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Abstract

chronic kidney disease (CKD). Noting that existing treatments of
Objective: Renal fibrosis is the most common manifestation of
renal fibrosis only slow disease progression but do not cure it, there is an urgent need to identify novel therapies. Hydrogen sulfide
(H2S) is a newly discovered endogenous small gas signaling molecule exerting a wide range of biologic actions in our body. This
review illustrates recent experimental findings on the mechanisms underlying the therapeutic effects of H2S against renal fibrosis and
highlights its potential in future clinical application.
Data sources: Literature was collected from PubMed until February 2019, using the search terms including “Hydrogen sulfide,”
“Chronic kidney disease,” “Renal interstitial fibrosis,” “Kidney disease,” “Inflammation factor,” “Oxidative stress,” “Epithelial-
to-mesenchymal transition,” “H2S donor,” “Hypertensive kidney dysfunction,” “Myofibroblasts,” “Vascular remodeling,”
“transforming growth factor (TGF)-beta/Smads signaling,” and “Sulfate potassium channels.”
Study selection: Literature was mainly derived from English articles or articles that could be obtained with English abstracts. Article
type was not limited. References were also identified from the bibliographies of identified articles and the authors’ files.
Results: The experimental data confirmed that H2S is widely involved in various renal pathologies by suppressing inflammation and
oxidative stress, inhibiting the activation of fibrosis-related cells and their cytokine expression, ameliorating vascular remodeling
and high blood pressure, stimulating tubular cell regeneration, as well as reducing apoptosis, autophagy, and hypertrophy.
Therefore, H2S represents an alternative or additional therapeutic approach for renal fibrosis.
Conclusions:We postulate that H2S may delay the occurrence and progress of renal fibrosis, thus protecting renal function. Further
experiments are required to explore the precise role of H2S in renal fibrosis and its application in clinical treatment.
Keywords: Hydrogen sulfide; Renal interstitial fibrosis; Chronic kidney disease

Introduction fibrosis is not fully elucidated, and existing therapies only
slow disease progression but do not cure it. As fibrosis is a
The burden of chronic kidney disease (CKD) has been
recognized as a leading public health problem affecting
about 11% of world population.[1,2] Renal fibrosis is the
unavoidable consequence of CKD irrespective of the
primary underlying insult, which evokes severe clinical
problems.[3] It is a complex phenomenon governed by the
interplay between different cellular components and
intricate networks of signaling pathways, which together
lead to loss of renal functionality and replacement of
kidney parenchyma with scar tissue.[4] Thus, the effective
prevention and management of renal fibrosis are crucial to
CKD treatment. However, the pathogenesis of renal
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disorder associated with multiple pathways and signaling
components, there is an urgent need to identify novel
therapies to target additional disease mechanisms[5] and
using small molecules targeting multiple steps of the
fibrotic process may serve as a promising approach to treat
the disease.[6]

Description of Hydrogen Sulfide
Over the past decades, researchers have reported the
biologic significance and therapeutic potential of endoge-
nous gaseous signaling molecules collectively known as
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“gasotransmitters.”[5] Hydrogen sulfide (H2S), a member
of the gasotransmitter family, has recently been identified

supra-physiologic quantities of H2S spontaneously in
solution. However, NaHS has a half-life of only 15 min,

[17]
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and demonstrated to possess important therapeutic
characteristics that prevent the development and progres-
sion of renal fibrosis in experimental animals. By targeting
several important molecular pathways, H2S may represent
an alternative or additional therapeutic approach for
treating renal fibrosis.

H2S is known for its toxicity at high micromolar
concentrations. The mechanism of H2S toxicity has been
attributed to its inhibition of cytochrome c oxidase in a
similar manner to hydrogen cyanide,[7] breaking down the
respiratory and mitochondrial functions in mammals.[8]

However, it remains to be investigated whether other
unknown mechanisms and processes are related to the
toxicity of H2S in vivo.

