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Abstract: Bile acids (BAs) have considerable importance in the metabolism of glycolipid and choles-
terol. The purpose of the present study is to clarify the effects of bile acids supplementary in a
high plant protein diet for the common carp BA profiles and hepatopancreas and intestine health.
An 11-week feeding trial was conducted with high plant protein diet (18% soybean meal and 18%
cottonseed protein concentrated) (HP) and HP added 600 mg/kg BAs (HP+BAs) for common carp,
and then, the UHPLC-MS/MS technology was used to analyze the BAs in the bile and plasma of two
groups. HP could induce vacuolation of hepatocytes and accumulation of glycogen in the common
carp, while these phenotypes were significantly improved in the HP+BAs group. In addition, the
BA profile of the HP group and HP+BAs group are described in detail, for the common carp bile
with treatment by exogenous BAs, TCA, CA, TβMCA, and TωMCA were the main components. Fur-
thermore, in the HP+BAs group plasma, CDCA, CA, LCA, and GCDCA increased significantly; they
could activate TGR5, and the activation of hepatopancreas TGR5 might regulate glucose metabolism
to relieve hepatopancreas glycogen accumulation. This study proved that BAs supplemented to plant
protein diet could relieve the common carp hepatopancreas glycogen accumulation by changing the
BAs’ profile, thereby promoting its healthy growth, which has important guiding significance for
the promotion of aquaculture development and makes an important contribution to expanding the
strategic space of food security.

Keywords: bile acids; common carp; high plant protein diet; hepatopancreas; glycogen accumulation;
UHPLC-MS/MS

1. Introduction

Bile acids (BAs) are a series of amphipathic molecules that are synthesized in the liver
from cholesterol and stored in the gallbladder [1]. Most of the BAs are conjugated with
taurine or glycine in liver [2], and then hydrolyzed, dehydroxylated, and deconjugated in
the gut [3,4]. BAs are secreted into the duodenum to promote lipid digestion and absorption
in the small intestine and then are reabsorbed in the ileum by the liver via BAs transporters
and the portal vein, which is defined as metabolism enterohepatic circulation [5]. BAs
have been known to accelerate the digestion and absorption of lipids in the gut [6], and
to regulate cholesterol homeostasis [7]. Moreover, in recent years, scientists have found
that BAs also act as various signal receptors to participate in the regulations of homeostasis
of glucose and energy metabolism [8], as well as in signaling pathways [9,10]. LCA
(Lithocholic acid) and DCA (Deoxycholic acid) activate TGR5 (G protein coupled bile
acid receptor 1) to regulate glucose metabolism and anti-inflammatory response [11,12].
TβMCA (Tauro-β-muricholic acid) and CDCA (Chenodeoxycholic acid) act together on
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FXR (Farnesoid X receptor) to regulate BAs’ synthesis and glycolipid metabolism [13,14].
These new findings of BAs’ functions helped to solve various diseases caused by metabolic
disorders.

In order to meet the needs of environmental protection and reduce the cost of feed,
plant protein is increasingly widely used in aquatic feed [15]. However, the application of
plant protein could induce intestine damage and interfere with BAs’ metabolism, which
results in hepatic lesions and disrupts the body’s overall metabolism, and finally, reduces
fish growth performance remarkably as well as the efficiency of breeding. [16,17]. Bile acids
were widely used in aquaculture of China, and they have a positive effect on fish growth
performance, nutrient digestibility, and immunity [18,19]. However, not all BAs have a
positive effect; some BAs would bring negative effects; for example, both TCA (Taurocholic
acid) and bovine bile salt supplementation in a low fishmeal diet to the Atlantic salmon
could cause slight or moderate inflammation of the distal intestine [20]. At present, in
mammals, the profile of BAs generated a lot of results and interesting discoveries [21,22],
while there were few reports that concentrated on BAs in fish, since most of them focused
on the roles of BAs in fish pheromone systems and the identification of some new BAs in
saltwater fish [23–26]. In general, BAs in fish have undergone fewer studies, which are
relatively one-sided [27–29]. Previous studies by our team suggested that high plant protein
induced common carp liver injury, which BA supplements could help to alleviate [30], but
the questions of which BA played the leading role or how they affect liver health remain
unanswered and BA profiles of fish are still unknown.

Common carp (Cyprinus carpio) [31] is a kind of omnivorous fish, an important econom-
ical freshwater fish around the world. It is estimated by the FAO that by 2030, freshwater
species such as carp, catfish (including pangasius), and tilapia will account for about
62% of the global aquaculture production. The common carp needs a certain amount
of animal protein, and a high proportion of plant protein may cause intestinal and liver
diseases, thereby reducing the benefit of breeding. Therefore, the present study combined
the UHPLC-MS/MS technology to explore the BA profile of the common carp comprehen-
sively and the effect of BA supplement in high plant protein feed on the common carp’s
BA profile and hepatopancreas health.

