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Increasing awareness of chronic pain due to both injury and disease have encouraged
drug companies and pharmaceutical researchers alike to design and fabricate better,
more specific drugs for pain relief. However, overuse of clinically available pain
medication has caused a multitude of negative repercussions, including drug tolerance,
addiction, and other severe side effects, which can prolong suffering and reduce pain
mediation. Applications of nanotechnology to the field of drug delivery has sought
to enhance the treatment efficiency, lower side effects, and mitigate the formation of
tolerance. The use of nanomaterials has several advantages for chronic pain relief,
such as controlled release, prolonged circulation time, and limited side effects. With the
development of nanotechnology, strategies for chronic pain relief have also bourgeoned
utilizing a variety of nanomaterials and targeting surface modifications. In addition to
using these materials as carriers for drug delivery, nanomaterials can also be designed
to have inherent properties that relieve chronic pain. This minireview covers the current
status of designed nanomaterials for pain relief and provides a discussion of future
considerations for nanotechnology designed for relieving chronic pain.
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INTRODUCTION

Chronic pain is characterized by enhanced responses to different external stimuli, also known as
hyperalgesia, and is induced by inflammation following injury (Ji et al., 2014). When damage or
inflammation occurs, mediators such as prostaglandins, cytokines, chemokines, neuropeptides,
and nerve growth factor (NGF), are released (Zhang and An, 2007). These mediators maintain
pain signaling that starts in the periphery and results in both peripheral and central sensitization,
ultimately contributing to chronic pain. From the tremendous efforts of researchers in the fields
of neurology and signaling, we have a deeper understanding of the mechanisms that drive
pain. Additionally, chronic pain from a variety of sources, including injuries and disease, has
promoted the development of targeted therapies (Mantyh et al., 2002; Binder, 2007; Said, 2007;
Francis et al., 2008).

Current methods of pain relief and enhanced quality of life predominantly rely on surgery
(Ducic et al., 2008), medication (Volkow et al., 2018), physical therapy (Ambrose and Golightly,
2015), and psychological therapy (De Williams et al., 2012). The use of medications, including
opioid drugs (Sullivan and Howe, 2013; Ballantyne and Sullivan, 2015) and non-opioid drugs (Kaye
et al., 2018), has increased significantly over the last several decades. Extensive use of medication has
been associated with severe side effects, including drug addiction (Pohl and Smith, 2012), tolerance
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(Zhuo, 2016), abuse (Vowles et al., 2015; Volkow and McLellan,
2016), and even death. These significant drawbacks of clinically
available drugs have shifted the focus of drug development
on improving the targeting of drugs, reducing side effects,
and prolonging the release of the active compounds (Gao
and Ji, 2010). However, due to their rapid metabolism,
these current formulations are challenging to manufacture
reproducibly, and the required dosing can cause poorly tolerated
physical side effects.

The integration of pharmacological sciences with
nanotechnology has been a key step toward creating more
effective drugs for chronic pain with fewer negative implications
(Feynman, 1960). With the advent of nanotechnology, the
field of drug delivery has undergone extensive development
resulting in several nanomaterials being approved for clinical
use (Ventola, 2017). Compared with traditional formulations,
nanomaterials can be efficiently loaded with drugs (Farokhzad
and Langer, 2009), protect the stability of protein-based drugs
(Xu et al., 2019), sustain controlled release with prolonged
circulation time (Blanco et al., 2015), and are also designed
to be highly biocompatible (Nyström and Fadeel, 2012). In
the field of chronic pain relief, nanomaterials have been
developed explicitly for the targeted delivery and release
of pain medication. Inspired by the first Food and Drug
Administration (FDA)-approved nanodrug Doxil (Barenholz,
2012), nanotechnology is being applied to many biomedical
applications, but with a limited focus on chronic pain
relief. In this minireview, we cover the development of
medications for chronic pain relief that employ nanotechnology,
including targeted and non-targeted nanomaterials, and provide
perspective for future applications of nanotechnology in pain
relief (Figure 1).