H2S is highly lipophilic, allowing its rapid transfer through
cell membranes without using specific transporters. It
exerts a host of biologic effects on various targets as a
signaling molecule with physiologic relevance and thera-
peutic potentials.[5] Emerging evidence suggests that the
potential toxicity of H2S can be ameliorated by controlling
its concentration in vivo. Nevertheless, in some circum-
stances, the production of endogenous H2S is insufficient
to trigger the desired biologic effects.[9] Thus, efforts have
been made to identify suitable exogenous H2S donors.
There are both natural and synthetic sources of exogenous
H2S donors. Natural donors were noted in some
plants, like garlic and onions. Sodium hydrosulfide
(NaHS) was one of the first synthetic donors, generating
Figure 1: Schematic representation of the production of H2S from D- and L-cys. D-cysis metabo
presence of a-ketoglutarate (aKG). 3MP is metabolized by 3MP sulfurtransferase to H2S
aminotransferase; DAO: D-amino acid oxidase; 3MP: 3-mercaptopyruvate.
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limiting its potential as a therapeutic tool.[10] There
has been a surge in the research and development of
clinically viable H2S donors including allyl disulfide,
sodium polysulthionate (SG-1002, ClinicalTrials.gov iden-
tifier: NCT01989208), N-acetylcysteine, intravenous sodi-
um sulfide (IK-1001, ClinicalTrials.gov identifier:
NCT00879645), Zofenopril and ATB-346 (Clinical-
Trials.gov identifier: NCT03291418),[11,12] GYY4137,[13]

AP39 (a mitochondrially targeted donor of H2S),
[14] and

S-propargyl cysteine (also known as ZYZ-802).[15] A study
on a variety of H2S donor systems, including the H2S-
releasing trigger mechanism, H2S release profiles, byprod-
ucts, and potential therapeutic applications, may have the
potential of developing H2S-releasing therapeutics.[16]

Metabolism of H2S in Kidney
In the early 1980s, Stipanuk and Beck demonstrated the
existence of H2S in rat kidney. The kidney is one of the
major organs that regulate endogenous H2S levels.

[13] H2S
is mainly derived from L-cysteine (L-Cys) in mammals by
the enzymes cystathionine beta-synthase (CBS), cystathio-
nine gamma-lyase (CSE), 3-mecaptopyruvate sulfur trans-
ferase (3-MST), and cysteine aminotransferase.[18] It is also
produced endogenously in the cytoplasm and mitochon-
dria of mammalian cells from D-cysteine (D-Cys) by
the enzyme D-amino acid oxidase[19] [Figure 1]. These
H2S-producing enzymes are abundantly expressed in the
kidney.[20,21] While CBS is the predominant H2S-generat-
ing enzyme located in proximal renal tubules,[22,23] CSE
lized by DAO to an achiral 3MP, which is also produced by CBS, CSE, CAT from L-cys in the
. CBS: Cystathionine beta-synthase; CSE: Cystathionine gamma-lyase; CAT: Cysteine
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appears to be the main H2S-producing enzyme expressed
by endothelial cells, mesangial cells, and podocytes in

Hyperhomocysteinemia increases DNA methylation of
the CSE promoter, leading to the repression of CSE
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glomeruli, as well as in proximal tubular epithelium, and
vascular endothelium of arterioles and peritubular
capillaries.[23,24] However, it was also reported that none
of these enzymes (CBS, CSE, and 3-MST) are expressed
in glomeruli.[25,26] This discrepancy certainly warrants
further investigations. Laser-capturemicrodissection could
be used to overcome the limitation of immunohistochem-
istry, providing more reliable information on the expres-
sion of H2S-producing enzymes.[27]