2. Materials and Methods

During the feeding period, the experimental fishes were maintained in compliance
with the Laboratory Animal Welfare Guidelines of China (General Administration of
Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Stan-
dardization Administration of China, GB/T 35,892–2018).

2.1. Chemicals and Reagents

Reference standards of unconjugated and conjugated BAs (list in Table 1) including
cholic acid-d4 (CA-d4), chenodeoxycholic acid-d4 (CDCA-d4), lithocholic acid-d4 (LCA-
d4), and glycocholic acid -d4 (GCA-d4) were purchased from Steraloids Inc. (Newport, RI,
USA). Taurocholic acid-d5 sodium salt (TCA-d5), tauro-β-muricholic acid-d4 sodium salt
(TβMCA-d4), and tauroursodeoxycholic acid-d5 (TUDCA-d5) were obtained from Toronto
Research Chemicals (North York, Ontario, Canada). β-muricholic acid-d5 (βMCA-d5) was
bought from IsoSciences (Ambler, PA, USA). Seven deuterium-labeled BAs containing
deoxycholic acid-d4 (DCA-d4), glycolithocholic acid-d4 (GLCA-d4), glycoursodeoxycholic
acid-d4 (GUDCA-d4), taurodeoxycholic acid-d4 sodium salt (TDCA-d4), glycochenodeoxy-
cholic acid-d4 (GCDCA-d4), glycodeoxycholic acid-d4 (GDCA-d4), and ursodeoxycholic
acid-d4 (UDCA-d4) were the products of Cambridge Isotope Laboratories Inc (Tewksbury,
MA, USA). LC-MS grade methanol, acetonitrile and formic acid were the products of
Fisher Scientific. Other materials were obtained from Shanghai Anpel Laboratory Technolo-
gies (Shanghai, China). Bile acids supplementary products were supplied by Shandong
Longchang Animal Health Care Co., Ltd., Dezhou, China (8.0% hyocholic acid (HCA),
70.9% hyodeoxycholic acid (HDCA), and 20.2% CDCA).
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Table 1. Parameters for quantification on BAs by UHPLC-MS/MS.

No. Compounds Retention
Time Transition Fragmentor CE Linearity

Range Calibration Curves * R2 Internal
Standard

(min) (m/z) (V) (eV) (µg/mL)

