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Reciprocal regulation of autism-
related genes MeCP2 and PTEN via 
microRNAs
Jing-Wen Lyu1, Bo Yuan2, Tian-Lin Cheng2, Zi-Long Qiu2 & Wen-Hao Zhou1,3

MeCP2 encodes a methyl-CpG-binding protein that plays a critical role in repressing gene expression, 
mutations of which lead to Rett syndrome and autism. PTEN is a critical tumor suppressor gene that 
is frequently mutated in human cancers and autism spectrum disorders. Various studies have shown 
that both MeCP2 and PTEN proteins play important roles in brain development. Here we find that 
MeCP2 and PTEN reciprocally regulate expression of each other via microRNAs. Knockdown of MeCP2 
leads to upregulation of microRNA-137, which in turn represses expression of PTEN, thus PTEN would 
be down-regulated when MeCP2 is knockdown. Furthermore, we find that deletion of PTEN leads 
to phosphorylation of Serine 133 of CREB, then increases the expression of microRNA-132. miR-132 
inhibits the expression of MeCP2 by targeting on the 3′UTR of MeCP2 mRNA. Our work shows that 
two critical disorders-related gene MeCP2 and PTEN reciprocally regulate expression of each other by 
distinct mechanisms, suggesting that rare mutations in various disorders may lead to dysregulation of 
other critical genes and yield unexpected consequences.

MeCP2 belongs to a family of methyl-CpG-binding proteins that regulate gene expression by DNA methylation 
via recruitment of histone deacetylases1,2. MeCP2 is indispensable for neural development, for example regulat-
ing expression of the brain-derived neurotrophic factor (BDNF) gene3. MeCP2 has demonstrated a key role in 
synaptic homeostatic plasticity4,5. The Mecp2-null mouse is a mouse model of Rett syndrome6, a severe form of 
autism-spectrum disorder7.

PTEN is a tumor suppressor gene that negatively regulates the phosphatidylinositol-3-kinase (PI3K)/AKT 
signaling pathway8, which in turn plays a critical role in regulating cell growth, survival, and proliferation. 
Abnormalities in PTEN lead to neurological and psychiatric disorders such as brain tumors, autism, macroceph-
aly, seizures, mental retardation, and schizophrenia9–11.

MicroRNAs (miRNAs) are 20–25-nucleotide-long, noncoding RNAs that modulate gene expression and 
development by post-transcriptionally targeting RNA-induced silencing complexes12. miRNAs have important 
regulatory functions in basic biological processes such as development, cellular differentiation, proliferation, 
apoptosis, and tumorigenesis12–14. The expression of miRNAs was shown to be altered in the brains of Mecp2-null 
mice15,16. Furthermore numerous miRNAs have been shown to regulate PTEN expression17–22.

In this study, Mecp2 knockdown repressed PTEN expression and increased AKT phosphorylation. 
Furthermore, the Mecp2-mediated effect on PTEN expression occurs via a mechanism involving miR-137. 
Interestingly, we also found that MeCP2 expression was down-regulated by PTEN short hairpin RNA. We further 
found that phosphorylation of Ser-133 of cyclic AMP-response-element-binding-protein (CREB), a substrate of 
PTEN phosphatase, increased after knocking down PTEN then led to down-regulation of MeCP2 targeted by 
miR-132. Our work revealed that the two critical genes, Mecp2 and Pten, regulate expression of each other by 
microRNA targeting and yield further molecular insights for disorders-related mechanisms.

Results
PTEN down-regulated by Mecp2 knockdown. To determine if MeCP2 may affect the expression of 
PTEN, we cultured primary neurons from the mouse brain, and transfected with lentivirus expressing green 
fluorescent protein (GFP) (control) or short hairpin MeCP2 (for Mecp2 knockdown). Surprisingly, we found that 

