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Abstract: Wine is a popular beverage worldwide, and its consumption continues to rise,
leading to waste, particularly from vine prunings and grape pomace. The aim of this study
was to create a valorization pathway utilizing these waste materials. To achieve this, proxi-
mate analysis, chemical composition, ultimate analysis, thermogravimetric analysis (TGA),
and other physicochemical parameters for both vine prunings and grape pomace were
assessed. Based on the results, vine prunings were identified as suitable for direct combus-
tion in energy applications, and grape pomace was found to be suitable as an antioxidant
in vegetable oil. Grape pomace extract showed the following results through UV-vis spec-
troscopy: total phenolic content of 1688.10 mg GAE/100 g, total flavonoids of 1330.39 mg
catechin/100 g, and total anthocyanins of 12.61 mg cyanidin-3-glucoside/100 mg. The
antioxidant capacity was measured through various assays: FRAP yielded 2179.19 mg
ascorbic acid/100 g; DPPH measured 1704.41 µmol Trolox/100 g; and ABTS showed
48,271.31 µmol Trolox/100 g. The ORAC results, as determined by fluorescence spec-
troscopy, were 53,694.93 µmol Trolox/100 g. HPLC profiling revealed cyanidin as the main
anthocyanin (26.52 mg/L) and epicatechin as the most abundant flavonoid (214.29 mg/L).
Finally, the antioxidant capacity of grape pomace in sunflower oil was evaluated using OSI.
It increased the oil’s stability by up to 42.5%, positioning grape pomace extracts as a source
of natural antioxidants in vegetable oils.

Keywords: antioxidant capacity; grape pomace; grape pruning

1. Introduction
The agroindustry is a crucial segment of the industrial sector focused on the produc-

tion, transformation, storage, and commercialization of agricultural products. Key products
processed in this sector include fruits, vegetables, roots, seeds, leaves, tubers, and pods.
These products are either sold fresh or processed into various forms, such as nectars, juices,
jams, salads, flours, oils, wines, powdered concentrates, and preserves. The grapevine
Vitis vinifera is a significant woody plant, continuously undergoing cultivation advance-
ments. Grapes, the fruit of the grapevine, grow in clusters and are highly valued [1]. This
species belongs to the V. genus within the Vitaceae family, encompassing approximately
600 species of climbing shrubs that bear berry-like fruits. Optimal growing conditions for
grapevines include regions with adequate rainfall, warm summers, and mild winters [2].
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In the wine industry, it is estimated that over 20% of wine grapes become pruning
residues [3]. Grape cultivation is among the most significant agricultural activities world-
wide, with a global production of 74.94 million tons in 2022 [4]. The leading producers
were China with 16.86%, Italy with 11.25%, France with 8.27%, Spain with 7.87%, and the
USA with 7.16% [4]. In the same year, Mexico contributed 457,752 tons, accounting for
0.61% of the total world production [5]. Figure 1 illustrates the historical trend from 2010 to
2022 for both global grape production and Mexico’s grape production.

Figure 1. World and Mexico grape production from 2010 to 2022, with data from FAO and SIAP [4,5].

Most of the total grape production (75%) is dedicated to winemaking. Vine plants
have the following composition: the trunk and arms make up 38%, the roots 33%, the fruit
15%, the branches 9%, and the leaves 5% [6]. During grape production and processing,
byproducts known as vine prunings are generated. Vine prunings are slender, flexible,
and knobby stems from which leaves and grape clusters emerge. These shoots result from
cutting the vine plants after harvest to control their natural growth, improve yield, and
enhance grape quality [3,7]. After the grapes are processed, a paste composed of stems,
grape skins, and seeds, referred to as grape pomace, remains [8]. This pomace accounts for
approximately 20% of the grape’s weight and is the most significant byproduct of wine-
making [9,10]. Because of the nature of the production process, grape pomace is recognized
as a significant source of bioactive compounds, including unsaturated fatty acids, vitamins,
antioxidants, phenolic acids, flavonoids, tannins, carotenoids, and anthocyanins, among
others [11,12].

Valle de Guadalupe is the most important wine region of Mexico, accounting for
more than 90% of the national wine production and 75% of national wine sales [5]. In
2023, this region alone had 4708 hectares of cultivated grapevines, with a total production
of 27,155.57 tons [5]. There are 150 wineries registered in the region, from local brands
to international brands, with a total production of 12.7 million liters in 2022 [5]. Each
September, the vineyards are harvested, which produce a great variety of waste materials,
including vine pruning and grape pomace. At the moment, the disposal of these waste
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materials promotes the proliferation of harmful pests, unpleasant odors, and discomfort for
producers due to the large generated waste volume. Although open-air disposal is often
justified as a method for fertilizing the land, the valuable phytochemicals in grape pomace
are overlooked for their potential in value-added applications. This approach ultimately
squanders the true potential of grape pomace [13].

The diverse compounds found in grape pomace have enabled its use in a wide range of
applications, including skincare products, like creams and sunscreens [12], anticancer and
antimicrobial treatments [14], food preservation, meat and fat products [15], and livestock
fattening for human consumption [16]. Generally, grape pomace is valued for its ability to
prevent oxidative stress. However, as a plant-based material, it is subject to variations, such
as climate conditions, terrain differences, variations in pomace production processes, and
residue disposal methods. Therefore, it is important to develop strategies and techniques
to ensure the homogeneity of grape pomace for future applications.