1 CA 6.339 407.3 -> 407.3 240 10 0.0025–5 y = 13.798x 0.9989 CA -d4
2 αMCA 5.570 407.3 -> 407.3 240 10 0.001–5 y = 100.08x 0.9992 βMCA -d5
3 ωMCA 5.384 407.3 -> 407.3 240 10 0.001–5 y = 65.329x 0.9982 βMCA -d5
4 HCA 6.178 407.3 -> 407.3 240 10 0.001–5 y = 11.074x 0.9994 βMCA -d5
5 CDCA 8.628 391.3 -> 391.3 230 10 0.001–5 y = 39.802x 0.9995 CDCA-d4
6 DCA 8.805 391.3 -> 391.3 230 10 0.001–5 y = 8.9922x 0.9998 DCA-d4
7 HDCA 7.110 391.3 -> 391.3 230 10 0.001–5 y = 8.6365x 0.9993 DCA-d4
8 7,12KLCA 7.641 389.3 -> 389.3 225 10 0.005–0.5 y = 52.86x 0.9934 LCA-d4
9 LCA 10.367 375.3 -> 375.3 235 10 0.005–0.5 y = 17.63x 0.9972 LCA-d4
10 GCA 5.169 464.3 -> 74.0 230 46 0.001–5 y = 44.935x 0.9926 GCA-d4
11 GHCA 4.823 464.3 -> 74.0 230 46 0.001–5 y = 118.29x 0.9974 GCDCA-d4
12 GCDCA 6.744 448.3 -> 74.0 220 40 0.001–5 y = 27.884x 0.9930 GCDCA-d4
13 GLCA 9.304 432.3 -> 74.0 225 36 0.001–5 y = 17.814x 0.9996 GLCA-d4
14 TCA 4.059 514.3 -> 79.9 300 77 0.001–5 y = 32.025x + 0.2914 0.9989 TCA-d5
15 TβMCA 2.787 514.3 -> 79.9 300 77 0.005–5 y = 28.963x − 0.0743 0.9966 TβMCA -d4
16 TωMCA 2.371 514.3 -> 79.9 300 77 0.005–5 y = 28.963x − 0.0743 0.9966 TβMCA -d4
17 TCDCA 5.572 498.3 -> 79.9 280 80 0.001–5 y = 51.689x + 0.0782 0.9999 TUDCA-d5
18 TDCA 5.753 498.3 -> 79.9 280 80 0.001–5 y = 191.74x 0.9950 TDCA-d5
19 THDCA 4.412 498.3 -> 79.9 280 80 0.001–5 y = 48.675x − 0.0104 0.9999 TUDCA-d5
20 TLCA 7.463 482.3 -> 79.9 290 80 0.001–0.5 y = 9.4573x 0.9931 LCA-d4
21 βMCA 5.812 407.3 -> 407.3 240 10 0.001–5 y = 83.77x + 0.1057 0.9995 βMCA -d5
22 UDCA 6.913 391.3 -> 391.3 230 10 0.001–5 y = 61.645x + 1.3425 0.9991 UDCA-d4
23 MuroCA 6.622 391.3 -> 391.3 230 10 0.0025–5 y = 1.2135x + 0.0362 0.9993 DCA-d4
24 GDCA 6.976 448.3 -> 74.0 220 40 0.001–5 y = 7.6437x + 0.0541 0.9997 GDCA-d4
25 GUDCA 5.387 448.3 -> 74.0 220 40 0.005–5 y = 130.8x − 5.5375 0.9982 GCDCA-d4
26 GDHCA 3.354 458.2 -> 74.0 205 36 0.001–5 y = 88.496x + 4.2369 0.9973 GCDCA-d4
27 TαMCA 2.657 514.3 -> 79.9 300 77 0.001–5 y = 27.164x − 0.0574 0.9977 TβMCA -d4
28 THCA 3.405 514.3 -> 79.9 300 77 0.0025–5 y = 23.806x + 0.1518 0.9994 TDCA-d5
29 TUDCA 4.151 498.3 -> 79.9 280 80 0.001–5 y = 35.379x − 0.1025 0.9999 TUDCA-d5
30 TDHCA 2.314 508.3 -> 79.9 285 72 0.001–5 y = 15.83x + 0.1023 0.9997 TUDCA-d5

* y, the integral peak area ratio between standard and IS (internal standard); x, concentration in the detected samples or standard curves
samples.

The ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-
MS/MS) utilized in the project was an Agilent 1290 Infinity II UHPLC coupled to an
Agilent 6470A TripleQQQ (TQQQ) and AB SCIEX TripleTOF6600 (QTOF). The UPLC BEH
C18 column (100 mm × 2.1 mm, 1.7 µm) (Waters, Milford, CT, USA) C18-Aq GracePure
TM (500 mg/3 mL), was the product of Grace Davison Discovery Sciences TM (Waukegan
Rd, IL, USA). The refrigerated centrifuge, Type 5430R, was bought from Eppendorf Inc,
Germany. The Tissue Gnostics Fluorescence Imaging System was purchased from TissueG-
nostics (Vienna, Austria).

2.2. Bile and Plasma Sampling

As described in Yao et al.’s study [30], high plant (Cottonseed concentrate protein)
protein diet (18% soybean meal and 18% cottonseed protein concentrated) (HP) and HP
added 600 mg/kg BAs (HP+BAs) (HP+BAs) (Table 2) for common carp, respectively,
were used. The fishes were fed to apparent satiation four times daily (8: 00, 11:00, 14:00
17:00) for 11 weeks in laboratory conditions to the re-circulating system. Six replicates
were assigned to HP and HP+BAs groups, respectively, and every replicate distributed
30 fishes. Subsequently, the plasma, liver, and bile of stochastic twelve fishes from each
group (two fishes from each replicate) were collected after obtaining an empty stomach
for 24 h and stored at −80 ◦C for analysis. The body weight, hepatopancreas weight, and
hepatopancreas intuitive phenotype of each fish were recorded in detail.
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Table 2. Experimental diets’ formula and composition of HP and HP+BAs groups (air-dry basis, %)
(The content of this table has been published [30]).