1Departments of Neonatology, Children’s Hospital of Fudan University, Shanghai 201102, China. 2Institute of 
Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. 
3Key Laboratory of Birth Defects, Children’s Hospital, Fudan University, Shanghai 201102, China. Correspondence 
and requests for materials should be addressed to W.-H.Z. (email: zwhchfu@126.com)

received: 11 October 2015

accepted: 31 December 2015

Published: 04 February 2016

OPEN

mailto:zwhchfu@126.com


www.nature.com/scientificreports/

2Scientific RepoRts | 6:20392 | DOI: 10.1038/srep20392

PTEN protein expression was significantly reduced after 5 days in neurons transfected with MeCP2 RNAi com-
pared with controls (Fig. 1A,B). Consistently, Pten mRNA expression was also reduced in neurons with MeCP2 
knockdown, as shown by quantitative real-time polymerase chain reaction (PCR) assays (Fig. 1C). To determine 
the effect of MeCP2 knockdown on the activation status of AKT, the well-known downstream of PTEN, we 
compared the phosphorylation level of AKT at Thr308 in primary cultured neurons transfected with lentivirus 
expressing GFP, PTEN RNAi (for PTEN knockdown), and MeCP2 RNAi. Remarkably, AKT phosphorylation 
was consistently up-regulated by PTEN and MeCP2 RNAi, compared with control cells (Fig. 1D). These results 
suggest that knockdown of MeCP2 photocopy the alternations in signaling pathway similar with knockdown of 
PTEN.

miR-137 is intermediate in MeCP2 regulation of PTEN. It is previous reported that MeCP2 represses 
miR-137 expression in neural stem cells15. Indeed, we found that miR-137 was up-regulated for over 2.1 fold 
in Mecp2-knockout mouse cortical neurons, as demonstrated by Solexa-based RNA sequencing (RNA-seq) 
(Fig. 2A). We also confirmed that pri-miR-137 levels were increased in primary cultured neurons transfected 
with lentivirus expressing GFP or MeCP2 RNAi compared with control neurons (Fig. 2B). To determine if miR-
137 regulated the expression of PTEN, we transduced primary cultured neurons with miR-137 mimic oligonu-
cleotides. Overexpression of miR-137 mimic reduced PTEN expression by about 56% (Figs 2C,D). These results 
suggest the existence of a regulatory cascade from MeCP2, miR-137, to PTEN (Fig. 2E).

Pten knockdown suppressed MeCP2 expression. Next in an experiment of knocking down PTEN with 
short hairpin RNA, we surprisingly found that reducing the expression of Pten resulted in a marked decrease in 
expression of MeCP2 (0.33 ±  0.03 vs. 1.00; P <  0.01) (Figs 1A and 3A,B). Similarly, Mecp2 mRNA expression was 
downregulated by PTEN RNAi (0.67 ±  0.02 vs. 1.00; P <  0.001) (Fig. 3A). We tested the regulatory effect of PTEN 
on the MeCP2-target genes Slc2a3, Klhl24, and Prkcb, which were decreased >  2-fold in Mecp2-knockdown 
cultured neurons, as demonstrated by RNA-seq (data not shown). Slc2a3, Klhl24, and Prkcb were significantly 
reduced by Pten knockdown, as confirmed by real-time PCR (Fig. 3C), suggesting that knockdown of MeCP2 and 
knockdown of PTEN may share common downstream targets.

PTEN regulated CREB phosphorylation and miR-132. As PTEN has been found to regulate the 
de-phosphorylation of CREB, which plays a critical role in regulating microRNA-13223. To investigate the molec-
ular mechanism by which PTEN regulates the expression of MeCP2, we examined CREB phosphorylation at 

Figure 1. MeCP2 deficiency down-regulates PTEN. (A) Primary cultured neurons were transduced with 
lentivirus expressing GFP (control) or MeCP2 RNAi (for Mecp2 knockdown). PTEN protein expression was 
down regulated in MeCP2-RNAi neurons. Glyceraldehyde phosphate dehydrogenase was used as a loading 
control. (B) MeCP2 and PTEN protein levels in (A) were quantified using Image J. (C) Mecp2 and Pten RNA 
levels were analyzed by qPCR. (D) AKT T308 phosphorylation status was increased by PTEN RNAi or MeCP2 
RNAi compared with controls.
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Ser133 in primary cultured neurons with or without PTEN upon KCl stimulation. As shown in Fig. 4A, PTEN 
deletion together with 50 mM KCl stimulation resulted in a significant increase in CREB phosphorylation. 
MeCP2 is reportedly regulated by the CREB-induced miRNA, miR-13224,25. To determine if the CREB-induced 
increase in miR-132 may result from reduced PTEN levels, we examined miR-132 levels in PTEN RNAi neurons 
stimulated with 10 mM KCl, compared with KCl-stimulated control neurons. miR-132 levels were 50% higher in 
PTEN RNAi compared with control neurons (2.95 ±  0.175 vs. 4.43 ±  0.34; P <  0.05) (Fig. 4B).