Role of H2S in Renal Homeostasis
H2S plays an important role in renal homeostasis. It causes
vasodilation and increases renal blood flow (RBF) and the
glomerular filtration rate, reduces blood pressure, regulates
vascular tone in synergy with (nitric oxide) NO, increases
the excretion of Na+, K+ in the urine, and acts as an O2
sensor in the kidney, especially under hypoxic circum-
stance.[27] Besides, emerging evidence support the idea that
H2S has epigenetic effects by modulating DNA methyla-
tion,[28] histone deacetylase activity,[29] and microRNA
expression.[30] As neither NaHS administration nor inhibi-
tion of endogenous H2S influenced renin activity, H2S may
only modulate renal activity when RAS(rennin angiotensin
system) is overactivated.[31] However, the biologic mecha-
nisms of H2S signaling are not well understood.[32]

In CKD rat models, H2S is depleted by the down-regulation
of theH2S-producing enzymes CBS, CSE, and 3-MST in the
kidney.[33] In diabetic nephropathy, reactive oxygen species
(ROS)-mediated matrix metalloproteinase-9 (MMP-9)
activity regulates the expression of CBS and CSE.[34]
Figure 2: The mechanism of anti-fibrotic role of H2S in renal fibrosis.
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transcription and reduced H2S production.[35] Moreover,
the mechanism of H2S production involved an increase in
cGMP, and augmentation of inducible nitric oxide synthase
(iNOS) expression, which is also called nitric oxide-H2S
signaling in high glucose-stimulated podocytes.[36] There-
fore, H2S maintains a balance in the kidneys through a
variety of mechanisms.

H2S and Mechanisms of Renal Fibrosis and Regression
Fibrosis occurs in many tissues and organs with a similar
constellation of pathogenic processes. Major cellular
events in tubulointerstitial fibrosis include inflammation,
oxidative stress, fibroblast activation and expression of
fibrotic-related cytokines, vascular remodeling and high
blood pressure, tubular apoptosis, as well as autophagy.
Each of these pathologic features could contribute to the
progression of fibrosis in its own unique way, but together
they constitute a core set of fibrogenic events that result in
the ultimate destruction of renal parenchyma and loss of
kidney function.[37]

Targeting these mechanisms of tubulointerstitial fibrosis
might provide a useful way to delay renal fibrosis. As H2S
is widely produced in the kidneys, and has diverse and
widespread biologic functions [Figure 2], it may serve as a
useful therapeutic agent against renal fibrosis. And several
recent studies have demonstrated that, at low micromolar
concentrations, H2S exhibits important therapeutic char-
acteristics that target multiple molecular pathways,
thereby preventing the development and progression of
several pathologies of renal fibrosis.

http://www.cmj.org


H2S Exhibits Anti-Renal Fibrotic Effect by Inhibiting
Inflammation

major source for renal ROS,[50] which are important
mediators and modulators of specific intracellular signal
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Inflammation plays a key role in the initial stage of renal
fibrosis.[38] Tissue fibrosis typically occurs in uncontrolled
inflammation.[39] Renal fibrosis is always accompanied by
T lymphocytes, monocytes, macrophages, mast cells, and
dendritic cell infiltration when kidney damage begins. The
classic view is that inflammation and fibrosis interact in a
paracrine manner, whereby inflammatory cells secrete
profibrotic cytokines such as TGF-b1, monocyte chemo-
tactic protein 1 (MCP-1), and tissue inhibitor of metal-
loproteinase via the nuclear factor-kB pathway or other
pathways, which act on resident fibroblasts and tubular
cells to promote fibrogenesis.[37] H2S plays an anti-
inflammatory effect by inhibiting the activation of
inflammatory cells. In the unilateral ureteral occlusion
(UUO) model, small doses of H2S could suppress the renal
interstitial infiltration of CD68+ macrophages cells[23] and
drive macrophages toward the anti-inflammatory M2
phenotype.[40,41] However, Lin et al reported that H2S
only reduced neutrophil infiltration but did not suppress
macrophage infiltration.[41] The authors speculated that
the increase of CD68+ cells may reflect a surge of anti-
inflammatory M2 cells which contribute to kidney tissue
remodeling by enhancing tubular cell proliferation and
repair as well as inducing maladaptive repair of fibrosis.[42]