Feed Formulation HP HP+BAs

Fish meal a 10.00 10.00
Soybean meal 18.00 18.00
Cottonseed protein
concentrated 18.00 18.00

Tapioca flour 5.00 5.00
Wheat flour 39.80 39.74
Soy oil 4.00 4.00
Vitamin and mineral premix b 4.10 4.10
Lecithin oi 1.00 1.00
DL-me 0.10 0.10
Total 100 100
Bile Acid (mg/kg) c 0 600
Analyzed nutrients
compositions
Moisture 8.24 9.11
Crude protein 30.47 29.15
Crude lipid 7.53 7.47
Crude Ash 7.25 7.31
Gross energy (MJ/Kg) 18.28 18.20

a Fish meal: Shandong Chishan Fishmeal Factory, Shandong, China; Soybean meal: Yihai Kerry Investment Co.
Ltd., China; CPC: Xinjiang Jinlan Plant Protein Co. Ltd., China. b Vitamin premix (mg·kg-1 diets): Vitamin A
28; Vitamin B1 12; Vitamin B212; Vitamin B6 16; Vitamin B12 0.2; Vitamin E 300; Vitamin K3 20, Vitamin D 14;
Niacinamide 80; Vitamin C 600; Calciumpantothenate 100; Biotin 0.4; Folicacid 3; Corn protein powder 314.4.
Mineral premix (mg·kg−1 diets): FeSO4·H2O 300; ZnSO4·H2O 300; MnSO4·H2O 100; Na2SeO3 10; CoCl2·6H2O
(10% Co) 2.5; Kl 80; Zeolite 1307.5; MgSO4 500. c Bile acids: supplied by Shandong Longchang Animal Health
Care Co. Ltd. (Dezhou, China), with 8.0%HCA, 70.9% HDCA, and 20.2% CDCA. Bile acids were added and well
mixed in premix at levels of 0 and 600 mg/kg, respectively.

2.3. Plasma Biochemical Parameters

Plasma ALT (alanine aminotransferase), AST (aspartate aminotransferase), glucose,
and total cholesterol (TC) were measured by Reagent kits (Nanjing Jiancheng Co., Nanjing,
China) following the given protocols.

2.4. Histopathological Detections of Hepatopancreas Tissues

The hepatopancreas tissue fixation, dehydration, embedding, hematoxylin and eosin
(H&E) and periodic acid Schiff (PAS) staining procedures were conducted as described
by Yu et al. [32]. Then, the pictures were visualized using TissueGnostics Fluorescence
Imaging System (TissueGnostics, Vienna, Austria) and the glycogen granules and effective
nucleus analyzed by the StrataQuest Analysis Software (TissueGnostics, Vienna, Austria).
BAs were extracted and analyzed for the corresponding plasma and bile samples with
obvious hepatopancreas damage observed in HP group and no obvious abnormalities in
the hepatopancreas observed in HP+BAs group. The graph abstract is shown in Figure 1.

2.5. Bile Acids Quantitative Analysis

Plasma and bile samples were prepared following the previous report [33]. The eluted
substances of UHPLC-TQqQ-MS/MS were ionized in an electrospray ionization source
in negative mode (ESI−). Both temperatures of ESI− source drying gas and sheath gas
were 300 ◦C. The flow rate of ESI- source drying gas and sheath gas were 5 and 11 L/min,
respectively. The pressure of the nebulizer was 45 psi, and capillary voltage was 4000 V.
The dynamic multiple reaction monitoring (dMRM) was used to acquire data in optimized
MRM transition (precursor -> product), fragment, and collision energy (CE) as Table 1.
The total scan time per cycle was 300 ms. Chromatographic separation was operated on
a UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 µm). The column temperature was
40 ◦C, and the flow rate was 0.45 mL/min. The mobile phase consisted of water in 0.1%
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formic acid (A) and acetonitrile in 0.1% formic acid (B). The chromatographic separation
was conducted by a gradient elution program as follows: 0.5 min, 15% B; 1 min, 25% B;
3min, 25% B; 5 min, 34% B; 8 min, 40% B; 9 min, 52% B; 10.2 min, 58% B; 10.21 min,
100% B; 11.2 min, 100% B; 11.21 min, 15% B; 12.5 min, 15% B. The gradient elution was
applied and MS detection proceeded in negative mode. Standards for all BAs were used
to identify the different BA metabolites detected by UHPLC-MS/MS. The Agilent Mass
Hunter software (version B.08.00) was used to control instruments and acquire data. The
raw data were processed by Agilent Mass Hunter Workstation Software (version B.08.00)
by using the default parameters and assisting manual inspection to ensure the qualitative
and quantitative accuracies of each compound. The peak areas of target compounds were
integrated and output for quantitative calculation.
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Figure 1. The workflow of the effect in bile acid supplement to high plant protein diet on common carp bile acid profile
and hepatopancreas health. Arrows a: Common carp fed with HP and HP+BAs 11 weeks, respectively. Arrows b: Collect
hepatopancreas, gallbladder, and plasma. Arrows c: Histopathological detections of hepatopancreas tissues. Arrows d: BAs
analysis was performed on the bile and plasma corresponding to phenotype I of the hepatopancreas in the HP group (n = 8),
the gallbladder and plasma corresponding to phenotype II of HP+BAs were treated in the same way (n = 7).

