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besity-Activated Adipose-Derived
tromal Cells Promote Breast
ancer Growth and Invasion1,2
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Abstract
Obese women diagnosed with breast cancer have an increased risk for metastasis, and the underlying
mechanisms are not well established. Within the mammary gland, adipose-derived stromal cells (ASCs) are
heterogeneous cells with the capacity to differentiate into multiple mesenchymal lineages. To study the effects of
obesity on ASCs, mice were fed a control diet (CD) or high-fat diet (HFD) to induce obesity, and ASCs were isolated
from the mammary glands of lean and obese mice. We observed that obesity increased ASCs proliferation,
decreased differentiation potential, and upregulated expression of α-smooth muscle actin, a marker of activated
fibroblasts, compared to ASCs from lean mice. To determine how ASCs from obese mice impacted tumor growth,
we mixed ASCs isolated from CD- or HFD-fed mice with mammary tumor cells and injected them into the
mammary glands of lean mice. Tumor cells mixed with ASCs from obese mice grew significantly larger tumors
and had increased invasion into surrounding adipose tissue than tumor cells mixed with control ASCs. ASCs from
obese mice demonstrated enhanced tumor cell invasion in culture, a phenotype associated with increased
expression of insulin-like growth factor-1 (IGF-1) and abrogated by IGF-1 neutralizing antibodies. Weight loss
induced in obese mice significantly decreased expression of IGF-1 from ASCs and reduced the ability of the ASCs
to induce an invasive phenotype. Together, these results suggest that obesity enhances local invasion of breast
cancer cells through increased expression of IGF-1 by mammary ASCs, and weight loss may reverse this tumor-
promoting phenotype.
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besity rates in the United States and around the world havemore than
ubled in the last 40 years [1]. Obesity is associated with increased risk
r development of several types of cancer, including breast cancer in
stmenopausal women [2–4]. Regardless of menopausal status, breast
ncer patients with an obese body mass index (BMI) are more
equently diagnosed with poorly differentiated, larger primary tumors
d lymph node metastases than lean patients [5,6]. Increased BMI is
gnificantly correlated with elevated rates of breast cancer–related
ortality [7]. Understanding how obesity promotes the growth of
gressive breast tumors is of great clinical importance in order to
velop targeted therapies for obese patients.
In obesity, adipose tissue expansion results in a chronic inflammatory
ate that contributes to obesity-related insulin resistance [8–10]. This
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flammatory state leads to elevated circulating levels of proinflamma-
ry cytokines, leptin, and insulin; many of these factors have been
plicated in breast cancer progression [11–15]. Given the complexity
dysregulated factors in obesity, understanding how local changes
ithin the adipose tissue of the breast may contribute to breast tumor
owth and progression has been challenging to define.
Within the mammary gland, white adipose tissue is capable of
dergoing expansion and retraction in response to changes in energy
lance. Adipose-derived stromal cells (ASCs) are a heterogeneous group
cells within the extracellular matrix of the adipose tissue surrounding
ature adipocytes [16]. ASCs, which are present in normal breast
ipose tissue, have been shown to induce tissue remodeling through
giogenesis [17], proliferation [18], and deposition of extracellular
atrix proteins [19]. One cell type within the ASC population is adipose
em cells which have the ability to differentiate intomature adipocytes in
vo as well as into multiple mesenchymal lineages in response to lineage-
ecific stimuli in vitro [20]. The differentiation potential of adipose stem
lls in culture is influenced by multiple factors including fat depot–
ecific origin [21–23], alterations in the extracellular matrix [24], sex-
ecific hormones [25], and increasing BMI [26–29]. Multiple studies
ve shown that secreted factors from ASCs promote growth of breast
ncer cells within the tumor microenvironment [30–33]. However, the
fects of obesity on breast ASCs and their ability to promote cancer have
t been well explored.
Here, we sought to address how obesity impacts the function of
SCs and how these cells within the microenvironment of the breast
ay impact tumor progression. We show that obesity increases ASC
oliferation and reduces adipose stem cell differentiation potential in
tro. The ASCs from obese mice promote rapid mammary tumor
owth and invasion into surrounding mammary adipose tissue. In
dition, we demonstrate that some, but not all, obesity-induced
anges to ASCs are reversible. Following weight loss, ASCs have less
pacity to promote mammary tumor cell invasion. Overall, our
ndings suggest that obesity-induced changes in ASCs may
ntribute to the increased local invasion observed clinically in the
east tumors of obese women.
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nimal Studies
All procedures involving animals were approved by the University
Wisconsin-Madison Institutional Animal Care and Use Commit-
e. Female C57BL/6 (000664) and FVB/N (001800) mice were
rchased from Jackson Laboratories and maintained according to
e Guide for Care and Use of Laboratory Animals in AAALAC-
credited facilities. Eight-week-old female C57BL/6 and three-week-
d FVB/N mice were fed control diet (CD, 10% kcal from fat, Test
iet 58Y1) or high-fat diet (HFD, 60% kcal from fat, Test Diet
Y2) for 16 weeks to induce obesity. Purified diets contained equal
ounts of vitamins and micronutrients. Body weights were
easured weekly. For weight loss experiments, mice were fed HFD
r 15 weeks and then switched to the CD for 5 weeks. Following
thanasia, thoracic and inguinal mammary glands were collected.
ammary tissue was minced and digested with collagenase I (Sigma;
48089) for 1 hour. The mammary organoids, which are enriched
r epithelial cells, were separated from the stromal vascular fraction
VF) as described [34], and the SVF was cryopreserved for use in
udies. SVF cells were plated in DMEM (Corning, 10-017-CV)
ntaining 10%FBS (Gibco, 10437-28) and 1% antibiotic/antimycotic
lution (Mediatech, 30-004-CI), and adherent cells were expanded in
lture for no more than three passages prior to use in assays.

