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Background: Alpha-klotho (α-KL) is not only related to the regulation of calcium-phosphorus metabolism, 
and fibrosis in chronic kidney disease (CKD), it is also involved in the regulation of many cognitive disorders. 
We conducted this study to investigate the effects of CKD on cognitive dysfunction and α-KL.
Methods: Doxorubicin was used to induce a CKD model, which was validated by weight, 24-hour urine 
protein quantification, serum creatinine (Cr), blood urea nitrogen (BUN), and kidney hematoxylin-eosin 
(HE) staining. The Morris water maze (MWM) paradigm was used to assess the effects of CKD on cognitive 
behavior. The expression of α-KL in the hippocampus was detected using real-time quantitative polymerase 
chain reaction, Western blot, and immunohistochemistry (IHC).
Results: (I) In the CKD group, the weight of the rats increased slowly (P<0.001), 24-hour urine protein 
increased (P<0.05), and Cr (P=0.026) and BUN levels (P=0.003) increased; (II) HE staining showed that 
in the CKD group there were changes in the structure, fibrosis, and inflammatory infiltration of the renal 
tissues, and changes in the structure, cell necrosis, and neuronal degeneration of the hippocampus; (III) in 
the MWM experiment, the escape latency of the CKD group was prolonged compared to that of the control 
group (P=0.043, 0.023), and the number of crossing the platform was reduced (P=0.003); (IV) in the CKD 
group, the expressions of α-KL messenger ribonucleic acid (P=0.0005) and α-KL protein (P=0.0005) in 
the hippocampus were downregulated. The IHC results showed that the expression of α-KL protein in the 
hippocampal region III cornus ammonis (CA3) of the CKD group region was also downregulated, and the 
α-KL-positive cells (P=0.019) and mean optical density (P=0.015) were decreased.
Conclusions: The expression of α-KL appears to effect the cognitive function of CKD rats; thus, it may 
be a valuable target in the treatment of CKD with cognitive impairment. 
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Introduction

Chronic kidney disease (CKD) refers to a class of disorders 
in which the kidneys are structurally damaged and 
dysfunctional for >3 months (1). The global prevalence 
rate of CKD is 14.3% (2). We found that CKD patients are 
difficult to manage, show poor compliance, and have low 
communication efficiency, which results in a poor treatment 
effect and poor prognosis in practical clinical work. The key 
to these problems may lie in the patients’ brain dysfunction. 
This type of cognitive impairment has the characteristics of 
occultity and a tendency to deteriorate, and its cause may be 
related to the genes, uremia toxins, blood vessels, and other 
factors in patients with CKD (3). Studying the mechanism 
of occurrence and the development of cognitive impairment 
caused by CKD can help solve the above-mentioned clinical 
problems.

Alpha-klotho (α-KL) is  a  type I  s ingle-passing 
transmembrane protein encoded by the klotho gene, which 
consists of a short cytoplasmic tail, a transmembrane 
domain, and two extracellular domains (Kl1 and Kl2), and 
is expressed primarily in the tubules, parathyroid glands, 
and choroid plexus (4,5). As a multifunctional pleiotropic 
protein, α-KL has the following 2 forms: secretory and 
membrane, and involves in a variety of biological and 
pathological functions in various organs and tissues. Kuro-o 
et al. observed that a defect in klotho gene expression in the 
mouse results in a syndrome that resembles human ageing, 
such as a short lifespan, infertility, arteriosclerosis, skin 
atrophy, cardiomyopathy, ectopic calcification, osteoporosis 
and emphysema (6). 

Previous studies have shown that α-KL is not only 
involved in the regulation of calcium and phosphorus 
metabolism and the inhibition of renal fibrosis in CKD (7,8), 
but as an in-vivo hormone, it also exerts anti-oxidative stress, 
anti-inflammatory, anti-apoptotic, and autophagy-regulating 
effects (9-12). Under normal renal physiological conditions, 
α-KL, fibroblast growth factor receptor-1 (FGFR1) and 
fibroblast growth factor-23 (FGF23) bind to form a trimeric 
complex, which drives FGF23 phosphorylation and thus 
reduces serum Pi by inhibiting 1,25-dihydroxyvitamin 
D and parathyroid hormone synthesis, intestinal Pi 
absorption, and Pi reabsorption (13,14). In addition, α-KL 
has a biological function that is not dependent on FGF23. 
In one study of diabetic nephropathy, α-KL successfully 
upregulated the expression of renal transient receptor 
potential vanilloid type 5, which plays an important role in 
regulating calcium-phosphate metabolism (15).