Hence, the role of H2S on macrophage polarization in
renal fibrosis requires further investigation. Furthermore,
H2S inhibits the activation of inflammatory molecules such
as intercellular adhesion molecule-1, vascular cell adhesion
molecule-1, MCP-1, tumor necrosis factor-a, interleukin-
1b, and macrophage inflammatory protein-2.[23,43]

Leukocyte adhesion to vascular endothelium can be
suppressed by H2S by inhibiting chemotaxis and infiltra-
tion of neutrophils and lymphocytes. H2S was also able to
mitigate renal injury in high fat diet-induced obese mice
through the reduction of kidney inflammation by down-
regulating the expression of nuclear factor-kappa B[44] and
in a streptozotocin (STZ)-induced diabetic rat model.[45] In
addition, in an angiotensin II (ANG II)-induced kidney
model, exogenous H2S (released by GYY4137) improved
inflammation by reversing the expression of miR-129
through an epigenetic mechanism.[46] These studies
indicate that the anti-fibrotic effects of H2S is closely
linked to the suppression of inflammation. Nonetheless,
how H2S attenuates inflammation mechanistically remains
to be elucidated.

H2S Attenuats Oxidative Stress in Renal Fibrosis
875
Oxidative stress is a serious imbalance between the
production of ROS (such as O2-, OH., H2O2), reactive
nitrogen species, and loss of the anti-oxidative enzyme
system.[47] It has an important pathogenic role in the
development of many diseases, including renal fibrosis.[48]

The imbalance of pro-oxidants or free radicals can oxidize
macromolecules such as proteins, lipids, and nucleic acids,
and alter redox-sensitive pathways resulting in subsequent
cell and tissue injuries. Dysregulation of anti-oxidant
mechanisms not only promotes a fibrotic milieu but also
leads to mitochondrial dysfunction and further exacer-
bates kidney injury.[49] NAD(P)H oxidase (NOX) is a
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transduction pathways by activating redox-sensitive
kinases. H2S ameliorates oxidative stress by inhibiting
mitochondrial ROS generation, acting as an oxygen sensor
that restores oxygen balance, and increasing medullary
flow in renal medulla.[51-53] H2S can also inhibit high
glucose-induced NOX4, the ROS sources, by activating
AMP-activated protein kinase (AMPK), and decrease
matrix protein accumulation by recruiting iNOS to
generate NO in renal epithelial cells.[54] In addition to
acting as a direct ROS scavenger, H2S increased the
expression/activity of anti-oxidative enzymes including
copper-zinc superoxide dismutase and manganese super-
oxide dismutase,[55] up-regulated antioxidant haemoxy-
genase-1, SIRT1,[9] and glutathione levels,[55,56] and
promoted the transcription of anti-oxidant genes via the
activation of Nrf2 anti-oxidant pathway.[45,57] These
observations suggest that the anti-oxidative role of H2S
is important for preventing renal fibrosis.

H2S Inhibits the Activation of Fibrosis-Related Cells and
Their Expression of Fibrotic Cytokines

Phenotypic transition to myofibroblasts are one of major
cellular events of renal fibrosis.[37] Most studies have
implicated epithelial cells, fibroblasts, pericytes, inflamma-
tory cells, and bone-marrow-derived “fibrocytes” as
probable myofibroblast precursors.[37,58-61] Fibroblast
activation and epithelial-to-mesenchymal transition
(EMT) are important steps in myofibroblast formation.
Fibroblasts and tubular epithelial cells can be activated by
growth factors such as TGF-b1, which are released from
infiltrating mononuclear cells and interstitial fibroblasts.
Activated TGF-b1 initiates its cellular actions across
multiple cell types by binding with the TGF-b type II
receptor, leading to gene expression, cytoskeleton reorga-
nization, and cellular transformation into myofibroblasts
in a Smad2/3-dependent manner.[62,63]Other non-Smad
pathways, such as various branches of MAP kinase
pathways, also contribute to myofibroblasts formation.[64]