uman Tissue Isolation
All human breast tissues were obtained in compliance with the law
d institutional guidelines as approved by the Institutional Review
oard at the University of Wisconsin-Madison. Disease-free,
identified breast tissues were obtained from patients undergoing
ective reduction mammoplasty with informed consent through the
ranslational Science BioCore BioBank at the Carbone Cancer
enter at the University of Wisconsin-Madison. This research study
as approved by Institutional Review Board as Not Human Subject
esearch with a limited patient data set including patient age, date of
rvice, and BMI. Tissue samples from patients aged 18-45 were
cluded in these studies. Breast tissue from reduction mammoplasty
rgeries was enzymatically dissociated for 8 hours using collagenase I
described [35,36]. The digested tissue was allowed to settle at room
mperature for 10 minutes. The lipid-rich fraction was removed, and
e SVF was isolated, incubated with red blood cell lysis buffer (ACK
ysing Buffer, Lonza, 10-548E), and plated in DMEM supplemented
ith 10% FBS and 1% antibiotic/antimycotic solution to generate
herent stromal cells.

ell Lines
EO771 cells were derived from a spontaneous mammary
enocarcinoma from a C57Bl/6 mouse [37] and were provided by
r. Mikhail Kolonin. Met-1 cells were derived from metastasis from a
MTV-PyMT tumor from an FVB/N female mouse [38] and were
ovided by Dr. Alexander Borowsky. Met-1 cells were transduced
ith lentivirus encoding green fluorescent protein (GFP), and GFP+

lls were selected using fluorescence-activated cell sorting. MCF-7
lls were derived from pleural effusion from a metastatic estrogen
ceptor alpha–positive breast carcinoma [39] and were purchased
om ATCC (30-2101). All tumor cell lines were cultured in DMEM
pplemented with 10% FBS and 1% antibiotic/antimycotic solution
37°C at 5% CO2.

umor and Stromal Cell Transplantations
To generate tumors, 1×106 EO771 or 5×105 Met-1 cells were
ixed with 2.5×105 ASCs isolated from obese or lean C57Bl/6 or
VB/N mice, respectively. These ratios of tumor cells to stromal cells
ere based on previous studies examining tumor and stromal cell
teractions [40–42]. Tumor cells and ASCs were pelleted and
suspended in 2:1 Matrigel (Corning, 354234):DMEM and injected
laterally into the inguinal mammary glands of 8-week-old C57Bl/6
FVB/N female mice fed CD. Tumor diameters were measured
ing calipers three times each week. Tumor volume was calculated
ing the formula 4/3πr3. When tumors reached the humane
dpoint of 1.5 cm in diameter, mice were euthanized. Tumors were
eighed and then sectioned for fixation in formalin or collagenase
gestion. To isolate single tumor cells, tumors were minced,
cubated in DMEM:F12 (Corning, 10-090-CV) supplemented
ith collagenase I, and further treated 0.25% trypsin-EDTA
orning, 25-053-CI) as described [43].

onditioned Media Collection and Treatment
Human and murine ASCs were grown on 100-mm tissue culture
ates (Greiner, 664170) until confluency. Cells were washed with
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S then grown in DMEM supplemented with 0.5% FBS and 1%
tibiotic/antimycotic solution. After 24 hours, conditioned media
ere collected, filtered through 0.22-μm filters (Fisher Scientific, 09-
0-004), aliquoted, and stored at −80°C for use in experiments. For
nditioned media experiments, 1×105 Met-1, EO771, or MCF-7
lls were plated on 6-well plates and treated for 7 days with
nditioned media from murine or human ASCs. Cells were fed with
nditioned media every 2 days. To assess the effects of insulin-like
owth factor-1 (IGF-1) on invasion, Met-1 cells were treated with
rum-free DMEM supplemented with 60 ng/ml recombinant mouse
F-1 (R&D Systems, 791-MG) or PBS vehicle control for 24 hours.
et-1 cells were also treated with serum-free conditioned media from
CS isolated from HFD-fed mice supplemented with 1 μg/ml of
ther IGF-1 blocking antibody (R&D Systems, AF791) or control
at IgG control (R&D Systems, AB-108-C).

vasion Assay
To assess invasion, 2.5×104 Met-1, 5×104 EO771, or 5×104

CF-7 conditioned media–treated cells or 5×104 primary tumor
lls isolated from Met-1 or EO771 tumors were plated in triplicate
serum-free media on growth factor–depleted Matrigel-coated

vasion chambers (Corning, 354483) with 3 biological replicates.
vasion toward DMEM supplemented with 10% FBS was measured
ter 48 hours. Invasion inserts were formalin fixed and stained with
1% crystal violet. Four images of each invasion insert were taken at
0× magnification on a Nikon Eclipse E600 Microscope with a
ICAM Fast 1394 camera and quantified using ImageJ (NIH) with
ll counter plug-in.

