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Simple Summary: Peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NET)
has shown variable response rates between 9% and 39%. Therefore, better criteria are needed
that help doctors to identify patients who will show a favorable outcome to PRRT, and which
patients may not. The so-called De Ritis ratio, which is calculated using two basic laboratory
parameters of liver function, has shown that it can help to predict the patient outcome in various
tumor types. This retrospective study included 125 patients with NET who were treated with PRRT.
We demonstrated that a high De Ritis ratio and high levels of the tumor marker Chromogranin A
(CgA) each improved the prediction of the progression-free survival after treatment. A consequence
for clinical care might be that patients with both high De Ritis ratio and high CgA levels may benefit
from intensified follow-up imaging after PRRT because they have a higher risk of early progression.

Abstract: Background: The De Ritis ratio (aspartate aminotransferase [AST]/alanine aminotrans-
ferase [ALT]) has demonstrated prognostic value in various cancer entities. We evaluated the
prognostic capability of the De Ritis ratio in patients with metastatic neuroendocrine tumors (NET)
undergoing peptide receptor radionuclide therapy (PRRT). Methods: Unicentric, retrospective anal-
ysis of 125 patients with NET undergoing PRRT with [177Lu]Lu-DOTATOC (female: 37%; median
age: 66 years; G1+G2 NET: 95%). The prognostic value regarding progression-free survival (PFS)
was analyzed with univariable and multivariable Cox regression. Prognostic accuracy was deter-
mined with Harrell’s C index and a likelihood ratio test. Results: Progression, relapse, or death after
PRRT was observed in 102/125 patients. Median progression-free survival (PFS) was 15.8 months.
Pancreatic or pulmonary origin, high De Ritis ratio, and high Chromogranin A (CgA) significantly
predicted shorter PFS in univariable Cox. In multivariable Cox regression, only high De Ritis ratio
>0.927 (HR: 1.7; p = 0.047) and high CgA >twice the upper normal limit (HR: 2.1; p = 0.005) remained
independent predictors of shorter PFS. Adding the De Ritis ratio to the multivariable Cox model
(age, Eastern Cooperative Oncology Group (ECOG) performance status, primary origin, CgA) sig-
nificantly improved prognostic accuracy (p < 0.001). Conclusions: The De Ritis ratio is simple to
obtain in clinical routine and can provide independent prognostic value for PFS in patients with NET
undergoing PRRT.

Keywords: De Ritis ratio; NET; neuroendocrine tumor; CgA; Chromogranin A; AST; ALT; PRRT;
peptide receptor radio nuclide therapy; DOTATOC
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1. Introduction

Neuroendocrine tumors (NET) of the bronchopulmonary (lung-) or gastroenteropan-
creatic system (GEP-NET) represent a rare and heterogeneous class of tumors [1]. During
the last few decades, the incidence of NET has significantly increased more than six-fold,
from 1.1/100,000 persons to 7.0/100,000 persons, mainly due to the progress in functional
imaging, device-specific sensitivity, and further increasing awareness of the occurrence of
NET [1,2].

For metastatic well-differentiated GEP-NET of low and intermediate grade G1 and
G2, peptide receptor radio nuclide therapy (PRRT) with [177Lu]Lu-[DOTA0-Tyr3]octreotate
([177Lu]DOTATOC) is a well-established second- to third-line therapy after progress under
treatment with common “cold” somatostatin analogues [3]. The NETTER-1 study, the first
randomized controlled trial in patients with metastasized GEP-NET and treatment with
PRRT, showed an average therapy response rate of 18% in these patients [4]. However,
prognosis varies, and not all patients benefit from PRRT. Many retrospective studies found
response rates between 9 and 39% [5,6]. A recent meta-analysis including 11 studies and
1268 patients reported an average response rate of 29.1% [7]. Therefore, better stratification
criteria are highly desirable to identify patients who will ultimately show a favorable
response and longer progression-free survival (PFS) after PRRT.