Finally, we transfected mouse primary cortical neurons with GFP and PTEN RNAi followed by depolariza-
tion with 10 mM KCl for 2 h. Mecp2 expression was dramatically suppressed by KCl-induced PTEN repression 
(Fig. 4C). Overall, these results indicate that PTEN knockdown suppresses expression of MeCP2 and its target 
genes in neurons.

Taken together, we therefore proposed that PTEN dephosphorylated CREB at Ser133 and repressed miR-132, 
resulting in the reciprocal regulation of MeCP2. Thus, knockdown PTEN leads to increased phosphorylation level 
of CREB Ser-133 site, which in turn promotes expression of miR-132 and then decreases expression of MeCP2 
(Fig. 4D).

Discussion
Emerging evidence implicates PTEN and MeCP2 as critical regulatory factors in various aspects of the central 
nervous system. However, the interrelationship between the two genes has proved elusive. Our results suggest 
that two specific miRNAs act as intermediates in the reciprocal regulation of PTEN and MeCP2. We showed that 

Figure 2. MeCP2 regulates PTEN expression via miR-137. (A) Deep-sequencing data showed a >  2.5-fold 
increase in miR-132 expression in MeCP2 KO mice. (B) miR-137 expression was upregulated >  2-fold in 
MeCP2 RNAi neurons. (C) PTEN protein expression was down-regulated in neurons transduced with miR-
137 mimic. (D) PTEN protein levels in (C) were quantified using Image J. (E) Signaling pathway for MeCP2 
regulating PTEN expression in neurons.
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inhibition of MeCP2 affected the overexpression of miR-137 and decreased PTEN expression, while overexpres-
sion of miR-137 could also inhibit the expression of PTEN, suggesting that miR-137 is critical to the regulation 
of PTEN by MeCP2. We also demonstrated that PTEN regulated MeCP2 via the transcription factor CREB, and 
another specific miRNA, miR-132. Previous studies found that CREB acted as a protein substrate of PTEN phos-
phatase in the nucleus23, and miR-132 inhibitors largely blocked the effects of CREB on dendrite maturation24. 
MeCP2 translation has also been reportedly regulated by miR-132, and blocking miR-132-mediated repression 
increased MeCP2 levels in cultured neurons, and loss of MeCP2 reduced miR-132 levels in vivo25. Our results 
indicated that CREB may be phosphorylated by KCl-induced inhibition of PTEN. In addition, pri-miR-132 levels 
were increased by KCl stimulation in PTEN RNAi neurons. These results suggest that CREB and miR-132 may be 
involved in the regulation of MeCP2 by PTEN.

In conclusion, we demonstrated that MeCP2 regulates PTEN expression via the specific miRNA, miR-137. 
Conversely, PTEN can indirectly regulate MeCP2 via CREB and miR-132. Demonstration of this reciprocal reg-
ulation between PTEN and MeCP2 may provide the basis for more detailed studies of the mechanisms of these 
critical genes.

Methods
Primary neuron cultures and transduction, Mice. E15.5 mouse cortical neurons were cultured and 
transduced with Amaxa Nucleofector or transfected with lentiviruses (108-9 vg/ml) (packaged by Neuron Biotech, 
Shanghai). Cells were collected at 5 days. Experiments were performed for over three times. All experimental 
procedures were complied with the guidelines and under the approval of the Animal Care and Use Committee of 
the Shanghai Institute for Biological Science of the Chinese Academy of Sciences.

Plasmid construction. The RNAi targeting sequences were as follows: PTEN shRNA: 5′- AGA CAA GGC 
CAA CCG ATA C-3′ ; MeCP2 shRNA: 5′- AAG TCA GAA GAC CAG GAT C-3′ .