Current anti-fibrotic strategies in renal fibrosis employ
pharmacologic therapies targeting the myofibroblasts. For
instance, inhibition of GLI1/GLI2, the transcriptional
effectors of the hedgehog (Hh) pathway which are
important for myofibroblast proliferation, could suppress
renal fibrosis.[65] Fluorofenidone [1-(3-fluorophenyl)-5-
methyl-2-(1H)-pyridone, AKF-PD] showed potent anti-
fibrotic properties by inhibiting myofibroblasts prolifera-
tion in renal disease.[66-68] Moreover, calcitriol could
effectively block myofibroblast activation from interstitial
fibroblasts, suggesting its potential in the treatment of renal
fibrosis.[69]

Because TGF-b1 is the most vital cytokine regulating
myofibroblasts, many studies are focused on the effects of
H2S on renal myofibroblast activation induced by TGF-b1.
H2S counteracted Ang II- and TGF-b1-induced EMT
through mechanisms involving direct inactivation of TGF-
b1.[70] Exogenous H2S also inhibited the activation of
myofibroblasts and extracellular matrix production par-
tially by attenuating the phosphorylation of Smad3 and
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inducing Smad7, which blocks TGF-b1-Smad signaling
through hindrance of TbRII.[10,23] Furthermore, Guo

fibrosis. Globally, CKD due to hypertension contributed to
23% of the overall increase in CKD disability-adjusted-
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et al[71] demonstrated that NaHS inhibits EMT by
reducing the expression of TGF-b receptor type I (TbR
I) and TbR II, attenuating TGF-b1-induced increase of
b-catenin expression and MAPK/ERK phosphorylation,
and inhibiting the TGF-b1-induced nuclear translocation
of b-catenin.[10,23]

Another effect of H2S on renal fibrosis is its inhibition of the
renin-angiotensin-aldosterone system (RAAS). The kidney
contains all components of the RAAS.[6] Angiotensin II is a
potent profibrotic factor that stimulates collagen synthesis
through the TGF-b1-dependent[72] and -independent[73]

signaling pathways. In renovascular hypertension animal
models,H2S could also lower the serum levels of angiotensin
II by down-regulating cellular cAMP production.[74] In
human endothelial cells, H2S inhibited the activity of
angiotensin-converting enzyme.[75] Moreover, endogenous
H2S suppressed the release of renin in As4.1 and renin-rich
renal cells.[76] MMPs represent another important group of
fibrosis-related cytokines. Although some MMPs sup-
pressed fibrosis through the degradation of ECM compo-
nents, MMP-2 and -9 were both associated with the
progression of renal fibrosis.[77] Noticeably, NaHS treat-
ment down-regulated the renal expression of MMP-2 and
MMP-9 in diabetic kidney disease rats.[78,79] While the
effects of H2S on other major signaling targets in renal
fibrosis, such as BMP7 (bone morphogenetic protein 7) and
connective tissue growth factor,[80] await further studies, the
abilities of H2S in blocking the activation of fibrosis-related
cells and the biologic effects of fibrotic cytokines highlight
its anti-fibrosis potential.

H2S Ameliorates Vascular Remodeling and High Blood
Pressure

Renal vascular remodeling could result in the pathologic
changes of peritubular capillaries, which may play a
critical role in providing oxygen and nutrition to tubules
and maintaining glomerular filtration rate. It was noted
that kidney failure was characterized by a progressive loss
of interstitial microvasculature, which correlated directly
with the development of renal fibrosis.[81] By activating
ATP-sensitive potassium channels, H2S produced by
vascular smooth muscle cells leads to the hyperpolariza-
tion of cytomembrane and relaxation of smooth muscle to
ensure the blood flow volume of kidney. It also serves as a
sensor monitoring the oxygen contents of the renal
medulla and regulating the blood flow in the renal
cortex.[82,83] Furthermore, H2S is a potent inhibitor of
phosphate-induced calcification and osteoblastic differen-
tiation of vascular smooth muscle cells (VSMC).[84] In
addition, H2S down-regulated the ERK/MAPK signal
pathway to inhibit the expression of proliferating cell
nuclear antigen,[85] which promotes cell proliferation and
vascular remodeling.[86] Therefore, to certain extent, the
supplementation of exogenous H2S can counter low
kidney irrigation and hyperplasia of smooth muscle cells.

