV-1  

(strain NL4-3) [42]. These findings suggest that the Vpr-dependent Treg depletion is dependent on viral 

coreceptor usage. In this regard, Tregs are highly susceptible to CCR5-tropic HIV-1 infection because 

the CCR5 expression levels on Tregs are higher than those on naive and memory CD4+ T  

cells [42,80]. Also, Tregs are more susceptible to Vpr-mediated G2 arrest and apoptosis because they 

are actively proliferating. On the other hand, CXCR4 is broadly expressed on all CD4+ T cell  

subsets [42,80,81]. Therefore, the Vpr-dependent G2 arrest and apoptosis can be preferentially triggered 

by CCR5-tropic but not CXCR4-tropic HIV-1 in vivo. 

It is known that Treg plays a crucial role in the maintenance of immune homeostasis [82].  

In CCR5-tropic HIV-1-infected mice, Vpr-dependent depletion of Treg resulted in immune  

activation [42], which is a hallmark in the patients infected with HIV-1 [83]. Altogether, these findings 

suggest that Vpr enhances CCR5-tropic but not CXCR4-tropic HIV-1 replication mediating G2 arrest 

and apoptosis in vivo by exploiting Treg during the acute phase of infection. This Vpr-dependent Treg 
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depletion may lead to immune activation and provide a pool of activated CD4+ T cells, which supports 

subsequent HIV-1 expansion in vivo. 

4. Viral Protein U (Vpu) 

Vpu is a transmembrane protein and has been classically recognized as a “viroporin”, which  

works as ion channel (Figure 1) [19,20]. In addition, Vpu degrades some host proteins such as CD4 

molecule, the receptor for HIV-1 entry, through the ubiquitin/proteasome pathway [84]. Vpu also 

downregulates signaling lymphocyte activation molecule family member 6 (SLAMF6; also called  

NTB-A), a transmembrane protein potently inducing natural killer cell-mediated killing [24] and CD1d  

molecule [23] from the cell surface of infected cells (Figure 1). 

It was known that certain human CD4+ T cell lines (e.g., Jurkat cells), primary CD4+ T cells, 

monocyte-derived macrophages, and HeLa cells are incapable of producing the vpu-deficient HIV-1 

virions [21,22]. Neil et al. and Van Damme et al. identified that the cellular factor, bone marrow  

stromal cell antigen 2 (BST2; also known as CD317, HM1.24 and tetherin) [25,26]. BST2 is  

an interferon-stimulated protein and is endogenously expressed on human CD4+ T cells and  

macrophages [85,86]. On the other hand, Vpu downregulates BST2 from the cell surface and counteracts 

BST2-mediated anti-viral activity (Figure 1) [26,86]. The Vpu-mediated BST2 downregulation is 

dependent on -transducin repeat-containing protein 1 (BTRC; also called -TrCP1), an E3 ubiquitin 

ligase, similar to the manner by which CD4 is downregulated [84,87-90]. Moreover, it has been recently 

revealed that Vpu inhibits the activation of NFκB signaling [27,28]. These observations were brought 

from in vitro studies using cell culture systems, however, the role of Vpu in HIV-1 replication in vivo, 

particularly its antagonism of BST2 in vivo, remains unresolved. 

Sato et al. [44] and Dave et al. [43] investigated the role of Vpu in HIV-1 expansion in vivo using 

humanized mouse models (Table 1). In the former paper, NOG-hCD34 humanized mice were inoculated 

with WT or vpu-deficient HIV-1 (strain AD8) at a relatively high dose (300,000 TCID50) [44]. The authors 

revealed that the viral load of vpu-deficient HIV-1 was 8.5-fold lower than in that of WT  

HIV-1 at 7 dpi, suggesting that vpu-deficient HIV-1 more slowly propagates in humanized mice than 

WT HIV-1 during the initial phase of infection [44]. At 7 dpi, although the percentage of Gag-positive 

cells (i.e., virus-producing cells) in the spleen of vpu-deficient HIV-1-infected mice was similar to that 

of WT HIV-1-infected mice, it was of particularly noteworthy that the amount of cell-free virions  

in the spleen of vpu-deficient HIV-1-infected mice was quite lower (61.8-fold) than in that of WT  

HIV-1-infected mice [44]. Moreover, the authors revealed that the expression levels of BST2 and CD4, 

but not SLAMF6, on the surface of Gag-positive cells in the spleen of WT HIV-1-infected mice were 

significantly lower than in those of vpu-deficient HIV-1 at 7 dpi [44]. These findings suggest that Vpu 

downregulates BST2 and CD4 from the surface of virus-producing cells to promote the release of nascent 

virions, which augments the initial burst of HIV-1 replication in vivo. 