The aim of this study was to propose a valorization pathway for vine prunings
and grape pomace residues generated in Valle de Guadalupe, enabling their use in both
energy and non-energy applications. The development of this pathway started with
physicochemical characterization, followed by specific applications for each type of residue.
For vine prunings, the application considered was direct combustion for energy production.
For grape pomace, the proposed application was as an antioxidant agent in vegetable oils.
Various tests were performed, including proximate, chemical, elemental, protein, total
fat, calorific value, and thermogravimetric (TGA) analyses for both residues. Specifically
for grape pomace, the antioxidant capacity was measured using the total phenol content
(TPC), ferric reducing antioxidant power assay (FRAP), 2,2-diphenyl-1-picrylhydrazyl
assay (DPPH), 2,2′-azino-bis(3ethylbenzothiazoline-6-sulfonic acid assay (ABTS), oxygen
radical absorbance capacity (ORAC), total flavonoid content (TFC), and total anthocyanins
(TAs). The most representative compounds of the grape pomace extract were identified
with high-performance liquid chromatography (HPLC). This extract was evaluated as an
antioxidant agent in vegetable oil by measuring the stability oxidative index.

2. Results and Discussions
2.1. Characterization Results of Grapevine Prunings and Grape Pomace

The complete results for proximate analysis, chemical composition analysis, ul-
timate analysis, fat content, protein content, and higher heating value are presented
in Table 1. The low density of this residue aids in natural drying and moisture loss
and presents reactivity and easy ignition. Thus, vine prunings are considered an at-
tractive residue for energy applications, such as direct combustion, pyrolysis, and
gasification [17]. In contrast, grape pomace, with its high moisture content and low
volatile material content, is not suitable for direct energy applications. Combustion
systems require thermal pretreatment to remove water from these samples, reducing
the overall energy efficiency. However, grape pomace is suitable for non-energy appli-
cations, such as producing reducing sugars, obtaining extracts rich in anthocyanins or
antioxidant capacity, and biological degradation processes [18].
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Table 1. Proximate, chemical, ultimate, protein, fat, and higher heating value analysis results (d.w. =
dry weight).

Parameter
Grapevine Prunings Grape Pomace

Value Other Authors Reference Value Other Authors Reference

Humidity (%) 9.14 ± 0.14 9.24 [17] 63.2 ± 0.22 59.81–72.73 [19–21]

Volatile material (%) 73.05 ± 0.18 66.29 [17] 79.64 ± 0.12 62.07–70.6 [18,22,23]

Ashes (%) 3.70 ± 0.69 12.36 [17] 7.36 ± 0.26 0.65–8.3 [18,22,23]

Fixed carbon (%) 23.25 ± 0.62 12.12 [17] 13.34 ± 0.27 25.6–30.95 [19–21]

Water extractables (%) 11.46 ± 0.54 14.2 [24] 11.29 ± 0.49 16.65 [18]

Solvent extractables (%) 19.72 ± 0.34 - - 13.22 ± 0.62 1.63 [18]

Lignocellulose (%) 17.66 ± 1.07 41.10–90.00 [25,26] 36.94 ± 1.18 46.70–63.00 [25–27]

Holocellulose (%) 78.06 ± 0.71 - - 58.70 ± 0.83 21.45–45.00 [18,28]

Cellulose (%) 48.68 ± 0.056 - - 16.76 ± 0.44 12.9–19.00 [18,28]

Hemicellulose (%) 29.41 ± 0.86 - - 41.93 ± 0.72 8.55–26.00 [18,28]

HHV (MJ/kg) 17.02 ± 0.26 14.36 [17] 20.74 ± 0.33 18.76–19.67 [18,22,23]

Protein (%/g d.w.) 5.51 ± 0.19 - - 30.48 ± 0.38 1.30–10.04 [19,20,27]

Fat content (%) - - - 4.485 ± 0.11 3.67 [19]

C (%) 43.07 39.88–46.20 [17–24] 49.32 49.10–53.71 [18,22,23]

H (%) 5.31 7.16 [17–24] 6.07 5.14–6.28 [18,22,23]

O (%) 40.93 0.16 [17–24] - 33.33–38.46 [18,22,23]

N (%) 0.78 0.60–1.86 [17–24] 3.54 1.17–2.94 [18,22,23]

S (%) - 38.83 [17–24] 0.55 0.04–1.15 [18,22,23]

Both the vine prunings and grape pomace exhibited similar values in the number
of solvent-extractable substances. However, in hot water extractions, the vine prunings
showed a higher value compared to the grape pomace. This aligns with the low content
of volatile material, as several volatile compounds, such as terpenes, have an affinity for
aqueous media, indicating their limited presence [18].

In terms of the lignocellulosic content, the grape pomace had double the value com-
pared to the vine prunings. Conversely, when comparing the holocellulose content, the
vine prunings showed higher values, suggesting a more wood-like characteristic in the
residue. The calorific value of the grape pomace was 21.85% higher than that of the vine
prunings, likely due to the presence of compounds such as sugars and phenolic acids. The
calorific value of these residues exceeded the reported range [17,18,22].

The grape pomace contained higher amounts of carbon (C), and hydrogen (H) com-
pared to the vine prunings, which correlates with its higher calorific value, as shown
in Table 1. The oxygen (O) content in vine prunings makes them unsuitable for liquid fuel
production and increases the generation of combustion products, such as H2O, thereby
reducing energy efficiency. Nitrogen (N) contributes to NOx emissions, but it is also a
crucial element of the protein content. The grape pomace had 4.5 times more nitrogen
and 5.5 times more protein than the vine prunings. Regarding sulfur (S), up to 90%
was bound or included in the ash content, where the grape pomace exhibited a higher
ash percentage compared to the vine prunings. These results indicate that vine pruning
applications should be energy-related, such as serving as a raw material for an energy
conversion process, like direct combustion [29], while grape pomace is more appropriate
for non-energy applications.
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2.2. Thermogravimetric Analyses Results

Figure 2 illustrates the TGA of the vine prunings and grape pomace. The blue curve
indicates the sample mass, while the red curve represents the energy applied to the sample.