Renal injury may be counteracted specifically by etiologic
treatments (such as blood pressure and blood glucose
control), which ameliorate architectural disruption and
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life-years.[87] Controlling blood pressure could be useful
for anti-fibrotic treatment, of which H2S is a newly
discovered regulator. De et al showed that endogenous
H2S is involved in the maintenance of basal blood pressure
and the progression of hypertension.[88] In renal tissues of
Dahl rats, H2S donor inhibited salt-sensitive hypertension,
reversed aortic structural remodeling, and inhibited RAS
activation.[89] Recent studies have further identified H2S as
the endothelium-derived hyperpolarizing factor that
directly induces vasorelaxation.[90,91] Blood pressure
lowering mechanisms of H2S involve the sulfhydration
of K-ATP channels on VSMCs,[92] up-regulation of cyclic
guanosine monophosphate (cGMP) by inhibition of cGMP
phosphodiesterases,[93,94] and activation of free vascular
endothelial growth factor[95] as well as calcium signal-
ing.[96] H2S could cause an increase of RBF, GFR, and
urinary excretion of Na+ and K+,[27] leading to reduced
blood pressure. In addition, H2S prevents the activation of
the BMP4/COX-2 pathway in hypertension, which may be
involved in its ameliorative effects on endothelial im-
pairment,[97] providing new target for prevention and
therapy of hypertension. Collectively, H2S protects renal
blood vessels by inhibiting vascular remodeling and
lowering blood pressure.

H2S Stimulates Tubular Cell Regeneration and Inhibits
Apoptosis, Autophagy, and Hypertrophy

Proximal tubule, a specialized epithelial segment vulnera-
ble to injury, plays a central role in the progression of renal
fibrosis.[98] Tubular cell apoptosis is a major pathway of
kidney fibrosis and mitochondrial damage.[99] Apoptosis
of tubule epithelial cells gives rise to a reduction of the
tubular compartment, the formation of atubular glomer-
uli,[100] and a scarring-like, fibrotic healing process of the
interstitial compartment.[101] In a renal ischemia/reperfu-
sion injury model, H2S has been shown to stimulate
tubular regeneration.[102,103] In UUO and re-implantation
models, H2S was found to induce tissue regeneration and
possess anti-apoptotic properties.[10] However, this anti-
apoptotic effects of H2S were not observed in another
study using the UUO models.[41] It is noteworthy that an
acute increase in renal tubular apoptosis following UUO
with a trending decline shortly thereafter, suggesting the
initiation of a more fibrotic phenotype.[104]

The role of H2S in proximal tubular autophagy and renal
injury is complex. Autophagy is a cellular process of
degradation of cytoplasmic contents, including protein
aggregates and dysfunctional organelles.[105] H2S is likely
protective early in injury though it may promote apoptosis
or cell degeneration if the injury is too severe.[98] The
profibrotic function of autophagy is related to the
regulation of tubular cell death, interstitial inflammation,
and the production of profibrotic factors.[106] In STZ-
induced diabetes mellitus kidney disease model and in the
5/6 nephrectomy animal model,[55] H2S improved renal
tissue fibrosis by inhibiting autophagy.[107] In rats,
exogenous H2S was shown to reduce renal ischemic renal
injury injury by up-regulating endoplasmic reticulum
stress-induced autophagy.[108] Furthermore, amelioration
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of high glucose-induced kidney injury by NaHS involves
AMPK stimulation and mTORC1 inhibition leading to

sodium sulfide (IK-1001) andN-acetylcysteine in impaired
renal function. However, the study of intravenous sodium
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reduced kidney epithelial cell hypertrophy and increased
matrix protein expression.[109] The distinct roles of H2S in
apoptosis vs. autophagy may account for the different
observations in various models and stages of the lesion.
Despite some discrepancies, most studies suggested a
protective role ofH2S in renal tubular cells for renal fibrosis.