FIGURE 1 | Current main strategies on chronic pain relief using
nanotechnology including the delivery of drugs using nanocarriers, active
targeting nanocarriers and ROS clearance via nanomaterials.

NON-TARGETED NANOMATERIALS FOR
PAIN RELIEF

Nanomaterials can be designated as organic, inorganic, and
metal-organic nanomaterials based on their components. All
three categories of nanomaterials have been used as controlled
release delivery systems to minimize side effects and promote
treatment efficacy for pain medication. Nanomaterials can be
used to encapsulate both free molecules and protein-based drugs
to increase blood circulation time with sustained, controlled
release, resulting in long-lasting pain relief with minimal side
effects. In this section, we will present the development of organic
and inorganic non-targeted nanomaterials, which have been
broadly applied to several pain relief drugs.

When introducing nanomaterials into a clinical application,
a major preliminary concern is the biocompatibility of the
proposed nanomaterial. Consequently, nanomaterials that have
already been approved by the FDA are generally the first to
be considered by researchers. FDA approved nanomaterials are
mainly organic in nature such as liposomes (Koudelka and
Turánek, 2012), PLGA (Makadia and Siegel, 2011), and other
carbon based polymer nanomaterials (Palazzolo et al., 2018).
Several inorganic nanomaterials have also been approved, but
remain in the minority (Urie et al., 2018).

Liposomes are especially attractive since they are derived from
cellular-like lipids, making them extremely biocompatible, and
are relatively well studied. A number of liposome formulations
have been the focus of emerging clinical trials. For example,
PEGylated-liposomes have been used to encapsulate and enhance
the accumulation of zoledronic acid (ZOL), an inhibitor of
the ras-dependent Erk-mediated pathway, for the treatment of
neuropathic pain (Caraglia et al., 2013). Caraglia et al. proved
that this liposomal based delivery system passed across the
blood brain barrier (BBB), promoting its ability to release
ZOL for efficient pain mitigation. Likewise, Smith et al. (2006)
encapsulated the drug hydromorphone using the liposomes and
tested its neuropathic pain relief ability in rats. As expected,
liposomal delivery enabled prolonged pain relief with only a
single injection.

Although liposomes have many advantages and benefit
from established synthesis procedures, the next generation
of nanomaterials is focused on a myriad of tunable features
including size, surface properties, responsiveness, controlled
circulation time, high loading efficiency, and the ability to
target specific tissues. Durán-Lobato et al. (2015) compared
PEG-modified lipid nanomaterials to chitosan-modified lipid
nanomaterials and PLGA nanomaterials for their ability
to deliver cannabinoids via oral administration. The three
biocompatible nanomaterials varied in their performance,
providing design criteria for the development of nanomaterials
for pain relief drug delivery.

The overproduction of reactive oxygen species (ROS) at
sites of inflammation can result in chronic pain; consequently,
nanomaterials that consume ROS are a promising avenue for
pain relief (Gwak et al., 2013). Along these lines, Liu et al. (2013)
employed fullerol nanomaterials, which are known to consume
ROS, to protect inflammatory sites and relieve the pain.
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Integrating an FDA-approved nanomaterial PLGA with
bupivacaine, Garcia et al. (2011) studied its drug release
mechanism and ability to relieve pain. Likewise, Shen et al. (2013)
synthesized a new combination of nanomaterial, naocurcumin,
composed of PLGA and curcumin to attenuate morphine
tolerance. Naocurcumin was orally administrated to mice
revealing excellent biocompatibility and ability to mitigate
tolerance to morphine. Apart from small molecule drug delivery,
biomedicine and nanotechnology have also been focused on
the delivery of biomolecules such as Ribonucleic Acid (RNA).
Based on the ability of p38 small interfering RNA (p38 siRNA)
to assuage neuropathic pain, Shin et al. (2018) used PLGA
nanomaterials to encapsulate the p38 siRNA enhancing its
stability and slow release for pain alleviation.