Figure 2. Thermogravimetric results: (a) vine prunings; (b) grape pomace.

As shown in Figure 2a, the first increment analyzed, ranging from 0 to 100 ◦C, was
related to the evaporation of H2O. Once the moisture was removed from the sample, the
mass loss remained relatively constant from 100 to 220 ◦C. After 220 ◦C, a pronounced
decline began, extending up to 350 ◦C, attributed to the hemicellulose decomposition in
the range of 150–310 ◦C [18]. Above 350 ◦C and until the end of the test, a constant decline
was observed again, indicating cellulose and lignin decomposition between 310 and 400 ◦C.
In Figure 2b, the thermogravimetric analysis of grape pomace began with moisture re-
moval up to 100 ◦C. The next section, from 100–250 ◦C, shows the removal of extractable
compounds, followed by the hemicellulose decomposition zone between 250 and 350 ◦C.
Beyond this point, two trends were observed: from 350 to 500 ◦C, cellulose decomposi-
tion occurred, and above 500 ◦C, lignin decomposition predominantly took place in the
biomass [18].

2.3. Antioxidant Capacity Results

The antioxidant capacity results for samples Ex1–Ex4 are presented in Table 2. Overall,
the most effective analyses were achieved using the Ultra-Turrax method, with the citric
acid-free mixture yielding the best results for the FRAP, total phenols, and flavonoids
assays. The sample containing citric acid showed superior performance in the DPPH,
ABTS, ORAC, and anthocyanin tests, demonstrating the synergy of citric acid in the release
of anthocyanins.
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Table 2. Antioxidant capacities of grape pomace extracts.

Analysis
Current Work Other Authors

Ex1 Ex2 Ex3 Ex4 Ex5 Range Reference

DPPH (µmol Trolox/100 g sample) 8699.17 ± 745.56 9180.13 ± 46.46 1762.06 ± 129.17 1278.96 ± 64.15 1704.41 ± 16.78 3355–6000 [20,30,31]

FRAP (mg ascorbic acid/100 g sample) 2003.45 ± 88.79 1551.33 ± 79.06 474.6 ± 23.33 553.92 ± 42.44 2179.19 ± 36.51 402–649 [20,30,32]

TPC (mg gallic acid/100 g sample) 1261.42 ± 12.48 1220.28 ± 26.71 350.98 ± 17.99 470.3 ± 17.13 1668.10 ± 4.76 386.62–8700 [20,30–32]

TFC (mg Eq. catechin/100 g sample) 589.07 ± 31.78 545.07 ± 28.45 210.49 ± 8.90 289.63 ± 8.63 1330.39 ± 43.92 742–2632 [30,31,33]

ABTS (µmol Trolox/100 g sample) 31,636.15 ± 2000.97 42,813.45 ± 2433.87 12,026.03 ± 541.57 6093.58 ± 409.10 48,271.31 ± 1544.47 3176.32–2573.80 [20,34,35]

ORAC (µmol Trolox/100 g sample) 28,724.52 ± 2016.07 34,554.21 ± 1987.52 8565.85 ± 608.34 13,329.37 ± 23.14 53,694.93 ± 1524.28 3641–76,854.80 [32,33,36]

Anthocyanins (mg cyanidin
3-glucoside/100 g sample) 7.04 ± 1.79 7.5 ± 0.29 4.67 ± 0.76 6.063 ± 0.19 12.61 ± 1.59 136.83–837 [20,30,31]
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Compared to the other extracts, Ex5 showed superior results in all assays except for
DPPH. It is important to consider the impact of temperature on DPPH assay values, as
higher temperatures led to decreased values across all extracts. Ex1 and Ex2 were obtained
under 25 ◦C and demonstrated the highest DPPH values, even higher than those in the
literature [20,30,31]. The remaining extracts, Ex3 to Ex5, were obtained at 50 ◦C, and all of
them had a DPPH value below those reported [20,30,31].

In the antioxidant capacity values measured by FRAP and TPC, it can be observed that
the type of extraction method played a more significant role than temperature. Using an
ultrasonic extraction process did not fully release the phenolic compounds from the grape
pomace, but this could be achieved through short-duration grinding. The effect of citric
acid played a synergistic role in the determination of radical scavenging by ABTS. When
citric acid was combined with the solvent during mechanical extraction, the ABTS capacity
increased. However, when the ultrasonic process was used, the capacity decreased. This
behavior occurred only in the ABTS assay. In the ORAC determination, introducing citric
acid to the mixture increased the µmol of Trolox equivalents, regardless of whether the
process was mechanical or ultrasonic.

The TFC was enhanced when using mechanical extractions compared to ultrasound.
Additionally, temperature had a significant effect, as the extract with the highest flavonoid
content was obtained at 50 ◦C. For this analysis, no significant effect of time was observed.
All the results are within the ranges of those in the literature, except for the anthocyanin
content, for which the values in the extracts of grape pomace were below the reported
range [20,30,31]. Anthocyanins are susceptible to heat and light degradation; hence, it
is crucial to develop an extraction technique that will preserve the extract’s antioxidant
potential while preventing the degradation of the anthocyanin content.

The addition of citric acid to extracts Ex2 and Ex4 did not result in an increase in
all antioxidant capacity values. At low temperatures, Ex1 showed higher FRAP results
than its counterpart, Ex2, which contained citric acid. At 50 ◦C, extract Ex3 showed higher
results than its counterpart, Ex4, which contained citric acid, in the DPPH and ABTS assays.
In general, Ex5 showed more balanced results. Increasing the ratio of grape pomace to
solvent from 1:10 in Ex1–Ex4 to 2:10 in Ex5 produced higher antioxidant results in all
measurements, with the exception of DPPH for Ex3 [37].