In the latter paper [43], hHSC-transplanted humanized mice were infected with WT HIV-1 or  

vpu-deficient HIV-1 (strain NLADA) at a relatively low dose (5,000 TCID50). Until 14 wpi, the viral 

load in the plasma of vpu-deficient HIV-1-infected mice was ~5-150-fold lower than that of WT  

HIV-1-infected mice until 14 wpi [43]. Similar to the former paper [44], BST2 downregulation was 

detected on the surface of Gag-positive cells in WT HIV-1 infected mice. On the other hand, in  

vpu-deficient HIV-1-infected mice, the expression level of surface BST2 on Gag-positive cells was 

higher than that of Gag-negative cells [43]. Such BST2 upregulation on the uninfected cells was reported 

in the former paper during the chronic phase of infection (21 dpi) [44] and the individuals infected  
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HIV-1 [91]. Because BST2 is an interferon-stimulated gene, the BST2 upregulation can be triggered by 

type I interferon, which is induced by HIV-1 infection. Taken together, these findings suggest that Vpu 

downregulates surface BST2 in vivo for the promotion of viral production and propagation regardless of 

input viral dose. 

To better understand the association of BTRC with the role of Vpu, Dave et al. [43] used a mutant 

virus, HIV-1 VpuS52D/S56D. This Vpu is incapable of recruiting BTRC and thereby is unable to degrade 

BST2. The authors inoculated WT HIV-1, vpu-deficient HIV-1, or HIV-1 VpuS52D/S56D into humanized 

mice at a relatively high dose (~500,000 TCID50) [43]. At 21 dpi, although vpu-deficient  

HIV-1-infected mice exhibited severely lower viremia (~15-fold) compared to WT HIV-1-infected mice, 

the decrease in the viral load of HIV-1 VpuS52D/S56D comparing to WT HIV-1 was relatively mild  

(~3-fold) [43]. Moreover, HIV-1 VpuS52D/S56D partially downregulated surface BST2 (20%–30%) on 

Gag-positive cells of infected mice, whereas vpu-deficient HIV-1 was unable to downregulate BST2 on 

the surface of Gag-positive cells [43]. Since WT HIV-1 strongly downregulated surface BST2  

(50%–60%) compared to vpu-deficient HIV-1 and HIV-1 VpuS52D/S56D, these findings suggest that the 

efficacy of BST2 downregulation associates with the level of viral spread in vivo. However, it should be 

considered that the mutations of these serine residues in Vpu also abrogates downmodulation of  

CD4 [92] and inhibition of NFκB signaling [28]. Therefore, the observations in the humanized mice 

infected with HIV-1 VpuS52D/S56D [43] may not be solely ascribed to the lack of tetherin counteraction. 

Notably, Sato et al. [44] further revealed that the efficacy of vpu-deficient HIV-1 infection in 

humanized mice was significantly lower than that of WT HIV-1. This observation suggests that Vpu 

potently enhances the efficacy of infection in humans, which leads to the promotion of  

human-to-human HIV-1 transmission. It is of interest that Vpu proteins of pandemic HIV-1 (group M) 

possess anti-BST2 ability, while those of non-pandemic HIV-1 (groups N, O, and P) do not or  

less [2,4,93–95]. Therefore, the worldwide epidemic of HIV-1 group M might be attributed to the  

Vpu-mediated BST2 antagonism to some extent. 

5. Negative Factor (Nef) 

In vitro investigations have revealed that Nef is a pluripotent protein. For instance, Nef downregulates 

CD4 [30,35], MHC class I [30,32], CCR5/CXCR4 coreceptors [29-31], and CD28 [33] from the surface 

of infected cells (Figure 1). On the other hand, Nef upregulates CD74, the invariant chain of MHC class 

II [34]. In addition, Nef potently enhances the infectivity of released virions [35,36], though the 

molecular mechanism of this action remains unclear. Moreover, Nef induces the activation of cellular 

protein kinases such as p21 protein (Cdc42/Rac)-activated kinase 2 (PAK2) and a tyrosine kinase, 

hematopoietic cell kinase (HCK) (Figure 1) [37,38]. 

In vitro studies using activated human primary CD4+ T cells and ex vivo studies using human tonsil 

tissue cultures have suggested that CD4 downregulation is more critical for Nef to promote viral 

replication than MHC class I downregulation [96-98]. Importantly, the patients infected with  

nef-defective HIV-1 failed to develop AIDS [99-104]. Given that a long-term non-progressor, who has 

been infected with attenuate nef-defective viruses, exhibited acute CD4 T cell decrease in PB through 

the superinfection of nef-proficient virus [105], these notions strongly suggest that Nef closely associates 

with viral pathogenesis and disease progression in vivo. 