In addition to organic nanomaterials, inorganic nanomaterials
have also been designed and applied to address chronic
pain. Compared with their organic counterparts, inorganic
nanomaterials are generally more stable, ensuring prolonged
circulation, and can be designed to have more physicochemical
properties, such as controlled drug release via stimulation by
an external field. Recently, Song et al. (2015) published on a
graphene oxide (GO) based nano-system for neuropathic pain
relief. Specifically, these GO nanomaterials provided a large
surface area to load lidocaine and thalidomide, enhancing the
capacity of these drugs to relieve neuropathic pain. In a separate
study of inorganic nanomaterials, Wu et al. (2017) demonstrated
that ultra-small magnetic iron oxide particles exhibited dose-
dependent analgesic effects for the treatment of chronic pain.
Using hydroxyapatite nanomaterials, which are biocompatible
and have been approved for use in bone-related diseases, Gu
et al. (2012) encapsulated and efficiently delivered NR2B-siRNA
into mice via intrathecal injection. These nanoparticles exhibited
statistical levels of pain mitigation that motivate the future
development of materials for siRNA delivery.

TARGETED NANOMATERIALS FOR PAIN
RELIEF

Despite the advantages of using nanomaterials to encapsulate
drugs for the alleviation of chronic pain, their limited treatment
efficacy has drawn attention to the critical need to develop more
promising solutions. Since the causes of chronic pain are variable,
the requirements for drug type and dosing differ depending
on the treatment intervention. Enhancing the concentration of
the drug at the indented site of action is one way to increase
the efficacy of the treatment and minimize off target effects.
Modification of nanomaterials using targeting substances such
as peptides and antibodies can help achieve this site-specific
targeting. Additionally, the route of administration is a critical
consideration for the use of these targeted materials in their
corresponding chronic pain models. For example, exposed sites
of chronic pain on the skin can be topically treated using
a smear or spray, whereas an injection through the dorsal
root ganglion is more suitable for chronic spinal nerve pain.
Internal injury or disease may benefit from oral, intranasal,
intramuscular, or intravenous injections, depending on the

source and location of the pain. In the following section, we
will highlight research focused on targeted strategies to promote
efficient chronic pain treatment.

Surface modification of nanomaterials is a simple yet
effective way to enhance the location-specific absorption
of delivered drugs. For example, Hoekman et al. (2014)
synthesized opioid fentanyl-encapsulated liposomes with
integrin targeting motifs, revealing increased stability, enhanced
analgesic ability, and reduced plasma drug exposure after aerosol
administration. Likewise, Tosi et al. (2007) designed polyester-
based nanoparticles consisting of PLGA and glycosylated
heptapeptides for the delivery of the opioid agonist loperamide.
Excitingly, these nanoparticles not only crossed the BBB
via peptide targeting but also exhibited sustained release of
loperamide. Lalani et al. (2015) modified PLGA nanomaterials
with lactoferrin and transferrin as the ligands, ensuring brain
targeting for better pain relief. Additionally, Patel et al. (2012)
showed enhanced tizanidine HCl delivery to the brain using
surface-modified thiolated chitosan nanomaterials when they
were administered intranasally.

Pain evoked by cancer, as well as some cancer medications, has
drawn substantial attention from researchers studying pain relief.
To address cancer-induced bone pain, Gdowski et al. (2017)
modified PLGA with the bone microenvironment targeting
amino-bisphosphonate, to deliver cabazitaxel for efficient pain
relief in a bone metastatic prostate cancer model. To mimic
the endogenous response in inflammatory sites, Hua et al.
designed opioid loaded liposomes with the capacity to target
inflammatory environments and release the corresponding drugs
for simultaneous pain relief (Hua and Cabot, 2013). Important
research described by Ramírez-García et al. (2019) reveals
that their novel pH-responsive nanomaterials with the ability
to target neurokinin-1 receptors (NK1R) in the endosome
display excellent capacity for preventing chronic pain. The
accumulation of these pH-responsive nanomaterials in NK1R-
containing endosomes resulted in sustained chronic pain relief.
To date, targeted nanomaterial design is mostly focused on
modification with targeting ligands, but other strategies for active
targeting remain largely unexplored, which will be presented in
the perspective section.