2.4. HPLC Profiles of Sunflower Oil and Grape Pomace Extract

The fatty acid profile of sunflower oil is shown in Table 3. According to the data, the
oil had an omega-6 content of 76.03%, an omega-9 content of 17.28%, and a saturated fatty
acid content of 6.69%.

The phenolic acids, anthocyanins, and reducing sugars profile were obtained for Ex5,
as it overall yielded the best results in terms of antioxidant capacity and phytochemical
content, as can be seen in Table 2. Regarding the acidic compounds, p-coumaric acid was de-
tected at 15.374 mg/L, chlorogenic acid at 7.408 mg/L, caffeic acid at 8.372 mg/L, and ferulic
acid at 1.554 mg/L. The values obtained for p-coumaric acid were within the range reported
in the literature of 8.00–80.95 mg/kg [21,31]. The amount of caffeic acid was very close to
the lower limit reported in the literature, ranging from 11.69 to 116.51 mg/kg [21,31,38].
For both ferulic acid and chlorogenic acid, the values obtained from the extract were below
those reported in the literature, with 2.5 mg/kg and 428.3 mg/kg, respectively [31].

In the anthocyanin profile of the Ex5 extract, four compounds were identified: cyani-
din at 26.52 mg/L, pelargonidin at 5.25 mg/L, malvidin at 9.86 mg/L, and delphinidin at
9.47 mg/L. The reported ranges in the literature vary between 18.5 and 3597.47 mg/kg for
delphinidin, 7.03 and 709.51 mg/kg for cyanidin, and 176 and 10,846.30 mg/kg for mal-
vidin [39–43]. According to the literature, the anthocyanin with the highest concentration in
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grape pomace extracts is malvidin, with concentrations reaching up to 10,846.30 mg/kg [40].
The authors reported that using processes with 3 h durations and temperatures of 30 ◦C
helped maintain high anthocyanin concentrations in the extracts [40]. The presence of
pelargonidin is uncommon in grape pomace extracts, and the value of this anthocyanin in
Ex5 was very similar to that reported in the literature [40]. Anthocyanins are predominantly
found in the grape pulp, suggesting that residual grape pomace from the wine industry
is largely composed of seeds. These findings suggest that the wineries located in Valle de
Guadalupe have developed techniques to increase the yields of wine production.

Table 3. Sunflower oil fatty acid profile.

PK RT Area Pct Library ID Ref CAS Type

1 17.7982 6.5918 Hexadecanoic acid, methyl ester 115,367 000112-39-0 Saturated

2 20.5202 44.5955 9,12-Octadecadienoic acid (Z,Z)-, methyl ester 116,129 000112-63-0 Omega-6

3 20.6523 28.4879 7-Octadecenoic acid, methyl ester 13,049 057396-98-2 Omega-6

4 21.0399 6.2836 Octadecanoic acid, methyl ester 28,371 000112-61-8 Omega-9

5 23.9116 0.4666 Eicosanoic acid, methyl ester 115,427 001120-28-1 Omega-9

6 26.5455 1.5713 Docosanoic acid, methyl ester 115,474 000929-77-1 Omega-9

7 29.4348 0.776 Eicosanoic acid, methyl ester 140,310 001120-28-1 Omega-9

8 33.1874 1.8384 1-Docosene 129,889 001599-67-3 Omega-6

9 38.9837 2.8077 2-(2-Bromoethyl)cyclohexanone 60,261 1000195-45-9 Omega-9

10 46.7708 5.1199 2-Dodecylcyclobutanone 83,998 035493-46-0 Omega-9

11 53.0603 1.4612 Carbonic acid, methyl tridecyl ester 97,434 1000314-62-4 -

Only two flavonoids were identified in the extracts: catechin at 125.05 mg/L and
epicatechin at 214.29 mg/L. The values reported in the literature for catechin in grape
pomace extracts range from 46.16 to 390.20 mg/kg [21,31,38]; therefore, the obtained value
falls in the middle of the range. For epicatechin, the reported range is from 27.93 to
343.70 mg/kg [21,33], with the value found in this study also within the reported range.
This is attributed to the components of grape pomace, as epicatechin is abundant in grape
seeds but not in the fruit. Once again, the results suggest that the grape pomace consists
largely of seeds, as the grape pulp is used directly in wine production. As the concentration
of grape pulp in the pomace was low, so was the sugar content. The reported values for
glucose in extracts range from 5.50 to 75.5 g/kg [44,45], compared to 2.810 g/L in the Ex5
extract, while the sucrose content was reported as 16.47 g/kg [45], compared to the content
of 4.390 g/L found in this study. These findings may also be explained by the greater
content of seeds in the pomace and the improved yields in the local wineries.

2.5. Oxidative Stability Index Results

The duration oxidative stability for the sunflower oil was 8 h before degradation began,
with conductivity reaching 40 µS·cm2 after 14 h. When grape pomace extract was added to
the sunflower oil samples, a decrease in conductivity was observed.

The sunflower oil samples with the grape pomace extract at 720 mg/L, 1473 mg/L, and
2357 mg/L concentrations showed induction times of 10 h, 12 h, and 10.5 h, respectively.
The sunflower oil sample with the grape pomace extract at 1473 mg/L revealed the best
result, with a 50% OSI increase.

At 14 h, the lowest conductivity value recorded was 23 µS·cm−1, reflecting a
42.5% reduction from the original sunflower oil value. The four curves are shown
in Figure 3.
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Figure 3. Sunflower oil oxidative stability evaluation.