2.6. TβMCA and TωMCA Qualitative Analysis

TβMCA and TωMCA were qualified by UHPLC (Agilent 1290)-Q-TOF (AB SCIEX|
6600)-MS/MS with an ESI source. The main parameters of ESI-MS/MS were as follows:
declustering potential (DP): −100 v, collision energy (CE): −60 v, ion source gas1 (GS1):
50 arb, ion source gas2 (GS2): 60 arb, curtain gas (CUR):30 arb, temperature: 600 ◦C.

Chromatographic separation was operated as 2.4. A mass range of m/z 50 to 1000
was acquired. PeakView 2.1 Software of AB SCIEX was used to analyze the ion fragment
information of TβMCA and TωMCA standards and samples.
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2.7. Statistical Analyses

Independent-samples t-test of variance by the software SPSS Statistics 20 was used
to analyze all data. Homogeneity test of variance (F-test) was also performed for the
data between the two groups; log transformation analysis was executed on the data when
variance was irregular. Data are presented as mean ± SEM. Statistically significant results
are indicated by asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001). Graphics were drawn
using GraphPad Prism 8.0 (GraphPad Software Inc. USA). Hepatosomatic index (HSI) was
calculated by the formula of weight of the hepatopancreas (g)/body weight (g)∗100%. All
BAs’ unit conversion was calculated from ng/mL to mM, and we summed individual BA
concentration as total BA concentration (TBA). The average concentration of individual
BAs and the total BAs’ concentration were normalized to calculate the ratio of individual
BAs to the total BAs.

3. Results
3.1. Growth Performance

Compared with the HP group, the growth performance of the HP+BAs group im-
proved significantly (p < 0.01) (Figure 2), the final body weight (BW) increased significantly
(p < 0.01), and HSI significantly decreased. The mean of HSI in HP and HP+BAs groups
were 7% and 3%, respectively.
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3.2. Hepatopancreas Histopathological Examination

Fish hepatopancreas sections were examined after PAS staining and H & E staining,
and eight samples were selected to be observed and quantified the glycogen granules
and effective nucleus in each group. Two typical phenotypes are shown in Figure 3A.
Phenotypes I: Hepatopancreas have obvious glycogen accumulation, vacuolization, blurred
cell membrane boundaries, and cell nuclei aggregation. Phenotypes II: No significant
accumulation of glycogen, and cell morphology showed no obvious abnormality, and
effective nuclei also increased. Glycogen granules in the HP group were significant more
than HP+BAs group (p < 0.001), while the HP+BAs group has a more active nucleus
(Figure 3B).
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Figure 3. Supplement bile acids to high plant protein feed reduced carp hepatopancreas histological lesions (Statistically
significant results were indicated by asterisks (*, p < 0.05; ***, p < 0.001)): (A) PAS and H&E staining of liver sections
with bar = 100 µm, intracellular accumulation of glycogen (marked with yellow arrow), deformed cells (marked with
green arrow) and Nuclear gathered (marked with yellow arrow) were clearly observed in the damaged hepatopancreas.
(B) Quantification of glycogenosome and active nucleus, the number of hepatopancreas glycogenosome in the HP+BAs
group carp was significantly lower than that in the HP group. (C) The phenotype of hepatopancreas histopathological
examination in HP group and HP+BAs group. (D) Supplement BAs to high plant protein feed reduced hepatopancreas
glycogen and plasma glucose (Statistically significant results are indicated by asterisks (*, p < 0.05; ***, p < 0.001), n = 7).

3.3. Plasma Biochemical Parameters and Hepatic Glycogen

Plasma biochemical parameters of ALT, AST, and TC are listed in Table 3. ALT and
AST in the HP group were apparently higher than HP+BAs (p < 0.05). Supplement BAs to
a high plant protein diet not affected the content of TC in plasma. Plasma glucose and liver
glycogen in the HP+BAs group were significantly lower (p < 0.05) than those in the HP
group (Figure 3D).

Table 3. Plasma biochemical parameters. The concentrations of AST and ALT in the HP+BAs group
was significantly lower than in the HP group. * Data are shown as mean ± SEM (n = 7). Statistically
significant results are indicated by asterisks (*, p < 0.05).