As of today, tissue measurements of the well-established proliferation-marker Ki-67
and serum levels of the neuroendocrine secretory protein Chromogranin A (CgA) are the
best prognostic indicators for NET patients undergoing PRRT [8–11]. Recently, Aalbersberg
et al. demonstrated that higher CgA levels as well as higher Ki-67 values were statistically
significantly associated with shorter PFS [10]. Corresponding observations have also been
made by other authors [8,9,12,13]. In addition, biological somatostatin receptor (SSR)
diversities (RADIOMICS) [14], especially the spatial nonuniformity of the functional lesion
volume in SSR-imaging have recently been investigated for their prognostic value [15–19].

The ratio of aspartate aminotransferase [AST]/alanine aminotransferase [ALT] in the
pretherapeutic blood serum or heparin plasma, the so-called ‘’De Ritis ratio” [20], has been
recently reported to be a valuable and independent prognostic factor in the treatment
of different tumor entities [21–29]. Furthermore, a representative meta-analysis, which
included 9400 patients with different types of cancer, demonstrated that a high AST/ALT
ratio was associated with an impaired overall survival (OS) [30]. Until now, the De Ritis
ratio has not been addressed in the context of NETs. The primary aim of this study was to
evaluate the prognostic value of the pretherapeutic De Ritis ratio on the PFS in patients
with NET undergoing PRRT. Secondly, a combined risk score of high De Ritis ratio and
high CgA was evaluated to predict the PFS.

2. Results
2.1. Patients

In 64/125 patients (51%), the primary tumor was located in the gastrointestinal tract,
30/125 patients (24%) showed a pancreatic primary, 11/125 patients (9%) had a pulmonary
primary, and 20/125 patients (16%) suffered from cancer of unknown primary (CUP).
Table 1 illustrates all patient characteristics.

2.2. Progression Free Survival

During follow-up, disease progression or relapse was observed in 102 patients (82%),
and median PFS for the total cohort was 15.8 months (interquartile range [IQR]: 8.2–28.5
months; Figure 1). The median follow-up duration in patients without disease progres-
sion/relapse was 19 months (IQR: 15.8–25.0 months). No nephrotoxicity grade ≥3, hema-
tologic toxicity grade ≥3, tumor lysis syndrome, or dose-limiting liver damage were
observed.
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Table 1. Patient characteristics.

Variable n (%) or Median (Range) p

Total Cohort De Ritis Ratio Low De Ritis Ratio High

Patient count 125 36 89
Age in years 66 (35–87) 59 (37–80) 69 (35–87) <0.001

Age >66 years 65 (52%) 8 (22%) 57 (64%) <0.001
Age ≤66 years 60 (48%) 28 (78%) 32 (36%)

Sex 0.42
Men 79 (63%) 25 (69%) 54 (61%)
Women 46 (37%) 11 (31%) 35 (39%)

ECOG score 0.68
0 90 (72%) 28 (78%) 62 (70%)
1 33 (26%) 8 (22%) 25 (28%)
2 2 (2%) - 2 (2%)

Charlson comorbidity index (CCI) 1 (0–7) 1 (0–7) 1 (0–6) 0.94
Primary location 0.57

Gastrointestinal 64 (51%) 22 (61%) 42 (47%)
Pancreatic 30 (24%) 8 (22%) 22 (25%)
Pulmonal 11 (9%) 2 (6%) 9 (10%)
CUP 20 (16%) 4 (11%) 16 (18%)

Metastatic disease 124 (99%) 36 (100%) 88 (99%)
Metastatic spread

Hepatic 119 (95%) 32 (89%) 87 (98%) 0.057
Lymphonodal 104 (83%) 25 (69%) 79 (89%) 0.016
Osseous 51 (41%) 12 (33%) 39 (44%) 0.32
Peritoneal 24 (19%) 4 (11%) 20 (23%) 0.21
Pulmonal 6 (5%) 2 (6%) 4 (5%) 1.0