umorsphere Assay
To assess changes in cancer stem-like cells, 500Met-1 or 1500MCF-
cells treated with conditioned media from ASCs or 500 primary
mor cells from Met-1 or EO771 tumors were plated in triplicate on
-well ultra-low adherent plates (Costar, 3473) in DMEM with 10%
S and 1% antibiotic/antimycotic for 5 days. After 5 days,
morspheres were collected, spun down at 17×g for 5 minutes, and
unted using a light microscope in a 96-well plate. Primary
morspheres were trypsinized with 0.05% trypsin (Corning, 25-
2-CI) for 5 minutes at 37°C, spun down at 193×g for 5 minutes, and
ated on a 24-well ultra-low-adherent plate for secondary tumorsphere
rmation. Secondary tumorspheres were incubated at 37°C in 5%
O2 and counted after 5 days. Tumorsphere assays were plated in
iplicate with three biological replicates.

roliferation Assay
To quantify differences in proliferation among ASCs, 1×105 CD,
FD, or weight loss (WL) ASCs were plated in triplicate on 35-mm
ssue culture plates (Greiner, 627-160) in DMEM supplemented
ith 10% FBS and 1% antibiotic/antimycotic solution. After 3 days,
lls were washed with PBS, trypsinized, centrifuged, and counted
ing a hemocytometer, then replated on 100-mm tissue culture
ates. ASCs were incubated for an additional 3 days and counted. To
antify differences in proliferation among tumor cells, 1×105

imary tumor cells isolated from Met-1 or EO771 tumors were
ated in DMEM supplemented with 10% FBS and 1% antibiotic/
timycotic solution on 35-mm tissue culture plates in triplicate. On
y 3, cells were washed in PBS, trypsinized, centrifuged, and
unted using a hemocytometer, then replated on 100-mm tissue
lture plates. Primary tumor cells were incubated for an additional 3
ys and counted. Met-1 tumor cells were replated on 100-mm plates
d counted after 4 additional days.

ifferentiation Assays and Quantification
To assess differentiation potential, 1×105 murine ASCs were
ated on 6-well plates with DMEM supplemented with 10% FBS
d 1% antibiotic/antimycotic until confluent. Adipocytes were
fferentiated in culture using DMEM supplemented with 10% FBS,
antibiotic/antimycotic solution, 0.1 μM dexamethasone (Sigma,

4902), 0.5 mM 3-isobutyl-methyl xanthine (IBMX, Sigma,
018), and 0.5 μg/ml insulin (Sigma, I5500). ASCs were treated
ith vehicle-supplemented or adipocyte differentiation media for 3
eeks, and supplemented media were replaced three times weekly.
dipocyte differentiation was assessed using Oil Red O staining and
antified by extracting Oil Red O using isopropanol and measuring
sorbance at 510 nm as previously described [42]. For bone
fferentiation, DMEM was supplemented with 10% FBS, 1%
tibiotic/antimycotic solution, 100 mM ascorbic acid (Sigma,
4544), and 0.1 M β-glycerol phosphate (Sigma, 50020). ASCs
ere treated with bone differentiation media or vehicle-containing
edia for 3 weeks, and supplemented media were replaced three
es weekly. Following differentiation, bone differentiation was
tected and quantified using Alizarin Red staining as described [44].

istology, Immunohistochemistry, and Immunofluorescence
Paraffin-embedded tissues were sectioned and stained with
matoxylin and eosin by the Experimental Pathology Laboratory
arbone Cancer Center, University of Wisconsin-Madison). Tissue
aining for Ki67 (Abcam, ab15580), CD31 (Biolegend, clone 390,
2401), smooth muscle actin (SMA, Sigma, A5228), GFP
nvitrogen, A-11122), and F4/80 (Biolegend, clone BM8,
3102) was performed as previously published [45]. Tissue sections
ere imaged using a Nikon Eclipse E600 Microscope and QICAM
st 1394 camera. To quantify Ki67 and F4/80, images were divided
to four quadrants, and the number of positive and negative cells in
e top right quadrant for each image was counted. Five images were
ken and quantified per slide from six tumors/group. The area of
D31+ and SMA+ staining was quantified using ImageJ from three
ages/tumor from six mice/group.

umor Invasion
Hematoxylin and eosin–stained slides of the edges of tumors
rrounded by normal mammary tissue were imaged at 1000×
agnification on a Nikon Eclipse E600 Microscope with a QICAM
st 1394 camera. A border was drawn between the tumor and the
ammary adipose tissue using the freehand selection tool on ImageJ.
umor areas protruding past border line into the surrounding tissue
ere quantified as invasive foci. The number of invasive foci per
age was averaged and analyzed using Prism.

uantitative RT-PCR
RNA was isolated from cell pellets and tissue with TRIzol (Life
echnologies, 15596026) and purified using Qiagen RNeasy Mini
it (Qiagen, 74104). The RNA was reverse transcribed using the
igh Capacity cDNA Reverse Transcription Kit (Applied Biosci-
ces, 4368814) and Techne Thermal Cycler (Techne). Quantitative
R was performed using iTaq SYBR Green Supermix (Bio-Rad,
2-5121) with a Bio-Rad CFX Connect Real-Time PCR Detection
stem (Bio-Rad). Data were analyzed using the ΔCq method, and
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anscripts were normalized to cyclophilin (mouse) or glyceraldehyde
phosphate (GAPDH; human). Primer sequences are listed in
pplementary Table 1.