HP HP+BAs

AST(U/L) 103 ± 11.8 * 62.0 ± 5.84
ALT(U/L) 73.7 ± 9.97 * 46.5 ± 5.50

TC (mmol/L) 5.2 ± 0.308 5.3 ± 0.345

3.4. Bile Acids Profile of in Common Carp Bile and Plasma

Ten compounds, including TCA, TβMCA, TωMCA, CA, GLCA, GHCA, GCDCA,
HDCA, CDCA, and 7,12-KLCA were found quantified in bile samples, whose EIC is shown
in Figure 4. BA profiles of common carp bile are summarized in Table 4 and Figure 5,
which suggested that TCA was the main bile acids in common carp, followed by CA which
accounted for 88–92% and 6–7% respectively; CA ranged from 140–170 µM; however, no
TCDCA existed.
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Table 4. Bile acid profile in bile of common carp in HP and HP+BAs groups (µmol/L), TβMCA, GLCA, GHCA, and GCDCA
increased observably in the HP+BAs group carp bile. Data are shown as mean ± SEM (n = 7). Statistically significant results
are indicated by asterisks (**, p < 0.01; ***, p < 0.001).

BAs in Bile HP HP+BAs

Free BAs

CA 162.0 ± 51.0 149.7 ± 30.0
HDCA ND 6.3 ± 2.4
LCA ND 3.8 × 10−2 ± 7.1 × 10−3

DCA 7.4 × 10−4 ± 1.9 × 10−4 ND
CDCA 6.4 ± 1.7 2.7 ± 0.7

7,12-KLCA 5.2 ± 1.0 2.8 ± 0.2

T-BAs

TCA 2380.6 ± 356.4 2091.1 ± 262.4
TCDCA ND ND
TβMCA ND 49.6 ± 5.4 **
TωMCA 18.5 ± 3.7 25.3 ± 2.5

G-BAs

GCA ND ND
GLCA 4.0 × 10−2 ± 1.6 × 10−3 1.4 × 10−1 ± 1.2 × 10−2 **
GHCA 5.5 × 10−3 ± 2.8 × 10−4 1.6 × 10−2 ± 2.7 × 10−3 **

GCDCA 14.9 ± 0.9 34.5 ± 2.6 ***

TBA 2561.7 ± 346.0 2337.7 ± 286.9

Moreover, eight BAs, including TCDCA, CDCA, CA, LCA, HDCA, GLCA, GCDCA,
and DCA were detected and quantified from the plasma samples. Table 5 shows the
detailed BAs in bile and plasma.

Table 5. Bile acid profile in plasma of common carp in HP and HP+BAs groups (µmol/L), CA, CDCA, LCA, and GCDCA
increased observably in the HP+BAs group carp plasma. * Data are shown as mean ± SEM (n = 7). Statistically significant
results are indicated by asterisks (*, p < 0.05).

BAs in Plasma HP HP+BAs

Free BAs

CA ND 5.7 × 10−3 ± 2.0 × 10−3 *
HDCA 3.5 × 10−3 ± 2.1 × 10−3 5.0 × 10−3 ± 1.1 × 10−3

CDCA ND 2.0 × 10−3 ± 3.5 × 10−4 *
7,12-KLCA ND ND

LCA ND 3.8 × 10−2 ± 7.06 × 10−3 *

T-BAs

TCA ND ND
TCDCA 1.1 × 10−1 ± 1.3 × 10−2 2.3 × 10−1 ± 7.4 × 10−2

TβMCA ND ND
TωMCA ND ND

G-BAs

GCA ND ND
GLCA 8.5 × 10−5 ± 3.2 × 10−5 1.0 × 10−4 ± 3.10 × 10−8

GHCA ND ND
GCDCA ND 3.7 × 10−3 ± 5.2 × 10−4 *

TBA 1.3 × 10−1 ± 1.9 × 10−2 3.2 × 10−1 ± 9.4 × 10−2

This was the first time that MCA was found to exist in fish. Thus, this was confirmed at
this point. The confirmations of MCA detected were verified by the retention time (RT) and the
abundance ratio of MS/MS. The RT and abundance ratio of MS/MS of TβMCA and TωMCA
standard were 2.79 min and 2.37 min, m/z 124.0017:106.9758:80.9615:79.9523 = 6:3:2:4, and
m/z 124.0018:106.9759:80.9611:79.9536 = 40:19:13:40, respectively, which in the sample was
consistent (Figure 6).
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Figure 6. Tandem mass spectrometry (MS/MS) of TβMCA and TωMCA in sample and standard. (A) for TβMCA, (B) for
TωMCA. The RT and abundance ratio of MS/MS of TβMCA and TωMCA standard were 2.79 min and 2.37 min, m/z
124.0017:106.9758:80.9615:79.9523 = 6:3:2:4 and m/z 124.0018: 106.9759:80.9611:79.9536 = 40:19:13:40, respectively, which in
sample was consistent.