Functional tumor 42 (34%) 11 (31%) 31 (35%) 0.68
Hedinger syndrome 5 (4%) 1 (3%) 4 (5%) 1.0
Grading 0.65

G1 24 (19%) 5 (14%) 19 (21%)
G2 95 (76%) 29 (81%) 66 (74%)
G3 6 (5%) 2 (6%) 4 (5%)

Laboratory parameters

Chromogranin A in µg/L 612
(14–601,700)

355
(14–5283)

751
(38–601,700) 0.027

Chromogranin A >204 µg/L 93 (74%) 23 (64%) 70 (79%) 0.11
Chromogranin A ≤204 µg/L 32 (26%) 13 (36%) 19 (21%)

AST in U/L 29 (13–139) 30 (20–84) 28 (13–139) 0.34
ALT in U/L 28 (10–132) 46 (23–122) 23 (10–132) <0.001

De Ritis ratio 1.09
(0.46–2.87)

0.74
(0.46–0.93)

1.23
(0.93–2.87)

Number of PRRT cycles 3 (1–6) 3 (1–5) 3 (1–6) 0.084
Previous treatment

Operative resection 78 (62%) 22 (61%) 56 (63%) 0.84
Somatostatin analogues 87 (70%) 20 (56%) 67 (75%) 0.034
mTOR inhibitor 24 (19%) 9 (25%) 15 (17%) 0.32
Tyrosine kinase inhibitor 7 (6%) 3 (8%) 4 (5%) 0.41
Chemotherapy 38 (30%) 10 (28%) 28 (32%) 0.83
Local ablative therapy 10 (8%) 2 (6%) 8 (9%) 0.72
Radiation therapy 6 (5%) 1 (3%) 5 (6%) 0.67
Transcatheter arterial

chemoembolization 9 (7%) 3 (8%) 6 (7%) 0.72

Patient characteristics are provided for the total cohort and separated for patients with low or high De Ritis ratio (>0.927), respectively.
Both subgroups were compared using Fisher’s exact test or Wilcoxon rank-sum test.
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14.7 months; IQR: 7.1–24.3 months) than patients with low De Ritis ratio (median: 24.3 
months; IQR: 8.5–38.4 months; log-rank test: p = 0.006; Figure 2a). Patients with a high 
CgA (>204 μg/L) also had significantly shorter PFS (median: 13.1 months; IQR: 6.7–22.5 
months) than those with low CgA (median: 26.9 months; IQR: 16.6–38.4 months; p = 0.001; 
Figure 2b). 
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Figure 1. Kaplan–Meier curve for progression-free survival (PFS) in the total cohort.

Patients with a high De Ritis ratio (>0.927) had a significantly shorter PFS (me-
dian: 14.7 months; IQR: 7.1–24.3 months) than patients with low De Ritis ratio (median:
24.3 months; IQR: 8.5–38.4 months; log-rank test: p = 0.006; Figure 2a). Patients with a high
CgA (>204 µg/L) also had significantly shorter PFS (median: 13.1 months; IQR: 6.7–22.5
months) than those with low CgA (median: 26.9 months; IQR: 16.6–38.4 months; p = 0.001;
Figure 2b).

In univariable Cox regression (Table 2), CgA >204 µg/L (hazard ratio [HR]: 2.16; 95%
confidence interval [95% CI]: 1.35–3.46; p = 0.001) and De Ritis ratio >0.927 (HR: 1.89; 95% CI:
1.19–3.0; p = 0.007) were significant predictors for shorter PFS. Compared to patients with
gastrointestinal primaries, patients with pancreatic (HR: 1.8; 95% CI: 1.11–2.94; p = 0.018)
or pulmonary primaries (HR: 2.62; 95% CI: 1.30–5.28; p = 0.007) had significantly impaired
PFS. Age >66 years (HR: 1.46; 95% CI: 0.98–2.18; p = 0.061) and an Eastern Cooperative
Oncology Group (ECOG) score of 2 (HR: 4.0; 95% CI: 0.95–16.84; p = 0.059) showed a trend
towards an association with shorter PFS but did not reach statistical significance.