DISCUSSION AND PERSPECTIVE

The urgent demand for chronic pain relief has highlighted the
need for advancements in nanotechnology and pharmaceutical
science, attracting attention from scientists in materials science,
biomaterials, and chemistry. After decades of progress, the use
of nanotechnology for chronic pain relief has been regarded
as promising, prompting several clinical trials. However, the
development of these smart nanomaterials is still in its
infancy, with many unexplored opportunities. This minireview
aims to highlight current difficulties in the pharmaceutical
field and the advantages of applying nanotechnology to
address these shortcomings. Herein, we have detailed some
representative examples of organic and inorganic nanomaterials
that facilitate controlled release, passive and active targeting,
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and the utilization of external energy fields. Based on these
previous studies, we would like to provide some perspective
thoughts on nanomaterial design for chronic pain relief
(Figure 2):

(1) Oral administration of drugs poses a series of biological
barriers requiring enhanced stability in the stomach,
followed by the ability to be absorbed and be effective.
Therefore, careful consideration of size, surface charge, and
whether to modify the targeted ligands are necessary when
designing a nanomaterial for this application. Moreover,
non-conventional nanomaterials such as exosomes, cell
membrane-derived vesicles (Van Dommelen et al., 2012)
which have the targeting ability could also be investigated
for oral drug delivery.

(2) Since each drug has its own kinetic profile, it is
necessary to design appropriate nanomaterials to achieve
a balance between drug release rate and drug action
time. Additionally, combining interfering RNA with
nanotechnology may prove to be an important strategy for
pain mitigation.

(3) To improve therapeutic effects while minimizing side
effects, a balance between the drug load and the release
rate needs to be achieved. Similarly, improving the
targeting efficiency of nanocarriers will reduce off-target
effects by minimizing exposure to non-targeted organs
during circulation.

(4) The phenomenon of protein coronas (Mahmoudi et al.,
2016) has been attributed to the low efficacy of targeted
nanomaterials, as serum proteins bind to the surface
resulting in masking of the targeting epitopes and rapid

clearance by phagocytic cells. Avoiding the formation of
protein coronas is a critical avenue of research for the
advancement of all nanomaterials for drug delivery. One
proven method to mitigate corona formation is to modify
the surface of nanomaterials with PEG.

(5) In pharmacology, the rapid development of multi-
target drugs (Malek et al., 2015) has greatly improved
the therapeutic outcome of chronic pain. Integrating
nanotechnology with these enhanced formulations could
allow for multi-drug co-delivery or their targeted release
multiple sites. These methods have the capability to
significantly reduce side effects, improve therapeutic
outcomes, and reduce drug tolerization.

(6) Although nanomaterials have experienced rapid
developmental growth over the past few decades, there
is an urgency to ensure the safety of these materials and
establish a unified evaluation standard.

(7) Although theranostic is a popular concept in the field
of cancer, treatments for chronic pain treatment lack
an intuitive imaging modality to monitor treatment
progression and directly visualize therapeutic effects.
Luminescent nanomaterials (Park et al., 2009) could
be introduced into the field to achieve the integration
of diagnosis and treatment, similar to their use in
cancer therapeutics.

(8) The energy-conversion properties of inorganic
nanomaterials can be employed to treat chronic pain,
such as generating electrical signals when stimulated
by light, (Tang et al., 2018) subsequently activating or
inhibiting ion channels from playing an analgesic role.
Additionally, magnetic nanomaterials (Zhang et al., 2016)

FIGURE 2 | Future outlooks that can be taken up by using nanotechnology for chronic pain relief.
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can also use external magnetic fields to achieve targeted
magnetic therapy.

(9) Microneedles (Kaushik et al., 2001) can be applied to the
field of analgesia, where nanomaterials are integrated into
the front end of the device to greatly reduce the pain caused
by injecting drugs to patients.

(10) Inhalation of apposite nanomaterials that encapsulate
drugs could be leveraged for chronic pain relief, especially
lung-related pain.

As a collaboration between many fields of study, we believe
that the application of nanotechnology to address chronic pain
has a bright future. We hope that this field will develop steadily,

with clinical relevance, to improve the quality of life for patients
with chronic pain.
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