The serum and cerebrospinal fluid levels of α-KL are 
positively correlated with and predict scores on the Mini-
Mental State Examination and Clinical Dementia Rating, 
regardless of sex (16). Additionally, a study related to the 
most common neurodegenerative disease (i.e., Alzheimer’s 
disease) has shown that the disease leads to decreased 
α-KL expression in the brain, and the overexpression 
of α-KL improves cognitive function by inhibiting 
neuroinflammation, promoting amyloid β-protein (Aβ) 
clearance, and mitigating Tau pathology (17).

Such findings suggest that α-KL is involved in the 
regulatory mechanisms of neurological damage. However, 
previous research on α-KL in CKD has mainly focused 
on calcium/phosphorus regulation and renal fibrosis, and 
research on cognition has been limited. To the studies on 
CKD combined with cognitive dysfunction, only a small 
number of studies directly or indirectly involving α-KL, 
because it is involved in the regulation of phosphorus and 
parathyroid hormone (18-20). In this study, we sought to 
observe the changes of α-KL in CKD rats and analyze its 
relationship with cognitive function to provide a theoretical 
basis for the further exploration of the possible mechanism 
of α-KL in CKD, especially in the hippocampus. We 
present the following article in accordance with the 
ARRIVE reporting checklist (available at https://tau.
amegroups.com/article/view/10.21037/tau-22-465/rc).

Methods

Animal data and major reagents

We purchased 20, 10-week-old, male, Wistar rats from the 
Changsha Tianqin Biotechnology Company. The rats were 
maintained at a 12-hour light/dark cycle at 25 ℃ and about 
45% relative humidity with free access to food and water. 
After 1 week of feeding, the rats were randomly divided into 
the control and CKD groups (n=10). CKD was induced by 
tail vein injections of doxorubicin (HY-15142, MedChem 
Express). In brief, the tail vein was administered at a dose of 
4 mg/kg of doxorubicin on days 0 and 14 at the beginning 
of the experiment, respectively, and feeding then continued 
for 12 weeks; the control group was given an equal amount 
of saline. Animal experiments were performed under a 
project license (No. 2020060102) granted by the Ethics 
committee of Youjiang Medical University for Nationalities, 
in compliance with institutional guidelines for the care and 
use of animals. A protocol was prepared before the study 
without registration.

https://tau.amegroups.com/article/view/10.21037/tau-22-465/rc
https://tau.amegroups.com/article/view/10.21037/tau-22-465/rc
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The following reagents were used in this study: a rat anti-
Klotho [(PA5-88303), Thermo, Shanghai]; a rat anti-β-actin 
[(AF7018), Affinity, Shanghai]; urine protein test kit (C035-
2-1), a urea assay kit (C013-2-1), and a creatinine (Cr) assay 
kit (C011-2-1) (Nanjing Jiancheng Corp. Nanjing, China).

MWM

In animal experiments, the Morris water maze (MWM) test 
is a classic experiment that is used to evaluate experimental 
cognitive function. At the beginning of our experiment, 
the vision and swimming ability of the rats in each group 
was assessed by an initially visible platform test. The main 
experiments comprise a positioning navigation test and a 
space exploration test, which were performed to evaluate 
spatial learning and memory (21). In the positioning 
navigation test, the rats were trained for 4 consecutive days 
to find the target platform that was hidden 1 cm below the 
surface of the water in <90 seconds each time. In the space 
exploration test, the rats still searched for the platform 
that had been removed, and the relevant parameters were 
recorded within 90 seconds; for example, the frequency 
with which the rats crossed to the location of the original 
platform, the total distance covered, and the time of 
duration in the target quadrant were recorded using the 
DigBehv automated tracking system (Shanghai, China).