In multivariable Cox regression (Table 2), only De Ritis ratio >0.927 (HR: 1.7; 95% CI:
1.01–2.86; p = 0.047) and CgA >204 µg/L (HR: 2.05; 95% CI: 1.24–3.39; p = 0.005) remained
as independent predictors of shorter PFS.

2.3. Predictive Model for Progression-Free Survival

The Cox model, including high age, ECOG score, primary tumor location, and high
CgA (model 1), showed a likelihood ratio (LR) χ2 of 11.5 and Harrell’s C of 0.633. The
predictive accuracy was slightly but significantly higher if the Cox model included high
age, ECOG score, primary tumor location and the combined score of high CgA and high
De Ritis ratio (model 2; LR χ2 = 14.0, Harrell’s C = 0.65, LR test: p < 0.001).
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Figure 2. Kaplan–Meier curves for PFS in patients separated by (a) De Ritis ratio or (b) CgA.

Combining the two factors high CgA and high De Ritis ratio in a prognostic score,
the 70 patients (56%) with both factors showed a median PFS of 12.4 months (IQR:
6.6–22.1 months) compared to 42 patients (34%) with one of both factors (median PFS:
20.4 months; IQR: 8.5–33.8 months) and 13 patients (10%) with none of either factor (me-
dian PFS: 34.0 months; IQR: 24.3–38.4 months; log-rank test: p < 0.001; Figure 3).
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Table 2. Univariable and multivariable Cox regression.

Univariable Cox Regression Multivariable Cox Regression

Variable Hazard Ratio 95% Confidence
Interval p-Value Hazard Ratio 95% Confidence

Interval p-Value

Age (>66 years) 1.46 0.98–2.18 0.061 0.97 0.61–1.53 0.89
Sex (male) 0.82 0.55–1.22 0.32 - - -
ECOG score - - 0.074 - - 0.22

0 reference reference
1 1.41 0.89–2.24 0.14 1.32 0.81–2.14 0.27
2 4.0 0.95–16.84 0.059 3.08 0.70–13.48 0.14

Charlson comorbidity
index (CCI) 0.93 0.81–1.07 0.33 - - -

Primary tumor location - - 0.014 - - 0.09
Gastrointestinal reference reference
Pancreatic 1.8 1.11–2.94 0.018 1.51 0.92–2.47 0.11
Pulmonary 2.62 1.30–5.28 0.007 1.81 0.88–3.72 0.10
CUP 1.08 0.61–1.94 0.79 0.79 0.43–1.46 0.45

Metastatic spread
Hepatic 0.59 0.26–1.35 0.21 - - -
Lymphonodal 1.33 0.74–2.40 0.34 - - -
Osseous 0.93 0.62–1.39 0.72 - - -
Peritoneal 1.17 0.73–1.87 0.51 - - -
Pulmonary 1.05 0.43–2.58 0.92 - - -

Functionality 0.83 0.55–1.26 0.39 - - -
Hedinger syndrome 1.35 0.55–3.33 0.52 - - -
De Ritis ratio (>0.927) 1.89 1.19–3.0 0.007 1.7 1.01–2.86 0.047
CgA (>204 µg/L) 2.16 1.35–3.46 0.001 2.05 1.24–3.39 0.005
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3. Discussion

The aim of this study was to assess the prognostic value of the pretherapeutic De Ritis
ratio regarding PFS in patients with NET undergoing treatment with [177Lu]Lu-DOTATOC
PRRT. To the best of our knowledge, there has not been a previous study analyzing the
prognostic value of the De Ritis ratio in the context of NET. However, Wu et al. included
8853 patients with various tumor entities in a meta-analysis and illustrated the additional
value of the De Ritis ratio as a prognostic parameter for survival outcomes (OS: HR = 1.7,
p < 0.001) [30].