estern Analysis
HFDandCDASCs cells were grown to confluency on 10-cm plates in
MEM supplemented with 10% FBS and 1% antibiotic/antimycotic.
edia were removed, and cells were washed with PBS twice. Proteins
ere extracted in RIPA buffer including protease and phosphatase
hibitors. Electrophoresis was performed with 4%-20% gel (Bio-Rad,
6-8093) with Tris/Glycine/SDS running buffer (Bio-Rad, 161-0772).
oteins were transferred to Amersham Hybond-ECL membrane (GE
ealthcare, RPN303D). Membranes were blocked for 1 hour with 5%
y milk powder and 1% BSA (Sigma, A4503) in TBST. Membranes
ere probed for antibodies against SMA (Sigma-Aldrich, A5228,
5000), collagen I (abcam, ab34710, 1:5000), IGF-1 (R&D Systems,
F791, 1:250), or GAPDH (Invitrogen, MA5-15738, 1:5000).
condary antibodies conjugated to horseradish peroxidase were goat
ti-rabbit IgG (Invitrogen, 31460, 1:10,000), goat anti-mouse IgG
nvitrogen, 31430, 1:10,000), or rabbit anti-goat IgG (Invitrogen,
402, 1:5000). Detection substrate used was SuperSignal West Pico
hemiluminescent Substrate (Thermo Scientific, 34080) or Clarity
estern ECL Substrate (BioRad, 1705060). AmershamHyperfilm ECL
EHealthcare, 28-9068-38) film was used for development on the All-
o Imaging Corp 100 Plus Automatic X-Ray Film Processor (All-Pro).

ell Contractility Assay
Type I rat tail collagen (Corning, 354236) was diluted and
utralized in an equal volume of filter sterilized HEPES neutrali-
tion solution (2× PBS pH = 7.4, 0.1 M HEPES pH = 7.4, Sigma
4034). A total of 5×104 CD and HFD ASCs were trypsinized,
unted, and added to the collagen to bring the final concentration to
mg/ml. The neutralized collagen and cell mixture was plated on six-
ell plates and incubated at 37°C. After 4 hours, the gels were
leased and floated in 2 ml of DMEM supplemented with 10% FBS
d 1% antibiotic/antimycotic solution. The gel diameter was
easured with a ruler at the time of gel release at day 0 and on days 1,
5, and 6. Gels were fed after measurement on day 3. Gels were
gested with collagenase (Roche, 11088793001) for 10 minutes at
°C, and ASCs were counted to normalize the contracted area of the
l to the number of total cells on day 6. The assay was run in
iplicate with three biological replicates for both CD and HFD
SCs. Contracted area was calculated using A = πr2 and subtracting
e area from the beginning area at day 0. The difference in area of
ntraction was divided by the number of cells in the gel at day 6.

tatistics
Results were expressed as mean ± SD unless stated. Statistical
fferences were determined using Mann-Whitney U test or Kruskal-
allis analysis of variance (ANOVA). Tumor growth and body
eight differences were detected using two-way ANOVA analysis. P
lues of .05 or less were considered significant. Statistical analyses
ere conducted using GraphPad Prism 7.03 (GraphPad Software).
th
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ffects of HFD Feeding on ASCs
To understand the effects of obesity on stromal cells within the
ammary adipose tissue, 3-week-old FVB/N and 8-week-old C57Bl/
female mice were fed a control diet (CD) or high-fat diet (HFD) for
weeks. We have previously shown that HFD-fed FVB/N and

57Bl/6 mice have significantly greater weight gain than those fed
e CD, resulting in increased mammary gland weight and adipocyte
ze [46]. We also observed the formation of crown-like structures of
acrophages surrounding dying adipocytes in obese fat [46].
onsistent with our previous study, mice fed the HFD gained
gnificantly more weight than mice fed the CD (Figures 1A, S1A).
fter 16 weeks, we isolated the SVF from the mammary glands, and
ltured the cells to select for adherent cells. Consistent with
commendations [47], we refer to these short-term cultured SVF
lls as adipose tissue–derived stromal cells (ASCs). To identify the
llular populations present in the ASC, we examined markers for
dothelial cells (CD31), immune cells (CD45), epithelial cells
ytokeratins 18 and 5), and pericytes (CD31, calponin) using qRT-
CR. Transcripts for CD31, CD45, cytokeratin 5, and cytokeratin

were not detected (Figure S1B). Calponin expression was
tectable at significantly reduced levels compared with controls;
wever, expression levels were not different in ASCs from CD and
FDmice (Figure S1B). These results suggest that short-term culture
pleted the ASCs of endothelial cells, immune cells, and epithelial
lls and did not significantly enrich for pericytes.
ASCs are a heterogeneous cell population, including multipotent
ipose stem cells with the ability to differentiate into adipocytes and
teoblasts, among other lineage pathways in vitro [48–50].
uidelines suggest that adipose stem cells are identified by expression
CD90, CD105, and CD73, with reduced expression of marker
D49f [47]. To assess how HFD feeding altered adipose stem cells
ithin the ASC population, we quantified expression of these
aracterized markers in ASCs and uncultured SVF cells [47]. We
served no significant differences in CD90, CD105, and CD73
ong CD and HFD ASCs and uncultured SVF cells (Figure S1C).