To directly investigate the roles of Nef in HIV-1 replication and pathogenesis in vivo, a BLT 

humanized mouse model and nef-deficient HIV-1 (strain LAI) were used (Table 1) [46]. Although WT 

HIV-1-infected mice exhibited a profound loss of human CD4+ T cells and thymocytes, nef-deficient 
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HIV-1-infected mice showed neither CD4+ T cell decrease nor thymopathy [46]. Also, the growth of 

nef-deficient HIV-1 was clearly lower than that of WT HIV-1 [46], suggesting that Nef is necessary for 

elevated viral replication in vivo, which results in the depletion of thymocytes. 

Another paper examined whether nef-defective virus recovers Nef function by using HIV-1  

(strain LAI) with a frame shift mutation in nef (HIV-1 nefFS) and a BLT humanized mouse model  

(Table 1) [45]. Watkins et al. detected two restored nef ORFs, which are designated to fsΔ-1 and  

fsΔ-13 respectively, in the PB of BLT humanized mice infected with HIV-1 nefFS at 8 wpi [45].  

In vitro assays revealed that MHC class I but not CD4 molecule can be downregulated by fsΔ-1 and  

fsΔ-13, and that the infectivity and replication kinetics of the viruses possessing these two mutated Nef 

proteins were comparable to that of parental HIV-1 [45]. However, in BLT mice, the growth of  

HIV-1 fsΔ-1 and HIV-1 fsΔ-13 was ~3-fold lower than WT HIV-1, and the level of systemic CD4+ T 

cell decrease and thymopathy by HIV-1 fsΔ-1 and HIV-1 fsΔ-13 infections (~50% reduction) were 

milder than WT HIV-1 (~90% reduction) [45]. These results suggest the importance of CD4 

downregulation by Nef for efficient viral growth and pathogenicity. 

To explore the roles of Nef other than CD4 downregulation in viral replication kinetics in vivo and 

pathogenesis, Watkins et al. used the other mutant, HIV-1 NefP72A/P75A [45]. This Nef has mutations in 

the highly conserved SH3 binding domain (72PQVPLR77), and thereby, is unable to interact with several 

cellular proteins such as PAK2 and HCK [37,106,107]. Yet, NefP72A/P75A is capable of downregulating 

CD4 molecules [107,108]. In BLT humanized mice, HIV-1 NefP72A/P75A efficiently expanded 

comparable to WT HIV-1, and the level of systemic CD4+ T cell decease by HIV-1 NefP72A/P75A infection 

was similar to WT HIV-1 [45]. Altogether, these findings suggest that the in vivo phenotype of Nef is 

highly dependent on its ability to downregulate CD4 molecules but minimally on the interaction with 

cellular proteins via SH3 domain. However, it should be noted that these two previous studies focusing 

on the roles on Nef in vivo [45,46] were performed by using CXCR4-tropic HIV-1 (strain LAI)  

(Table 1). It is known that CCR5-tropic viruses are predominant in patients, while CXCR4-tropic viruses 

occasionally emerge at the end stage of HIV-1 infection [74,75]. Therefore, it would be important to 

assess the in vivo phenotype of Nef not only by CXCR4-tropic HIV-1 but also by using CCR5-tropic 

HIV-1 and humanized mouse models. 

6. Future Perspective 

Here we summarized the current knowledge of the roles of HIV-1 accessory proteins in viral 

replication and pathogenesis in humanized mouse models. As summarized in Figure 1, there are some 

overlaps and discrepancies in the observations between in vitro and in vivo. This indicates that certain 

findings in in vitro studies may not reflect the bona fide roles of HIV-1 accessory proteins in viral 

infection, replication, and pathogenesis in vivo, and further suggests that the findings brought from  

in vitro experiments should be verified by in vivo experiments using humanized mouse models.  

Recently, humanized mouse models have been utilized for the evaluation of anti-HIV-1 

prevention/therapeutic strategies in vivo [109,110]. Moreover, these animal models are unique and 

robust experimental models to elucidate the “authentic” functions of HIV-1 proteins in the dynamics of 

viral infection in vivo, which can lead to the detailed knowledge of HIV-1 infection and the development 

of novel anti-viral strategies. Furthermore, it should be noted that laboratory-adapted molecular clones 

of HIV-1 (e.g., strains LAI, AD8, NL4-3, and their derivatives) have been used in most of humanized 

mouse studies so far (Table 1). However, recent studies have shown that especially accessory proteins 

are often not fully functional in these laboratory-adapted strains since they are often dispensable for 
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replication in vitro [111,112]. This also raises a possibility that the roles of accessory proteins, which 

have been brought from the studies using laboratory-adapted molecular clones, may be underestimated. 

Therefore, we highlight the importance of analyzing clones of primary isolates (e.g., transmitted/founder 

and chronic viruses) to investigate the bona fide roles of Vpr, Vif, Vpu and Nef in vivo. Future basic 

scientific investigations focusing on the host-virus interaction including the roles of HIV-1 accessory 

proteins, using humanized mouse models will shed light on the not-yet-identified but crucial aspects of 

the dynamics of HIV-1 infection. 
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