Indicators of kidney damage

Tests for indicators of kidney damage were mainly assessed 
by 24-hour urine protein quantification, Cr, and blood urea 
nitrogen (BUN). The assays were conducted in accordance 
with the corresponding kit instructions.

HE staining

Tissue sections of the kidney and hippocampus were stained 
with hematoxylin-eosin (HE) by an automated staining 
machine (Leica, Germany). Rat kidneys and brains were 
fixed with 10% (V/V) buffered formalin for 24 h, followed 

by dehydration, permeabilization, wax dipping by Leica 
ASP300S (a fully automatic closed tissue dewatering 
machine). Then, paraffin-embedded tissues were fixed and 
embedded in paraffin, and cutting into 3 μm sections. The 
HE staining was operated automatically by a Leica fully 
automatic dyeing machine. The specific procedures were 
as follows: (I) sections were dewaxed and rehydrated, then 
washed, (II) immersed into Harris Haematoxylin for 5 min 
then washed, (III) differentiated in 3% alcohol then washed, 
(IV) blued in Lithium carbonate for 30 sec, then washed, (V) 
immersed into eosin for 1 min, then washed, (VI) dehydrated 
in gradient alcohol and xylene, (VII) sealed. All slides were 
observed and photographed under the optical microscope.

Fluorescent RT-qPCR

The specimens were ground by liquid nitrogen, and 1 
mL of TRIzol was added to extract total ribonucleic acid 
(RNA). Next, 1 μg of the total RNA was taken and reverse 
transcribed into complementary deoxyribonucleic acid 
(cDNA). The target sequences were amplified, and the 
expression levels of the target gene α-KL and housekeeping 
gene β-actin were quantified using the Synergy Brands 
(SYBR) green chimeric fluorometric method. The primer 
sequences used are detailed in Table 1. The 2-ΔΔCt method 
was used to calculate the relative expression of the analyzed 
genes.

Western blotting

To extract the total protein, the harvested kidney 
and hippocampal  t i ssues  were lysed us ing Radio 
Immunoprecipitation Assay buffer (PC101, Epizyme 
Biomedical Technology Co., Ltd, Shanghai, China). The 
protein was then denatured after the protein concentration 
had been determined by BCA assay (BCA Protein Assay 
Kit; Beyotime Biotechnology Co. Ltd, China). Next, 30 μg 
of protein samples were transferred to the polyvinylidene 
dif luoride membrane by sodium dodecyl  sulfate-
polyacrylamide gel electrophoresis, and after blocking 

Table 1 Detection of the primers of the target genes by RT-qPCR

Gene name Forward primers (5'-3') Downstream primers (5'-3')

α-KL CGTGAATGAGGCTCTGAAAGC GAGCGGTCACTAAGCGAATACG

β-actin TATCGGACGCCTGGTTAC CTGTGCCGTTGAACTTGC

RT-qPCR, real-time quantitative polymerase chain reaction.
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at room temperature for 45 minutes with the blocking 
solution, the samples were incubated at 4 ℃ overnight with 
α-KL antibodies (1:400) and β-actin antibodies (1:1,000). 
The samples were then rinsed with tris-buffered saline 
and tween-20, and the secondary antibody (1:1,000) was 
incubated at room temperature for 1 hour, and finally the 
samples were then rinsed again. Immuno-blots were then 
incubated with ECL reagents and pictures were taken, and 
the relative expression of the target protein was analyzed 
by the Image-J Image Analysis System using β-actin as an 
internal reference.

IHC staining

Paraffin sections were dewaxed in water and placed in citric 
acid antigen repair buffer in a microwave oven for antigen 
repair, cooled and washed 3 times with phosphate buffered 
solution (PBS), and then placed in 3% hydrogen peroxide 
solution to block the endogenous peroxidase. Next, the 
tissues were blocked with 3%  bovine serum albumin (BSA) 
in PBS for 30 minutes at room temperature. Then, the 
α-KL primary antibody (1:100) was incubated overnight 
at 4 ℃. The next day, the tissues were incubated with 
goat anti-rabbit secondary antibodies (1:1,000) at room 
temperature, after rinsing three times. Finally, the sections 
were developed using diaminobenzidine working solution, 
and then counterstained with hematoxylin and sealed 
with neutral gum. Microscopic images were collected and 
analyzed by Image-Pro Plus 6.0.