he ASCs expressed very low levels of CD49f compared to
cultured SVF cells (Figure S1C). Together, these results suggest
at ASCs from HFD-fed mice do not have significantly different
pression of adipose stem cell markers compared to ASCs from lean
ice. Since adipose stem cells within the ASCs have potential for
ultipotent differentiation in vitro, we tested the ability of ASCs
om CD- or HFD-fed mice to differentiate in response to adipogenic
bone differentiation media. HFD ASCs displayed significantly
creased ability to differentiate into adipocytes containing lipid
oplets (P = .03, Figure 1B) or osteoblasts secreting bone matrix (P =
1, Figure 1C) compared to CD ASCs. This reduced differentiation
pacity is consistent with observations from human ASCs isolated
om obese visceral and subcutaneous fat depots [27,28,51–54].
hese results suggest that obesity reduces the differentiation potential
ASCs in normal, noncancerous mammary adipose tissue.
Myofibroblasts have recently been described in the mammary
ipose tissue of both obese mice and women [19,55]. Since we
served decreased differentiation potential of HFD ASCs compared
ith CD ASCs, we hypothesized that the ASCs from HFD-fed mice
ay have increased numbers of myofibroblasts [19,55]. HFD ASCs
monstrated significantly increased proliferation rates compared to
ose isolated from CD mice (P = .04, Figure 1D). HFD ASCs also
d significantly increased expression of myofibroblast markers,
A and collagen I (Col1), compared to ASCs from CD-fed mice

igures 1E, S1D and E). To test functionally test for myofibroblasts,
e plated CD and HFD ASCs into collagen and measured cellular
ntractility. After 6 days in culture, HFD ASCs demonstrated
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Figure 1. HFD feeding alters normal, noncancerous mammary ASCs in mice and humans. (A) Average body weight of FVB/N female mice
fed a CD or HFD for 16 weeks (n= 5mice/group). ASCs from CD- or HFD-fed mice were differentiated in culture into (B) adipocytes or (C)
osteoblasts. Representative images of cells treated with differentiation media (DIF) compared to vehicle-treated cells (UN). Data are
represented as the ratio between differentiated and undifferentiated cells (n = ASCs from 5 mice/group). (D) Cellular proliferation of
isolated HFD ASCs compared to CD ASCs. Data are shown as a fold change of HFD ASC proliferation compared to CD ASC proliferation
(n = ASC from 3 mice/group). (E) Cultured CD and HFD ASCs were stained for SMA using immunofluorescence. SMA expression was
quantified from three images (n = 3/group). (F) Average area of collagen contracted from ASCs isolated from CD or HFD-fed mice (n = 3
mice/group). Area of collagen contraction was divided by the total number of cells present at day 6 in each gel. (G) ASCs were isolated
from reduction mammoplasty tissue from women with a defined BMI. Relative expression of SMA in cultured obese (BMI N30) and lean
(BMI b25) ASCs was determined using qRT-PCR (n = ASCs isolated from 3 tissue samples/group). Bars represent mean ± SD.
Magnification bars = 50 μm.
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gnificantly increased contraction of the collagen gels compared to
D ASCs (Figure 1F). Together, these data suggest that obesity
creases myofibroblasts within the HFD ASC population.
To examine how obesity alters ASCs in obese and lean women, we
llected reduction mammoplasty tissue, isolated, and cultured the
F. Similar to ASCs from HFD-fed mice, ASCs from obese women
MI b30) expressed significantly higher levels of SMA transcripts
mpared to ASCs from lean women (BMI b25, Figure 1G). These
ta taken together suggest that obesity reduces the differentiation
tential of adipose stem cells within ASCs and increases
yofibroblasts under normal, noncancerous conditions.
SCs from HFD-fed Mice Enhance Mammary Tumor Growth
To investigate how ASCs from HFD-fed mice impact mammary
mor progression, Met-1 mammary tumor cells were mixed with
SCs from CD or HFD-fed mice and transplanted into the inguinal
ammary glands of 8-week-old FVB/N female mice fed CD. After 1
onth, Met-1 tumor cells mixed with HFD ASCs formed tumors
at were significantly larger than those mixed with CD ASCs (P b
01, Figures 2A, S2A). To determine whether this observed
fference was specific to Met-1 cells, we repeated this experiment
ing C57Bl/6-derived EO771 mammary tumor cells transplanted
to 8-week-old C57Bl/6 female mice fed the CD. Similar to our
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Figure 2. ASCs from HFD-fed mice promote tumor growth. Met-1 (A) or EO771 tumor cells (B) were mixed with CD or HFD ASCs and
transplanted into the inguinal mammary glands of FVB/N or C57Bl/6 female mice, respectively (n = 10 mice/group). Tumor growth is
represented as mean± SEM. Representative images of immunohistochemistry (IHC) stain for Ki67 onmixedMet-1 (C) and EO771 tumors
(D). The percentage of Ki67 positive nuclei was determined from total nuclei on three images/tumor (n= 6 tumors/group). Representative
images of IF stain for SMA on mixed Met-1 (E) and EO771 tumors (F). The average SMA+ area was quantified from three images/tumor
(n = 6 tumors/group). Bars represent mean ± SD. Magnification bars = 50 μm.
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servations with Met-1 cells, EO771 cells mixed with HFD ASCs
rmed significantly larger tumors than those mixed with CD ASCs
b .0001, Figures 2B, S2B). Consistent with increased growth