Daneshniya et al. [46] assessed the oxidative stability of spent grape pomace extracts
in sunflower oil. The extraction method used was ultrasound with 50% EtOH, for 30 min,
at 10% w/v. The concentration of the grape pomace extract was 30% v/v, and it was
not concentrated before being added to sunflower oil. The induction time for the control
sunflower oil sample was 3.92 h, while for the sample containing the grape pomace extract,
it ranged from 4.39 to 4.58 h, an OSI increase of about 16.83%. Comparing the results of Ex5
to those obtained by Daneshniya et al. [46], the present study achieved higher induction
times with less extract in sunflower oil.

Gámez et al. [47] evaluated the oxidative stability of grape pomace extract in soybean
oil. The extraction method used was maceration with 95% EtOH, for 2 h, at 20% w/v. The
grape pomace extract was concentrated in a rotary evaporator prior to its application and
testing in soybean oil. The control soybean oil sample had an induction time of 6.63 h. The
grape pomace extracts were tested at 0.02, 0.1, 0.3, and 0.5% w/w concentrations in oil.
The induction times were 10 h, 11 h, 20 h, and 44 h, respectively, highlighting an increase
in the OSI from 50.83% to 563.65%. The best result of the present study was found at
a concentration of 1473 mg/L, equivalent of 0.15% w/w, which is similar to the results
obtained by Gámez et al. [47] for a concentration of 0.1%. It is important to highlight that the
extract in the present study was also concentrated prior to its application in sunflower oil.

The OSI results indicate that grape pomace extract can inhibit the oxidation process of
sunflower oil if the extract is concentrated before applying it to the oil, positioning it as a
potential natural antioxidant [48].

3. Materials and Methods
3.1. Sample Collection and Preparation

Vine pruning samples were collected during winter pruning in mid-May, while grape
pomace samples were collected in September. Both residues came from the Faculty of
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Enology and Gastronomy at the Autonomous University of Baja California, Sauzal Campus,
Ensenada, Baja California (31.86756292390066, −116.66874469102723) and its local winery
partners. The grape pomace came from the grape variety “Cabernet Sauvignon” (V. vinifera).
The vine prunings were collected with gardener scissors, and the biomass was stored in
plastic bags for future analysis. The grape pomace was obtained after wine production;
samples were collected in plastic bags and stored in a portable cooler. Both the vine
prunings and grape pomace were processed with a manual mill to reduce their size for
easier handling, followed by sieving through a No. 35 sieve to ensure uniform particle size.
After their pretreatment, the vine prunings and grape pomace samples were stored in a
freezer at −6 ◦C until future analysis.

3.2. Proximate Analysis

Following the preparation of the samples, proximate analysis was conducted. A
1 g sample was placed in a pre-weighed dry crucible. The procedure adhered to ASTM
standards. The crucibles with the samples were subjected to controlled heating in a muffle
furnace. The moisture content was determined using ASTM E871-82 [49], by drying at
105 ◦C for 6 h until a constant weight was achieved. The volatile matter content was
measured according to ASTM E872-82 [50], by drying at 950 ◦C for 7 min. The ash content
was determined using ASTM E830-87 [51], by drying at 580 ◦C for 4 h. The fixed carbon
percentage (%FC) was calculated by subtracting the other components. All determinations
were performed in triplicate, and the percentages were calculated based on the weight
difference of the crucible before and after each test.

3.3. Chemical Composition and Higher Heating Value Analysis

The analysis to determine the extractable content in organic solvent was based on the
TAPPI standard [52]. According to this standard, acetone was used for the extraction. A
cellulose thimble with a 5 g sample was placed in Soxhlet equipment and boiled for 8 h,
with at least 4 siphons per hour. Then, the sample was dried, and the difference in mass
was measured using an analytical scale [53].

The second part of the analysis involved the quantification of the extractable content
in water. For this test, the TAPPI standard T 207 cm-99 was used [54]. A 4 g dried and
acetone-extractable sample was placed in an Erlenmeyer flask with 200 mL of hot water.
The flask was placed in a boiling water bath and maintained at a constant volume with a
condenser for 3 h. After the test, the content inside the flask was filtered and washed with
200 mL of hot water. Then, the sample was dried, and the difference in mass was measured
using an analytical scale [53].

The lignin content was assessed using the standard ASTM D 1106–96 [55]. A 1 g dried
sample, obtained after the solvent and hot water extraction, was mixed with 15 mL of
72% H2SO4 at 13 ◦C. The mixture was stirred at 2 different steps, first at 400 rpm for 1 min,
and then at 200 rpm for 2 h, both speeds at 19 ◦C. The resulting mixture was transferred
to a 1 L Erlenmeyer flask and combined with 560 mL of deionized water. This flask was
brought to a constant boil with reflux for 4 h. After the procedure, the sample was cooled
to 20 ◦C, then filtered and washed until a neutral pH was achieved. Finally, the sample was
dried, and the difference in mass was measured using an analytical scale [53].

The holocellulose content (%Hol) was determined using the standard ASTM D1104-
56 [56]. A 2 g moisture-free and total extractable-free sample was placed in an Erlenmeyer
flask with 150 mL of distilled water, 0.2 mL of acetic acid, and 1 g of sodium chlorite, all
at 15 ◦C. A cap was used to close the flask, which was placed inside a water bath at 75 ◦C
for 5 h with constant agitation. During each hour of the bath, 0.22 mL of acetic acid at
15 ◦C and 1 g of sodium chlorite were added. After 5 h, the flask was cooled down to 10 ◦C
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using a cold-water bath. The content was filtered out and washed with cold water until the
sample lost its yellow coloration. Then, the sample was dried, and the difference in mass
was measured using an analytical scale [53].