Western blotting. Protein samples were separated by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis and transferred to polyvinylidene fluoride membranes (Millipore, Billerica, MA, USA). Membranes 
were processed according to the ECL Western Blotting Protocol. α -MeCP2 (Cell Signaling Technology, 
Boston, MA, USA, 1:1000 dilution), α -PTEN (Cell Signaling Technology, 1:1000 dilution), α -CREB (Cell 
Signaling Technology, 1:1000 dilution), α -p-CREB (Cell Signaling Technology, 1:1000 dilution), and control 
α -glyceraldehyde phosphate dehydrogenase (Abcam, Cambridge, MA, USA, 1:5000 dilution) were used as pri-
mary antibodies. All Western blot quantifications were performed using Image J software.

Figure 3. MeCP2 is regulated by PTEN. (A) Protein levels of PTEN and MeCP2 were downregulated in 
cultured neurons infected with lentivirus harboring PTEN RNAi (for PTEN knockdown), as demonstrated 
by Western blotting. (B) MeCP2 and PTEN protein levels in (A) were quantified using Image J. (C) Relative 
quantities of Mecp2, Pten, Slc2a3, Klhl24, and Prkcb showed that PTEN downregulated MeCP2 target genes.
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Real-time PCR relative quantification. Total RNA from cultured neurons was extracted using TRIzol 
Reagent (Invitrogen, Carlsbad, CA, USA). Reverse transcription was carried out with Reverse Transcriptase 
M-MLV (RNase H-free) (Takara Bio, Otsu, Japan) and quantitative PCR was carried out using a Rotor-Gene Q 
(Qiagen, Valencia, CA). Primer sequences were as follows: Pten-forward: 5′-TGG ATT CGA CTT AGA CTT 
GAC CT-3′, Pten-reverse: 5′-TGG CGG TGT CAT AAT GTC TCT-3′, Mecp2-forward: 5′-ACA GCG CTC CAT 
TAT C-3′, Mecp2-reverse: 5′- CCC AGT TAC CGT GAA GTC AAA A-3′, Slc2a3-forward: 5′-ATG GGG ACA 
ACG AAG GTG AC-3′, Slc2a3-reverse: 5′- CAG GTG CAT TGA CTC CAG-3′, Klhl24-forward: 5′- GGA TCT 
TGG GGT GCG TGA TT-3′, Klhl24-reverse: 5′- GGA CAG CTC GAT GGC ATG G-3′, Prkcb-forward: 5′- ATG 
AGT TCG TCA CGT TCT CCT-3′, Prkcb-reverse: 5′- CCA TAC AGC GAT CCA CAG-3′, pri-miR-132-forward: 
5′-ACC GTG GCT TTC GAT TGT TA-3′, pri-miR-132-reverse: 5′-GGC GAC CAT GGC TGT AGA CT-3′, and 
pri-miR-137-forward: 5′-ACT CTC TTC GGT GAC GGG TA-3′, pri-miR-137-reverse: 5′-CGC TGG TAC TCT 
CCT CGA CT-3′.

Figure 4. PTEN regulates MeCP2 via CREB-mediated miR-132 expression. (A) Western blotting analysis 
of CREB phosphorylation in PTEN RNAi neurons with 50 mM KCl stimulation for 30 min. (B) miR-132 levels 
were increased in Pten-knockdown neurons stimulated with 10 mM KCl for 2 h, as shown by quantitative real-
time PCR analysis. (C) Mecp2 expression was significantly decreased in PTEN RNAi neurons with 10 mM KCl 
stimulation. (D) Signaling pathway for reciprocal regulation between MeCP2 and PTEN.
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RNA-seq Deep Sequencing. One P30 MeCP2 KO mouse and one P30 wide type mouse cortex RNA sam-
ples were harvested as described by Kwak et al. (2009) Both samples were subjectedto Solexa of BGI Shenzhen.

Statistical analysis. All results are expressed as mean ±  SEM and were analyzed using Stata v. 10 software 
(Stata Corporation, College Station, TX USA). Results were compared using two-sample t-tests with equal vari-
ance. A P value <  0.05 was considered statistically significant.
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