tes, tumor sections from both Met-1 and EO771 tumor cells mixed
ith HFD ASCs demonstrated significantly increased expression of
oliferation marker Ki67 (Figure 2, C and D). To assess which cells
the tumors were proliferating, tumor sections from Met-1 mixed
mors were stained with antibodies to detect the GFP-labeled
mor cells. In both CD and HFD ASC mixed tumors, 80%-90% of
e cells expressed GFP (Figure S2C), suggesting that the Ki67+ cells
ere Met-1 cells. Together, these results suggest that ASCs
om HFD-fed mice have enhanced ability to promote tumor
ll growth.
Consistent with increased SMA expression inHFDASCs, we observed
nificantly increased SMA expression in tumors fromMet-1 and EO771
mor cells mixed with HFD ASCs compared to those mixed with CD
SCs (Figure 2, E and F). We also detected collagen I–expressing cells
ithin tumors from Met-1 tumor cells mixed with CD or HFD ASCs
igure S2D). These results suggest that ASCs remain within the mixed
mors, consistent with other ASC mixed tumor models [56,57]. No
nificant differences were observed in adipocyte numbers within the
mors of either Met-1 or EO771 tumor cells mixed with CD or HFD
SCs (Figure S2, E and F). Adipocytes present within the tumors may
sult from engulfed endogenous adipocytes due to rapid tumor growth.
ASCs have been shown to alter the tissue microenvironment
rough macrophage recruitment and angiogenesis [57–60]. To
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termine whether HFD ASCs enhanced blood vessel density, we
amined CD31 expression in endothelial cells within mixed tumors.
both Met-1 and EO771 tumors, no differences were observed in
D31 expression in tumors mixed with either CD or HFD ASCs
igure S2, G and H). We also did not observe differences in
mbers of F4/80+ tumor-associated macrophages present in either
et-1 or EO771 mixed tumors (Figure S2, I and J). These results
ggest that HFD ASCs promote tumor cell proliferation rates but do
t significantly recruit other stromal cell types within the tumor
icroenvironment compared to CD ASCs.

SCs from HFD-Fed Mice Enhance Tumor Cell Invasion
To identify differences in the morphology of the tumors, we
amined tissues sections from Met-1 and EO771 mixed tumors. In
th Met-1 and EO771 tumors mixed with HFD ASCs, we observed
gnificantly increased invasive foci of tumor cells extending from the
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mor border into the surrounding adipose tissue compared to
ntrols (Figure 3, A and B). To examine the effects of the ASCs to
omote tumor cell invasion, we isolated Met-1 and EO771 tumor
lls from the primary tumors, plated the single cells on Matrigel-
ated Transwells, and measured tumor cell invasion in response to
edia containing serum. Isolated tumor cells from the HFD ASC
ixed tumors demonstrated significantly enhanced invasion com-
red to those from CD ASC mixed tumors (Figure 3, C and D).
ogether, these results suggest that ASCs from HFD-fed mice
omote the growth of invasive tumor cells.
Populations of cancer stem-like cells have been identified
tumors; these cells have acquired the ability for both

cal invasion as well as metastasis [61–63]. Adipose stem cells
ve been shown to promote the expansion of cancer stem-like
lls in cancer cell lines [64]. To examine the effect of HFD ASCs on
ncer stem-like cells within the mixed tumors, we plated isolated
ngle tumor cells from the mixed HFD or CD Met-1 and
O771 tumors in limiting dilution on nonadherent plates to form
morspheres. Similar numbers of primary Met-1 and EO771
morspheres were observed from both HFD and CD ASC
ixed tumors (Figure S3, A and B). To assess self-renewal, we
ssociated primary tumorspheres to single cells and replated the cells
nonadherent plates to form secondary tumorspheres. Similar to

e primary tumorspheres, we did not observe any differences in
condary tumorsphere formation among the mixed tumors (Figure
, A and B). Unlike our observations within sections from the
imary tumors (Figure 2, C and D), we also did not observe
creased proliferation rates of the isolated tumor cells from HFD
SC mixed tumors compared with CD ASC mixed tumors (Figure
, C and D). These results suggest that HFD ASCs promote an
vasive phenotype in tumor cells and other factors from within the
icroenvironment may be necessary to enhance CSC formation.

romotion of invasive phenotype by secreted IGF-1
To elucidate how factors secreted by HFD ASCs promote tumor
ll invasion, we plated equal numbers of HFD and CD ASCs and
llected conditioned media. Met-1 tumor cells treated with
nditioned media from HFD ASCs demonstrated significantly
eater invasion through Matrigel Transwells than those treated with
nditioned media from CD ASCs (P = .004, Figure 4A). We also
ated conditioned media-treated Met-1 cells in limiting dilution on
nadherent plates to test ability to form tumorspheres. Similar to the
mor cells isolated from mixed tumors, no significant differences
ere detected in tumorsphere-forming ability in Met-1 cells treated
ith conditioned media from either HFD or CD ASCs (Figure S3E).
hese results suggested that secreted factors from HFD ASCs
hance an invasive tumor cell phenotype but not expansion of
ncer stem-like cells.
To elucidate whether ASCs from obese women also promote an
vasive tumor cell phenotype, we collected conditioned media from
SCs isolated from reduction mammoplasty tissue from obese and
an women. We then treated MCF-7 tumor cells with conditioned
edia. Similar to HFD ASCs, conditioned media from ASCs from
ese women enhanced MCF-7 cell invasion (P = .03, Figure 4B).
onditioned media–treated MCF-7 cells were also plated in limiting
lution on nonadherent plates to quantify changes in tumorsphere
rmation. No significant differences in primary or secondary
morsphere formation were observed in MCF-7 cells treated with
nditioned media from ASCs from obese or lean women
igure S3F). Together, these results suggest that secreted factors from
SCs isolated fromobese breast tissue promote breast cancer cell invasion.
In gene transcription studies investigating the effects of obesity on
east cancer, an IGF-1 gene signature was correlated with increased
mor aggressiveness [65,66]. Although the major circulating source
IGF-1 is from the liver [67], we hypothesized that local synthesis of
F-1 may be increased by ASCs in obesity. HFD ASCs had
gnificantly increased expression of IGF-1 compared to CD ASCs
igures 4C, S3G). To assess the effects of increased IGF-1 on an
vasive phenotype of Met-1 cells, we treated Met-1 cells with
combinant mouse IGF-1 (rmIGF-1) or vehicle. Met-1 cells treated
ith rmIGF-1 were significantly more invasive than vehicle-treated
lls (Figure 4D). To determine the role of secreted IGF-1 in the
vasive phenotype induced by HFD ASCs, Met-1 cells were treated
ith conditioned media from HFD ASCs supplemented with vehicle,
ocking antibody for IGF-1, or IgG control antibody. No significant
fferences were observed between vehicle-treated or IgG-treated
ntrol cells; however, treatment with the IGF-1 blocking antibody
gnificantly abrogated invasion of Met-1 cells (Figure 4E). Together,
ese results suggest that IGF-1 secreted by HFD ASCs induces an
vasive phenotype in tumor cells.