The cellulose content determination (%Cel) was performed using a standard ASTM
D 1103–60 [57]. A 2 g sample of dried holocellulose was combined with 10 mL of NaOH
at 17.5% (w/v) inside an Erlenmeyer flask. The mixture was left to cool for 5 min at 20 ◦C.
Every 5 min, another 5 mL of NaOH at 17.5% (w/v) was added to the flask, until a total
of 25 mL of NaOH was in the flask. After this, the sample was left to rest for 30 min.
The analysis continued with the addition of 33 mL of deionized water at 20 ◦C, and the
sample was left to rest for another 1 h. The total duration of the test was 105 min. Then,
the flask contents were filtered and washed first with 100 mL of NaOH at 8.3% (w/v), then
with deionized water, followed by acetic acid at 10% (v/v), and finally with deionized
water until a neutral pH was reached. The sample was dried, and the difference in mass
was measured using an analytical scale. Finally, the percentage of hemicellulose (%Hem)
was measured by subtracting the percentage of cellulose (%Cel) from the percentage of
holocellulose (%Hol) [53].

The higher heating values (HHV) of the vine prunings and grape pomace were deter-
mined in duplicate by weighing 0.5 g of each sample. The experiment was conducted using
an IKA C2000 bomb calorimeter, following the methodology outlined in ASTM 711 [58].

3.4. Elemental, Thermogravimetric, Protein, and Fat Analyses

Elemental analysis of the vine prunings was performed at the Faculty of Chem-
istry, National University of Colombia, under the following conditions: a Thermo Flash
2000 ECHNS-O analyzer by Thermo Scientific (Waltham, MA, USA) was used, with the
reactor set to 900 ◦C. Vanadium oxide was used as a catalyst for the CHNS reactor at
1060 ◦C for oxygen analysis. For the grape pomace, the analysis was conducted at the
Faculty of Chemistry, UNAM, in the Support Services Unit for Research and Industry
(U.S.A.I.I.), using a Perkin Elmer (Waltham, MA, USA) elemental analyzer model PE2400,
helium as the carrier gas, and a thermal conductivity detector. The combustion reactor
temperature was 975 ◦C, and the reduction reactor temperature was 501 ◦C.

In the thermogravimetric analysis, ground and sieved samples were analyzed using
a Perkin Elmer STA 6000 differential thermal analyzer. This process was conducted to
observe the decomposition reactions and devolatilization behavior of the materials [18].

To determine the fat content, 2 g of grape pomace was weighed and placed in pre-dried
and weighed cellulose thimbles. These were then transferred to a Soxhlet extractor, with
enough hexane added for 2 to 3 cycles. The extraction process was conducted for 6 h.
After extraction, the thimbles were dried at 100 ◦C until a constant weight was achieved.
The fat content was determined by the weight difference [19]. For protein determination,
a 0.2 g sample was accurately weighed and placed in a flask with the addition of 3 mL
of concentrated H2SO4. The mixture was immediately heated in a Digesdahl digestion
apparatus at 430 ◦C for 3 min, ensuring the sample did not dry out. Subsequently, 10 mL
of refrigerated 50% H2O2 was added, and the reaction was allowed to proceed for an
additional 2 min or until the effervescence ceased. The digestion flask was then removed
and allowed to cool for 15 min before being filled with deionized water. A 1 mL aliquot of
the solution was transferred to a 50 mL volumetric flask. The samples were then prepared
for subsequent analysis of the total nitrogen content as NO3 at 460 nm using a Hach
(Singapore) DR 5000 spectrophotometer.
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3.5. Extraction Elaboration

Grape pomace extracts were prepared from dried plant material. The drying process
was conducted in a muffle furnace at 65 ◦C for 3 days. Four extracts were prepared from this
dried material, maintaining a consistent 1:10 ratio of plant material to solvent. For the first
extract (Ex1), 4 g of dried grape pomace was weighed and mixed with 40 mL of a solvent
composed of 55% ethanol and 45% water. The mixture was then homogenized using an
Ultra-Turrax (Singapore) IKA T18 for 2 min. The second extract (Ex2) was prepared under
the same conditions, but with a different solvent composition: 50% ethanol, 48% water,
and 2% citric acid; the latter has been shown to enhance the anthocyanin content in plant
extracts [2,10,16]. For the third extract (Ex3), 4 g of dried grape pomace was weighed
and mixed with 40 mL of a mixture of 55% ethanol and 45% water. The extract was then
subjected to ultrasonic treatment using an Elmasonic Easy device for 30 min at 50 ◦C.
The fourth extract (Ex4) was prepared in a similar manner to Ex3, with the only variation
being the type of solvent used: 50% ethanol, 48% water, and 2% citric acid; once again,
the citric acid addition was to improve the anthocyanin content in the grape pomace
extract [2,10,16]. Based on the results of extracts Ex1–Ex4, a fifth extract (Ex5) was prepared
to enhance the antioxidant capacity, avoiding the addition of citric acid. This was achieved
by using a solvent of 55/45% ethanol/water, a ratio of grape pomace to solvent of 2:10, and
Ultra-Turrax grinding for 2 min at 50 ◦C.

3.6. Antioxidant Capacity and Phytochemical Content
3.6.1. Total Phenolic Content (TPC)

This procedure measures the ability of phenols to reduce molybdenum VI to molybde-
num V. For this, a 15 µL sample was mixed with 37 µL of Folin Ciocalteu reagent, 128 µL
of H2O, and 120 µL of sodium carbonate at 7.1% w/v [31,59]. The reaction time for the
mixture was 60 min, and then the absorbance was measured in a Multiskan Spectrum
(Thermo-Scientific, Waltham, MA, USA) at 760 nm. The determination was performed
by comparing the results to a standard curve of gallic acid, and the concentration was
expressed in mg of gallic acid per 100 g of sample. The experiment was conducted in
triplicate, and the average result is presented in Table 2 with the standard deviation.