At present, a compelling explanation of the prognostic value of the De Ritis ratio
remains to be found [20]. Both enzymes AST and ALT are routinely determined as parts
of the “liver function panel” [31]. The physiologic AST/ALT ratio in hepatocytes is 2.5/1,
while ALT presents a two-fold increased biological half-life (t 1

2 = 36 h) in comparison to
AST (t 1

2 = 18 h) [31]. Therefore, the concentration of these enzymes should be equalized
in the blood over the long term [31]. However, in the case of an increased rate of hepato-
cyte apoptosis, the serum ratio of AST/ALT (De Ritis ratio) rises as more AST and ALT
are released than eliminated according to the half-life [31,32]. Nonetheless, it should be
noted that AST is expressed in various tissue types, while ALT is more liver-specific [31].
Consequently, an increased AST is not always caused by hepatic pathology, especially if
ALT is not comparably and simultaneously elevated [31,33]. It is currently hypothesized
that anaerobic glycolysis, which is typical of the metabolism of cancer cells (the “War-
burg effect”) may explain the prognostic value of the De Ritis ratio [21–24,26–30,34,35].
In this context, several interactions exist between increased anaerobic glycolysis, an al-
tered NAD+/NADH ratio in the cytoplasm, and AST, which is essential for the function
of the malate-aspartate shuttle [31,36–38]. Underlining this hypothesis, Thornburg et al.
demonstrated that cancer cells are especially dependent on AST for a high proliferation
rate [39]. In the current sample, we therefore suspect that the elevated De Ritis ratio in the
corresponding subgroup was more likely related to a higher tumor proliferation rate than
to a hepatic source, as ALT was significantly lower in this subgroup.

In our analysis, a high pretherapeutic De Ritis ratio was a significant predictor of
shorter PFS in multivariable Cox regression. Furthermore, the Harrell’s C index showed
that the combined model with a high De Ritis ratio outperformed the prognostic accuracy
of clinical factors and high CgA alone. Recently, the De Ritis ratio was introduced as a prog-
nostic parameter of PFS, OS, and other survival outcomes in various tumor types [21–30].
In particular, Bezan et al. firstly attempted a differentiation in low and high De Ritis ratio
and demonstrated the prognostic capability of the De Ritis ratio in patients with localized
renal cell carcinoma (OS: De Ritis ≥1.26, HR = 1.76, p < 0.001) [21]. Moreover, Wang et al.
created a predictive model combining the De Ritis ratio with the Gleason score and patho-
logical tumor stage in patients with localized prostate cancer and showed that this model
predicted biochemical recurrence-free survival [22]. In most previous studies, the cut-off
for a high De Ritis ratio was usually 1.1 to 1.65, which was higher than the optimal cut-off
in the current analysis (>0.927) [21–23,25–29]. Comparing the cut-off levels, differences
could be caused by the different tumor entities, clinical settings and treatment strategies as
well as different patterns of metastases, especially with respect to the hepatic metastasis
burden [21–30]. Furthermore, prospective validation of cut-offs was generally not reported,
potentially limiting their comparability [21–30].

Additionally, we could report that a high pretherapeutic CgA was a significant pre-
dictor of shorter PFS in multivariable Cox regression. Previously, several authors could
demonstrate the prognostic value of CgA in patients with NET undergoing treatment with
PRRT [10,12,13]. In a recent analysis by Aalbersberg et al., patients with a CgA ≥336 µg/L
(median) had a significantly shorter PFS in multivariable Cox regression than patients with
a CgA <112 µg/L (first quartile) [10]. These studies are well in line with our finding, which
found that patients demonstrated a significantly shorter PFS with CgA values > twice the
upper normal limit (2xULN). The median of our analysis, nevertheless, was almost two
times higher (336 vs. 612 µg/L). However, we used a different cut-off (2xULN) as this cut-
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off was already validated in a prospective, multinational, phase 2 study [40]. Differences
may arise, since Aalbersberg et al. only included patients who received at least 3 cycles
of PRRT [10]. CgA values should be generally compared cautiously since they may differ
between laboratories [41].