eight Loss Reverses Activation of ASCs
Since obesity promoted a myofibroblast phenotype in ASCs, we
pothesized that weight loss may reverse these changes. To induce
eight loss, we fed 8-week-old C57Bl/6 female mice either CD or
FD for 15 weeks. After 15 weeks, half of the HFD-fed mice were
itched to CD, and weight was monitored for an additional 5 weeks.
ice that were switched to the CD lost weight (5.9 ± 2.6 g; mean ±
), and the resulting weight in these mice was similar to those fed
e CD mice for 20 weeks (Figure 5A).
To assess the effects of weight loss, ASCs were isolated from the
ammary glands of CD, HFD, and WL mice. When plated in
lture, HFD ASCs proliferated significantly faster than CD ASCs,
hile WL ASCs proliferated at a similar rate to CD ASCs (P b .001,
igure 5B). When exposed to adipogenic or bone-differentiating
edia in culture, HFD ASCs demonstrated reduced ability to form
id droplets or mineralize compared to CDASCs (Figure 5,C andD).
contrast, WL ASCs differentiated to fat or bone at a similar level to
D ASCs (Figure 5, C and D), suggesting that WL restored ability of
SCs to differentiate into fat and bone. To assess myofibroblasts, we
antified SMA expression. Similar to our observations in HFD ASCs
om FVB/N mice, HFD ASCs from C57Bl/6 mice had significantly
creased SMA expression compared to CD ASCs (Figure 5E).
owever, WL did not decrease SMA levels to those of CD ASCs
igure 5E). These results suggest that weight loss reverses some, but not
l, obesity-induced changes in mammary ASCs.
Since we observed that IGF-1 expression was significantly increased
HFD ASCs and promoted an invasive tumor cell phenotype, we
amined the impact of weight loss on IGF-1 expression by ASCs.
milar to our observations in FVB/Nmice, HFD ASCs from C57Bl/6
ice demonstrated significantly increased expression of IGF-1
mpared to CD ASCs (Figure 5F). WL reduced the levels of IGF-1
pression to the level observed in CD ASCs (Figure 5F). These results
ggest that weight loss reduces local expression of IGF-1 within
ammary adipose tissue.
To test how reduction of IGF-1 expression in response to weight
ss altered tumor cell invasion, we collected conditioned media from
FD, CD, and WL ASCs. EO771 cells treated with conditioned
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Figure 4. IGF-1 secretion from HFD ASCs induces mammary cancer cell invasion. (A) Met-1 tumor cells were cultured in conditioned
media from CD or HFD ASCs then plated on Matrigel-coated Transwells. Invasion was quantified in triplicate (n = 3 tumors/group). (B)
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edia from HFD ASCs were significantly more invasive when plated
Matrigel-coated Transwells than those treated with conditioned

edia from CD ASCs (Figure 5G). EO771 cells treated with
nditioned media from WL ASCs reduced the number of invasive
lls to the levels observed with conditioned media from CD ASCs
igure 5G). These results suggest that weight loss reverses the ability
HFD ASCs to promote tumor cell invasion.
ab
m
A
su
T