3.5. Supplement BAs to High Plant Protein Feed Altered the BA profile

The ratio of GCDCA, TβMCA, GLCA, and HDCA increased significantly in the
HP+BAs group, while TCA and CDCA decreased (Figure 6). An increase of BA diversity
in the HP+BAs group could be observed in both bile and plasma. Supplementary BAs to a
high plant protein diet increased the proportion of G-BAs in bile, which accounted for 0.6%
and 1.5% in the HP group and HP+BAs group, respectively (Figure 7).
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4. Discussion
4.1. BA Profile Changes Caused by Supplements of BAs

TCA was the main BA in the common carp bile, which was consistent with the results
of previously reported studies about the BA profile of fish (angelfish (Pterophyllumeimekei))
bile [24]. In this study, G-BAs such as GCDCA, GLCA, GHCA, and GCA were detected in
fish. The BA family in animals is quite complex. Similar to the reports on the human [34],
mice [35], and rainbow trout [36], we also found that the common carp can conjugate bile
acid with glycine, but not only with taurine. In some early views, it was pointed out that
animals, except for the mammals, conjugate their BAs exclusively with taurine [37,38],
which led to the fact that less attention was paid to G-BAs when studying fish bile acids.
The glycine conjugated bile acid in fish could be partially from fishmeal or other animal
ingredients in the feed. We determined the bile acids of fish meal sample that we used
in the present study, and the content of G-BAs is about 1.07 × 10−7 umol/mg. However,
the fish meal in the experimental diets of this study only accounted for 10%, which made
the bile acids level in the basal diet lower than the detection limit of LC-MS/MS. In the
study of Staessen et al. (2021) [36], 27% fishmeal and 1.3% fish oil were used and about
1.1 × 10−5 umol/mg GBA were detected in the basal diet. In the present study, the dietary
bile acid profile was composed with HCA (8.0%), HDCA (70.9%), and CDCA (20.2%), and
the two experimental diets were designed with the same level of fishmeal. Hence, we can
conclude that the increased GBA in the HP+Bas group should be majorly endogenous
for the common carp. This is a report, for the first time, that bile acids can be conjugated
with glycine in common carp, although it has been found that bile acids could hardly be
combined with glycine in some fish species, such as Sea Lamprey [26] and lake charr [39].
In addition, compared with the HP group, the percentage of G-BA in the HP+BA group
increased while the percentage of T-BA decreased; that is consistent with the finding that
G-BA and T-BA have a mutual inhibition relationship in previous studies [40,41].

Supplementary BAs (mainly HCA, HDCA, CDCA) increased the contents of TβMCA,
GLCA, GCDCA, and HDCA in the common carp bile; we suppose the following could
account for this with the help of intestinal microorganisms. HCA transformed into βMCA
by 6b-epimerization and further 7b-epimerization [42], then βMCA was reabsorbed back
to hepatopancreas and combined with taurine into TβMCA, while HDCA was directly
reabsorbed to the hepatopancreas. CDCA is dehydroxylated into LCA (based on KEGG
secondary bile acid biosynthesis, map00121), which is partly excreted from the body, and
part is reabsorbed to the liver and combined with glycine to form GLCA. The other part of
CDCA is reabsorbed to the hepatopancreas to combine with glycine.

The discovery of TβMCA and TωMCA in Common Carp was a breakthough since
they were thought to be a rodent specific bile acid [42–46], and indeed, they were not found
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in birds and monogastric animal BA analysis [47,48], but have also been found in humans
according to some reports [21,49]. Rodents branch off from fish in the evolutionary tree,
and humans and rodents are on a small branch; we considered that MCA maybe a common
species of bile acids that existed in fish, rodents, and primates. More work should be done
in the future.

4.2. Supplement BAs Affected Common Carp BA Profile to Reduce Hepatopancreas Glycogen
Accumulation and Alleviated Hepatopancreas Damage with a High Plant Protein Diet

Supplement BAs reduced liver glycogen accumulation and alleviated liver damage
in common carp with a high plant protein diet. High plant protein could induce fish
intestinal and liver damage that has been confirmed in the previous research through our
laboratory [16,30,50,51]. It was reported a sturgeon intestinal obvious damage when it was
fed a diet with more than 50% of plant protein content [50]. In this study, the proportion
of plant protein was as high as 78%, and it has been confirmed by Yoa et al. [30] that this
plant protein level causes the intestine of carp serious injury. The intestinal organ is the
organ to digest and absorb nutrients, while damage and functional barriers would lead to
nutritional metabolism disorders, especially proteins [52,53], thus affecting the synthesis of
key enzymes of other nutrients. Therefore, in this study, the reason that a high-plant-protein
diet caused hepatopancreas glycogen accumulation and damage is possible because the
high-plant-protein diet injures the common carp’s intestines, leading to protein digestion
and absorption disorders, and then resulting in a lack of phosphorylase (the key enzymes
in liver glycogen decomposition) synthesis. In addition, disorders of glucose metabolism
can stimulate cell inflammation and apoptosis, which cause liver damage [32,54]. It has
been reported that supplementary BAs to high plant protein feed could alleviate intestinal
and liver damage [30], and our results also confirmed that. The added BAs probably play a
role as indicated in the following aspects to overcome the negative effects of high plant
protein.