This study was limited by its retrospective nature and lack of a matching control group
of patients undergoing a different treatment. Therefore, a predictive capability of the De
Ritis ratio could not be formally assessed. Prospective studies are required to validate the
current explorative results and to ensure a well-selected, homogenous patient collective.
Moreover, due to the retrospective setting, we could not assess descriptive follow-up
parameters of laboratory values or imaging findings beyond clinical routine data, which
should be addressed in subsequent prospective studies. As recently demonstrated, values
for AST, ALT, and CgA might increase after administration of PRRT cycles [42,43]. Given the
retrospective nature of this study design, data on the short-term dynamic of these laboratory
values were not available to detect these reversible alterations. Therefore, prospective
evaluation with close post-therapeutic monitoring of the parameters may be useful to
investigate the prognostic relevance of their post-therapeutic dynamic. Notably, this would
be independent from the current observation of their prognostic value prior to treatment.
Furthermore, patients with a high De Ritis ratio were, on average, significantly older
and showed significantly higher CgA values (Table 1). In principle, this might introduce
a bias in evaluating a prognostic value of the De Ritis ratio. However, multivariable
Cox regression demonstrated that an independent prognostic value of the De Ritis ratio
remained after adjustment for these other risk factors. A multivariable Cox regression in
an unmatched cohort was favored over a matched-pair analysis, e.g., using propensity
score matching as conducted by other groups [27,29]. As reported by Biondi-Zoccai et al.,
multivariable Cox regression should be preferred over propensity score matching if the
ratio of events to variables is >8–10 (as in the current analysis), because matching usually
involves discarding patients without a proper match. This reduces statistical power [44],
which other researchers have confirmed [45].

Determination of both CgA and De Ritis ratio is inexpensive and already part of a
clinical routine in patients with NET. Therefore, the necessary validation of the current
results in prospective (multicenter) studies should be straightforward. Moreover, proof of
a predictive value of De Ritis ratio, in addition to its prognostic significance [46], will be
required, as only this will have direct impact on clinical decisions among a broad spectrum
of therapeutic strategies for patients with well-differentiated NET.

4. Materials and Methods
4.1. Patient Population

This retrospective, unicentric study analyzed 125 patients with histologically proven
NET treated with PPRT between September 2007 and October 2019. All patients fulfilled
the following inclusion criteria: (1) Progressive, metastasized NET, (2) positivity for SSR
expression in functional imaging (SSR-positron emission tomography/computed tomog-
raphy (PET/CT) or SSR scintigraphy), (3) De Ritis ratio determined immediately before
application of the first cycle of PRRT, (4) a follow-up after application of the first cycle PRRT
≥12 months and (5) no myocardial infarction ≤14 days before application of the first cycle
PRRT [33]. In 121 of 125 patients (97%), PRRT followed previous treatments (operative
resection: n = 78; somatostatin analogues: n = 87; mTOR inhibitor: n = 24; tyrosine kinase
inhibitor: n = 7; chemotherapy: n = 38; local ablative therapy: n = 10; radiation therapy:
n = 6; transcatheter arterial chemoembolization: n = 9).