iscussion
bese women diagnosed with breast tumors have a worse prognosis
an lean women; an elevated BMI is correlated with increased local
east tumor invasion, incidence of recurrence, and presence of
mph node metastases [5–7]. Obesity is a complex systemic
ndition, resulting in increased circulating insulin and inflammatory
ediators [68–71], as well as localized macrophage recruitment
ithin adipose tissue [8,72,73]. Here we examined how HFD feeding
tered the behavior of stromal cells within the breast microenviron-
ent. We observed that weight gain selected for ASCs with decreased
ility for multipotent differentiation and increased expression of
yofibroblast marker SMA. When mixed with tumor cells, HFD
SCs promoted rapid tumor growth and increased invasion into the
rrounding mammary tissue compared to ASCs from CD mice.
hese results are consistent with those observed from ASCs derived
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om the visceral fat depot of obese women [14,74,75]. This
omotion of tumor growth and invasion when implanted into the
ammary glands of lean mice suggests that microenvironmental
anges within the breast in response to obesity may contribute to the
gressive local invasion and lymph node metastasis observed
inically in obese breast cancer patients.
We observed that obesity decreased the ability of cells within ASCs
om the mammary gland to differentiate into adipocytes and osteoblasts.
ecreased plasticity in adipose stem cells isolated from visceral and
bcutaneous fat has also been observed [27,51,53,54,76–78]. We also
served a significant increase in SMA expression within ASCs from
ese mammary glands, suggesting that obesity promotes differentiation
ASCs toward a myofibroblast lineage. Consistent with our
servations, recent studies have demonstrated increased SMA expression
ithin adipose tissue of the mammary gland in both diet-induced obese
ice as well as genetically obese mice [19]. These observations are
miniscent of changes in ASCs that were co-cultured with tumor cells;
SCs lost their ability to differentiate and promoted the growth of
gressive breast tumor xenografts [56]. This loss of differentiation
tential of ASCs in obesity may result from exposure to chronic
flammatory signaling by macrophages recruited to obese adipose tissue.
acrophage-secreted factors have been shown to induce a profibrotic
enotype in preadipocytes [79,80]. Recently, increased transforming
owth factor beta within the obese mammary gland has also been shown
promote a myofibroblast phenotype in mammary ASCs [55]. The
tivation of ASCs toward a myofibroblast phenotype prior to tumor
rmation may promote the rapid growth of invasive breast tumors in
ese women.
ASCs interact with other stromal cells both within the normal
ipose tissue and during tumor formation. In obese adipose tissue,
ood vessel density is increased [45], and ASCs promote angiogenesis
noncancerous mammary tissue through the secretion of angiogenic
ctors including IL-8 and VEGF [81,82]. During tumor formation,
SCs also enhance angiogenesis [57,83]; however, our study suggests
at HFD ASCs do not further enhance this phenotype compared to
D ASCs. ASCs have also been shown to secrete cytokines, which
ay alter the immune microenvironment [14,59,60,84]. Although
e did not observe a significant increase in macrophage recruitment
ithin the tumor microenvironment, ASCs from obese mammary
ands may alter macrophage polarization. Further studies are
cessary to delineate interactions of ASCs with other stromal cells
ithin the tumor microenvironment in the context of obesity.
We observed that HFD ASCs expressed increased levels of IGF-1.
stemically, the major source of circulating IGF-1 is from the liver.
a mouse model with a liver-specific IGF-1 deletion, reduction in
F-1 in obese mice led to significant delays in mammary tumor
owth [85], suggesting that circulating IGF-1 enhances tumor
owth in obesity. Our observations suggest that localized IGF-1 is
so enhanced within obese breast tissue. When we inhibited IGF-1
tivity in conditioned media from obese ASCs, the invasive
enotype of the mammary tumor cell lines was reversed. Consistent
ith our observations, treatment of human breast cancer cell lines
ith IGF-1 stimulated breast cancer cell growth and invasion [86,87],
well as a gene signature associated with tumor aggressiveness [66].
his IGF-1 gene signature also correlates with an obesity-associated
ncer signature generated from breast tumors from obese patients
5]. Although we observed an invasive phenotype in response to
F-1, we did not observe significant increases in cancer stem-like
lls, as measured using tumorsphere assays. This was surprising, as
e IGF-1 receptor has been shown to be enriched in breast cancer stem
lls identified by cell surface markers in a xenograft model of human
east cancer [88]. One possibility is that continued exposure to elevated
F-1 is necessary to stimulate cancer stem-like cells. However, other
ctors that are increased in obesity have also been shown to enhance
ncer stem-like cell behavior, including leptin [89–91] and inflammatory
ediators increased in obese adipose tissue [84,92]. Further studies are
cessary to understand the interplay among dysregulated factors in
esity and the resulting breast tumor cell aggressiveness.
Although weight loss is recommended for obese breast cancer
tients, the effects of weight loss on the risk for breast cancer
currence are currently under investigation in long-term, clinical
ials [93]. The effects of weight loss on the microenvironment of the
east are not well known but may impact breast cancer risk and
currence. Within the visceral fat of morbidly obese patients, weight
ss led to decreased expression of inflammatory genes and reduced
acrophage infiltration [94,95]. Similarly, in a mouse model of
stmenopausal obesity, weight loss through calorie restriction
sulted in a significant reduction in mammary gland inflammation
6]. Our study suggests that weight loss decreased ASC proliferation
tes and restored multipotent differentiation potential. We also
served significantly decreased IGF-1 expression levels and
minished ability to promote tumor cell invasion. These results
ggest that weight loss following obesity reduces some of the tumor
omoting characteristics of the mammary microenvironment.
onsistent with this idea, weight loss prior to tumor onset reduced
mor progression in a C3(1)-Tag transgenic mouse model of
ammary tumorigenesis [97]. However, in a C57Bl/6 mouse model
weight loss, formerly obese mice demonstrated persistent growth of
gressive tumors, similar to that observed in obese mice [98,99].
ammary glands of formerly obese mice retained epigenetic changes
served in obese mice, resulting in persistent expression of
flammatory cytokines associated with obesity [98]. These results
ggest that the changes in the microenvironment in response to
eight loss may be time dependent. Future research is necessary to
derstand how weight loss may impact the breast microenvironment
ring treatment as well as in long-term breast cancer risk.
Supplementary data to this article can be found online at https://
i.org/10.1016/j.neo.2018.09.004.
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