Limitations
There are some limitations in previous research. First, H2S
measurement in some of these studies may be unreliable
and overestimated partly be due to lack of sensitive
measuring technique and its volatile nature.[5] Moreover,
in most studies, only CBS and/or CSE levels were
measured, and little is known about the role of 3-MST
in fibrosis-producing renal cells. And GYY4137, as a
donor of H2S, was considered exacerbate cisplatin-induced
nephrotoxicity in mice possibly through promoting
inflammation, oxidative stress, and apoptotic response,
which also need further discussion for application.[110]

There is also lacking of mechanistic studies of the
regulatory role of H2S in renal structure. Thus, additional
studies will be needed to decipher not only the mechanistic
actions of H2S in renal fibrosis, but also the therapeutic
application of H2S.

Future Perspectives and Clinical Application
1. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney
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Although many studies have focused on the role of H2S in
renal fibrosis, the role of H2S in the development of renal
fibrosis needs to be further studied with the in-depth
research on the pathogenesis of renal fibrosis. Take
mitochondrial biosynthesis as an example. Mitochondrial
biosynthesis plays an important role in the occurrence and
development of CKD.[111] Recent studies have shown that
the transcription factor activation protein PPARg-activat-
ed protein family (PGC) has an important role in
mitochondrial biosynthesis.[112,113] Thus, more studies
are needed to know whether H2S improve mitochondrial
function and inhibit renal interstitial fibrosis by regulating
the expression and biologic activity of the PGC protein
family.

Drugs that can be used to cure renal fibrosis are currently
unavailable.[114,115] Due to the many promising actions of
H2S against renal fibrosis, there has been a surge in the
research and development of clinically viable H2S donors.
Sulfide salts, such as NaHS, deliver H2S in supra-
physiologic amounts with potential off-target effects,
making it not a useful therapeutic tool.[10] In contrast,
GYY4137 is a water-soluble donor molecule that allows
for slow release of H2S, leading to a sustained elevation of
plasma H2S levels.

[83] However, the effects of GYY4137 is
not robust due to limited target specificity. It is found that
AP39, which is a mitochondria-targeted H2S donor, can
overcome this specificity issue.[14] Though still at the early
stages of development, other H2S-releasing drugs including
sodium polysulthionate (SG-1002), intravenous sodium
sulfide (IK-1001), Zofenopril, and ATB-346, also show
considerable promise. Currently, there are clinical trials
registered at clinicaltrials.gov on the effects of intravenous

2

sulfide (IK-1001) was terminated due to the inability of
developing a rapid and reliable assay to detect sulfide
concentrations. Furthermore, N-acetylcysteine was found
to have no short-term effect on creatinine levels and did not
decrease urine protein excretion within 48 h of treatment.
Further studies will be needed to develop better H2S
donors for H2S therapeutics. Attention should be paid to
the chemistry of H2S donors, particularly the identity and
release of reactive byproducts, and the physiologic actions
of H2S. Another area is to focus on the potential to
intervene fibrosis by targeting the pathway of endogenous
H2S-producing enzymes.[116]

Conclusions
As a newly discovered endogenous gas molecule beside
carbon monoxide and nitrogen oxide, H2S has been
proved to have many physiologic functions. In renal
fibrosis related research, we postulate that H2S may delay
the occurrence and progress of renal fibrosis, thus
protecting renal function. However, further experiments
are required to explore the precise role of H2S in renal
fibrosis, and its therapeutic potential in clinical treatment.
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