Firstly, the soysaponins of soybean meal may be the main cause of common carp
intestinal damage [55]. BAs can be combined with non-starch polysaccharides and ex-
creted from the body [56]. Saponins are composed of sapogenins and glycosyl, and a
study has shown that soysaponins could increase the excretion of BAs [57]. This shows
that soysaponins may have similar binding power to BAs as non-starch polysaccharides.
Subsequently, BA supplements could be combined with saponins, thereby reducing the
damage of saponins to the intestinal organ, and then improving protein digestion and
absorption, reducing liver glycogen accumulation.

Secondly, common carp hepatopancreatic inflammation and glucose metabolism may
be regulated by three purposes that were LCA, CDCA, and CA to activate liver TGR,
increased liver glycine concentration and TβMCA inhibits intestinal FXR. TGR5 could be
activated by some BAs, in which LCA is the most potent agonist for TGR5, DCA and the
conjugations, CDCA and the conjugations, and CA and the conjugations activate TGR5 ef-
fectively simultaneously [58]. TGR5 plays an important role in anti-inflammatory activities
and glucose metabolism [59]. TGR5 restrains the activated B cells (NF-κB) to control the
proinflammatory factors secretion by the mediation of the interaction between IκBα and
β-arrestin2 and thus exert anti-inflammatory effects [60–62]. Activating liver TGR5 could
reduce blood glucose in mice with a high-fat diet [58]. That suggested the potential hypo-
glycemic function of TGR5. In the present study, plasma CDCA, CA, LCA, and GCDCA
increased significantly in the HP+BAs group; with the assistance of enterohepatic circula-
tion of Bas [63], they will enter the liver and activate TGR5, especially LCA, that cannot be
synthesized directly in the liver while it can only be recovered from intestinal BAs by blood
circulation, thus enhancing the anti-inflammatory ability of the body, regulating glucose
metabolism and reducing blood glucose, and decreasing the liver inflammation [64]. The
expression of the TGR5 gene in the liver increase after supplementation of BAs to HP has
been confirmed by Yao et al. [30].

In addition, in the results of IDE et al. (1994), it can be found that the content of
G-BAs in bile increases with the increase of liver glycine concentration [65]. Kupffer cells
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in an activated state could release a variety of inflammatory mediators and play a leading
role when the liver is invaded, Glycine inactivates Kupffer cells and can protect the liver
from inflammation [66]. TβMCA varied quite distinctly in bile between the HP group and
HP+BAs group. TβMCA is a farnesoid X receptor (FXR) nuclear receptor antagonist [14].
FXR is a member of the nuclear receptor superfamily that is primarily expressed in the liver,
kidney, and intestine [67]. In the FXR gene knockout mice, intestinal glucose absorption was
delayed, together with blood glucose decreased [68]. TβMCA suppressed the enterohepatic
FXR-FGF15 signaling and could affect glucose metabolism, reduce blood glucose, and treat
diabetes [69]. Therefore, the increase of G-BAs and TβMCA in bile after the addition of
BAs also plays a certain role in keeping the hepatopancreas from avoiding histological
damage and the reduction of plasma glucose.

5. Conclusions

In summary, HP could induce glycogen accumulation in common carp hepatopancreas
while supplemented BAs to HP could mitigate this symptom. BAs supplements in a high
plant protein diet could change the BA profile of common carp, among them, plasma
LCA, CDCA, and CA increased significantly, TβMCA and the proportion of G-BAs in bile
increased significantly, which might play a leading role in it that reduced the accumulation
of hepatopancreas glycogen and maintained hepatopancreas health. This study proceeded
with an integrated bile acid profile determination by UHPLC-MS/MS to identify the effect
of exogenous BAs supplementary on the endogenous BA profile and hepatopancreas health
of common carp and discussed how the BAs supplementary is transformed in the body,
providing a theoretical basis for the application of BAs products in fish and a data basis for
revealing the mystery of fish BAs. In addition, this study has important significance for the
development of aquaculture and has a potential contribution to expanding the strategic
space of food security.
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