3.6.2. Ferric Reducing Antioxidant Power (FRAP) Assay

This method evaluates the ability of a sample to reduce the complex ferric iron (Fe3+)
2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ) to the ferrous form (Fe2+), which has a visible band
at 593 nm [20,60]. A working solution for FRAP was prepared by mixing 1 mL of TPTZ
solution at 10 mmol/L, 1 mL of FeCl3 at 20 mmol/L, and 10 mL of an acetate buffer at pH 3.4.
A sample aliquot of 15 µL was combined with 285 µL of the working solution. The mixture
was incubated for 30 min, and the absorbance was measured in a Multiskan Spectrum
(Thermo-Scientific) at 593 nm. For the determination, a standard curve of ascorbic acid
was used as the reference, and the results are expressed as mg of ascorbic acid equivalent
per 100 g of extract. The experiment was conducted in triplicate, and the average result is
presented in Table 2 with the standard deviation.

3.6.3. ABTS Scavenging

The ABTS+ cation radical was generated through the oxidation of ABTS by ammonium
persulfate in a phosphate buffer at pH 7.4 [60]. An aliquot of 15 µL was taken from the
sample and mixed with 285 µL of the ABTS+ solution. The mixture was left to react for
30 min at room temperature, and the absorbance was measured in a Multiskan Spectrum
(Thermo-Scientific) at 734 nm. For the determination, a standard curve of Trolox as a
reference was used, and the results are expressed as µmol of Trolox equivalent per 100 g of
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extract [60]. The experiment was conducted in triplicate, and the average result is presented
in Table 2 with the standard deviation.

3.6.4. Total Flavonoid Content (TFC)

The method used was based on the procedure proposed by Corrales [61], with some
modifications. In an Eppendorf tube, a sample aliquot of 30 µL was mixed with 114 µL
of water, 15 µL of 5% NaNO2 (w/v), 15 µL of 10% w/v AlCl3, 60 µL of 1 M NaOH, and
66 µL of H2O. The absorbance was measured in a Multiskan Spectrum (Thermo-Scientific)
at 510 nm. For the determination, a standard curve of (+)-catechin as a reference was
used, and the results are expressed in mg of catechin equivalent per 100 g of sample. The
experiment was conducted in triplicate, and the average result is presented in Table 2 with
the standard deviation.

3.6.5. ORAC Assay

This method is based on the protection given by a sample to fluorescein when being
oxidized by free radicals [33]. A sample of 30 µL was mixed with 2920 µL of a fluorescein
solution at 70 nM using a phosphate buffer as a solvent. The concentration of the buffer
was 75 nM and it had a pH of 7.4. The cell was placed in the sample holder of a LS55
Fluorescence Spectrometer (Perkin Elmer, Waltham, MA, USA). Then, 50 µL of an AAPH
solution at 0.6 mol/L was added. A control was prepared following the same procedure,
without adding the sample. The excitation and emission wavelengths were 493 nm and
515 nm, respectively. The software Origin Pro 8 (OriginLab Corporation, Northampton, MA,
USA) was used to measure the area under the curve (AUC) with the kinetic data provided
by the fluorescence spectrometer. The ORAC value was obtained using Equation (1), with
the results are expressed in µmol of Trolox equivalent per 100 g of sample.

ORAC =
AUC − AUC

◦

AUCTrolox − AUC
◦ ρ (1)

where AUC is the area under the curve of the sample, AUC◦ is the control area under
the curve, AUCTrolox is the area under the curve for Trolox, and ρ is the ratio between
Trolox and the sample concentrations. The experiment was conducted in triplicate, and the
average result is presented in Table 2 with the standard deviation.

3.6.6. DPPH Free Radical Scavenging

The antioxidant activity of the samples was evaluated based on the consumption of
DPPH, according to the method proposed by Alzate-Arbeláez, with some modifications [59].
A sample volume of 15 µL was mixed with 285 µL of DPPH solution at 0.2 mM using
methanol as the solvent. The mixture was left to react for 30 min in a dark place. Then,
the absorbance was measured in a Multiskan Spectrum (Thermo-Scientific) at 517 nm. For
the antioxidant activity, the results were compared with Trolox and expressed in µmol of
Trolox equivalent per 100 g of sample. The experiment was conducted in triplicate, and the
average result is presented in Table 2 with the standard deviation.

3.6.7. Total Anthocyanin (TA) Content

The total anthocyanin content was determined by a differential pH measure [62]. For
this procedure, sample aliquots of 100 µL were needed. The first one was mixed with
900 µL of a buffer made of potassium chloride at 25 nM, with the pH adjusted to 1 using a
37% HCl solution. The second was mixed with 900 µL of buffer made of sodium acetate
at 0.4 M, with the pH adjusted using a 37% HCl solution until it reached a pH of 4.5. The
2 samples were measured at 530 nm and 700 nm, respectively, with a Multiskan Spectrum
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spectrophotometer (Thermo Scientific). The total anthocyanin content was expressed as
cyanidin 3-glucoside equivalents, in mg per 100 g of sample, calculated using Equation (2).

mgC3G
100g

=

[
(A530 − A700)pH=1 − (A530 − A700)pH=4.5

]
(MW)(1000)

(ε)(L)(C)
(2)

where A represents the absorbance measured at a given wavelength and pH, MW is
the molecular weight of cyanidin-3-glucoside (449.2 g/mol), ε is the molar extinction
coefficient of cyanidin-3 glucoside at 26,900 L/(mol cm), L is the pathlength (1 cm), and C
is the concentration of the extract in g/L. The experiment was conducted in triplicate, and
the average result is presented in Table 2 with the standard deviation.