4.2. [177Lu]Lu-DOTATOC-PRRT and Response Assessment

Patients underwent PRRT with a median of 3 cycles (range: 1–6 cycles) and a scheduled
dose of 200 mCi (7.45 GBq) [177Lu]Lu-DOTATOC per cycle. PRRT cycles were administered
in intervals of 10 to 12 weeks. After application of two cycles of PRRT all patients underwent
SSR-PET/CT with [68Ga]Ga-DOTATOC as interim staging for response evaluation, which
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was repeated every two cycles. In addition, interim staging was generally performed at
least 2 months after application of the last cycle PRRT to avoid misinterpretation due to
possible pseudo-progression (radiogenic edema) [42]. Progressive disease was determined
by an interdisciplinary tumor board. In the case of progressive disease, no further PRRT
cycles were administered. After treatment completion, patients underwent follow-up
imaging every 3 to 6 months. Morphological assessment was generally performed by
contrast-enhanced (CE) CT. Alternatively, CE magnetic resonance imaging (MRI) was used
for morphological evaluation if available.

4.3. Evaluation

AST, ALT, and CgA were determined <4 weeks before application of the first cycle of
PRRT (De Ritis ratio = ALT/AST). PFS was defined as the time from the first cycle of PRRT
until detection of progressive disease according to the response evaluation criteria in solid
tumors (RECIST) 1.1 or death from any cause [47].

4.4. Statistical Analysis

Statistical analysis was performed using SPSS version 25 (IBM, Chicago, IL, USA)
and R 4.0.0 (Foundation for Statistical Computing, Vienna, Austria, 2020; http://www.R-
project.org (accessed on 19 January 2020)). Significance was assumed at A= 0.05. Descriptive
values were expressed as median, IQR, and range. Univariable Cox proportional hazards
regression regarding the PFS included clinical parameters (sex, age, functionality of the
NET, presence of a Hedinger syndrome, localization of the primary tumor (gastrointestinal,
pancreatic, pulmonary, cancer of unknown primary), localization of metastases (hepatic,
lymphonodal, osseous, peritoneal, pulmonary), ECOG score [48] and Charlson comorbidity
index (CCI) [49]) and laboratory parameters (CgA, De Ritis ratio).The HR and the 95%
CI were determined for each parameter. Before inclusion, continuous variables (age,
CgA, De Ritis ratio) were binarized. The cut-off for age (>66 years) was defined as the
median value in the patient sample, while the CgA cut-off (>204 µg/L) was 2xULN [40,50].
The De Ritis ratio was binarized with a cut-off (>0.927) that achieved the minimum p-value
in the log-rank test as determined with the Charité Cutoff Finder [51]. Variables were
compared between groups with low vs. high De Ritis ratio using the Wilcoxon rank-sum
test (continuous variables) or Fisher’s exact test (categorical variables). All variables with
p ≤ 0.1 in univariable Cox regression were also candidates for inclusion into multivariable
Cox regression. The proportional hazard assumption was tested using the goodness-of-fit
test and fulfilled by each variable. Using equal weights, the factors high CgA and high De
Ritis ratio were combined as a predictive model regarding PFS. Using the rms package
for R, the LR χ2 and Harrell’s C index of the multivariable Cox model were calculated
after inclusion of either high age, ECOG, primary tumor location, and high CgA (model
1), or high age, ECOG, primary tumor location, and the combined score of high CgA and
high De Ritis ratio (model 2) [52]. The likelihood ratio test for these two Cox models was
performed to test if the combined score of CgA and De Ritis ratio provides additional
prognostic value over CgA alone. The Kaplan–Meier method was used to estimate survival
rates and average PFS.

5. Conclusions

The De Ritis ratio provided an independent prognostic value for PFS in patients with
NET undergoing PRRT with [177Lu]Lu-DOTATOC. Consequently, the follow-up in patients
with both a high De Ritis ratio and high CgA might be intensified as they have a higher
risk for early progression. Its assessment as a routine clinical laboratory parameter is
straightforward, while the cause of its prognostic value remains unclear, but likely relates
to tumor metabolic activity instead of liver function, per se.

http://www.R-project.org
http://www.R-project.org
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