3.7. HPLC Profile of Grape Pomace Extract and Sunflower Oil
3.7.1. Phenolic Acids

The determination of phenolic compounds was performed using calibration curves of
chlorogenic acid, p-coumaric acid, caffeic acid, and ferulic acid, using liquid chromatog-
raphy with a diode arrangement detector (HPLC-DAD, Shimadzu®, Tokyo, Japan) [63].
Before injection, the samples were filtered with a pore size of 0.45 µm, the wavelength used
was 280 nm, and the stationary phase was an aqueous LiChrospher RP-18 column (particle
size of 5 µm, 250 mm in length, and 4.6 mm in diameter, Merck, Boston, MA, USA). The
mobile phase was a mixture of formic acid at 0.1% (solvent A) and acetonitrile (solvent
B), using the following stages: 5% solvent B from min 0 to 16; 30% solvent B at min 17;
70% solvent B from min 18 to 19, 80% solvent B at min 20; and 5% solvent B from 21 to
30 min. The mobile phase flow rate was 1.0 mL/min at 45 ◦C. The results are expressed in
mg of acid per 100 g of sample.

3.7.2. Catechin and Epicatechin Determination

The (+)-catechin and (−)-epicatechin contents were measured by liquid chromatog-
raphy (HPLC-DAD, Shimadzu®), using calibration curves for both [64]. The samples
were filtered through 0.40 µm filters into vials, and then injected into a chromatographer
equipped with a SIL-20A/HT auto-injector, a CBM-20A communication module, and an
SPD-M20A photodiode array detector (PDA). Calibrating to 280 nm, (+) catechin/(−)
epicatechin quantification was performed in a C18 column with the following dimensions:
particle size of 5 µm, 250 mm in length, and 4.6 mm in diameter. The mobile phase for elu-
tion was a mixture of 0.1% formic acid (solution A) and acetonitrile (solution B) delivered
at a flowrate of 1.0 mL/min. The gradient used had the following stages: 5% solvent B for
min 0–30; 35% solvent B for min 31–34; 35% solvent B for min 36, and finally, 5% solvent B
for min 36–40. The results are expressed in mg of acid per 100 g of sample.

3.8. Oxidative Stability Index of Sunflower Oil

The extract demonstrating the highest antioxidant capacity was selected for encapsu-
lation and subsequent application in a sunflower oil without any kind of antioxidants in
it. Ethanol was removed from the extract via rotary evaporation, reducing 90 mL of the
original extract, comprising 45% water and 55% ethanol, to a final volume of 39 mL. The
concentrated extract was then mixed at a 1:1 ratio with polyethylene glycol, stirred, and
stored in amber containers inside a freezer at −6 ◦C.

The fatty acid profile for the sunflower oil used was determined using an Agilent
(Santa Clara, CA, USA) 6890N Gas Chromatograph equipped with a 5973N Mass Selective
Detector and a DB1-MS column. The analysis was conducted under the following condi-
tions: Helium was used as the carrier gas in split mode. A 0.2 µL injection volume was
employed, with both the injector and detector maintained at 250 ◦C. The oven temperature
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program began at 100 ◦C, held for 1 min, then increased at 5.00 ◦C/min to 150 ◦C, held for
2 min, followed by an increase at 5.00 ◦C/min to 250 ◦C, and held for 3 min. The final ramp
increased the temperature at 10.00 ◦C/min to 300 ◦C, where it was held for 5 min. The total
run time was 59.81 min [65].

The grape pomace extract was retrieved from the freezer and stored in a dark place
until it reached an ambient temperature. Then, 4 tubes were prepared for the oxidative
stability index (OSI) test. The first tube contained pure sunflower oil as a control, tubes
2–4 contained sunflower oil with different concentrations of the grape pomace extract,
the values of which were 720 mg/L, 1473 mg/L, and 2357 mg/L. Each tube contained
an aliquot of 2.5 g of sunflower oil. The OSI test was performed by the Rancimat model
679 (Metrohm, Herisau, Switzerland) following the OCS Official Method Cd 12b-92 [66].
The aliquots of sunflower oil were heated to 120 ◦C and oxidized by bubbling air through
the sample (20 L·h−1). Volatile secondary products from lipid oxidation were carried by
the air into a tube with distilled water, where the conductivity was monitored. The OSI was
recorded as the time until the maximum rate of conductivity increase was achieved [65].

4. Conclusions
Vine pruning and grape pomace waste originating from Valle de Guadalupe present

an opportunity to create a biomass waste valorization pathway by obtaining value-added
products across two distinct applications. Vine prunings are a viable material for use as
firewood and other combustion applications for energy due to their low extractable content,
chemical composition, and higher heating value. On the other hand, the grape pomace
extracts exhibited antioxidant capacity and the presence of phytochemical compounds. The
selected extract was obtained through Ultra-Turrax grinding at 50 ◦C with ethanol and
water for 2 min and a ratio of 2:10 grape pomace/solvent. The anthocyanin profile of Ex5
showed concentrations of cyanidin at 26.52 mg/L, pelargonidin at 5.25 mg/L, malvidin at
9.86 mg/L, and delphinidin at 9.47 mg/L. The catechin content at 125.05 mg/L and the
epicatechin content at 214.29 mg/L, along with the low content of anthocyanins, suggest
that the pomace contained a higher proportion of seeds than pulp. This information
highlights that the wine industry maximizes the use of pulp in wine production. Although
there was still 2.810 g/L of glucose and 4.390 g/L of sucrose in the grape pomace samples, it
is recommended to assess their potential for reuse in the creation of low-cost wines. Grape
pomace functions as an antioxidant agent in sunflower oil. According to the oxidative
stability results, the addition of grape pomace extract increased the induction time up to
50%. These results provide a comprehensive set of analyses and techniques that are not
found in the literature and offer evidence to create a valorization pathway for vine prunings
and grape pomace generated in Valle de Guadalupe.
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