Statistical analysis

The data were statistically analyzed using the SPSS 23.0 
software package. The measures with a normal distribution 
are expressed as the mean ± standard deviation (SD), and 
comparisons between the 2 groups were made using the 
2 independent samples t-test. The measures that did not 
conform to a normal distribution were expressed as the 
median (interquartile range), and comparisons between the 
2 groups were made using the Mann-Whitney U-test. A P 
value <0.05 was considered statistically significant.

Results

Doxorubicin-induced CKD model

The rats in the CKD group showed hunching, reduced 
eating, fur loss, reduced mobility, and periocular and scrotal 

edema after doxorubicin injection. The weight of the rats in 
the CKD group decreased significantly at the 6th, 10th, and 
14th week compared to that of the control group (P<0.001; 
see Figure 1A). Additionally, the 24-hour urine protein 
quantification at the end of the 2nd and 14th week (P=0.033, 
0.001; see Figure 1B), and the BUN (P=0.003; see Figure 1C), 
and Cr (P=0.026; see Figure 1D) levels were higher in the 
CKD group than the control group, and the differences were 
statistically significant. A total of 3 rats in the model group 
died during the period.

HE staining of kidney and hippocampal tissue

Under the optical microscope, the renal envelope in the 
control group was smooth, and the glomeruli and tubular 
structures were clear and intact (see Figure 2A-2C). 
Conversely, in the CKD group, the surface of the kidney 
was uneven, the number of tubular epithelial cells were 
significantly reduced, the lumen was widely dilated, a large 
number of protein tubular patterns was visible, and the 
tubules were necrotic and degenerative to different degrees. 
Additionally, some of the glomerular capillary collaterals 
were dilated, some of the glomeruli were atrophied, and a 
large amount of protein mucus was visible in the capsule 
lumen. Fibrous tissue proliferation and the focal infiltration 
of the inflammatory cells were clearly visible in the 
interstitium (see Figure 2D-2F).

The number of cells in the hippocampal tissue of the 
control group was not reduced, the pyramidal cells were 
arranged neatly and tightly, with a large number of layers 
(see Figure 2G), and neuronal degeneration and a small 
amount of cellular consolidation were occasionally seen in 
the region III cornus ammonis (CA3) of the hippocampus 
(see Figure 2H,2I). Conversely, in the hippocampal tissue 
of the rats with CKD, the number of cells was slightly 
reduced, the cone cells were loosely arranged, and irregular 
intercellular gaps, neuronal degeneration and cellular 
sequestration were observed (see Figure 2J), especially in 
the CA3 area, which was not only disorganized and loosely 
arranged, but also accompanied by neuronal degeneration 
and a large amount of nuclear sequestration and cytoplasmic 
vacuolization (see Figure 2K,2L).

MWM

In the initial visible platform test, the results of total swim 
distance and escape latency did not differ significantly 
between the 2 groups (P=0.522, 0.677), suggesting that 
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the visual acuity and swimming skills of the 2 groups were 
not statistically different and could be compared (see  
Figure 3A,3B). 

In the positioning navigation test, there was no statistical 
difference in the escape latency during the first 2 days of 
training; however, by the 3rd and 4th days of training, the 
escape latency of the CKD group was prolonged (day 3: 
P=0.043, day 4: P=0.023; see Figure 3C), indicating that the 
rats in the CKD group had impaired spatial memory for 
the target platform, which led to a prolongation in their 
search for the platform. Taking more time to find the target 
platform indicated impaired cognitive function in CKD rats.

In the space exploration test, compared to the control 
group, the number of stage crossings was reduced on both 
day 1 and day 2 in the CKD group rats (P=0.019, 0.001; 
see Figure 3D). Notably, on day 2, the CKD group rats 
exhibited a reduction in the total swim distance, the swim 

distance in target quadrant, the percentage of the swim 
distance in target quadrant, the time in target quadrant, 
and the percentage of the time in target quadrant (P=0.027, 
0.006, 0.007, 0.025, 0.025; see Figure 3E-3I), indicating that 
the rats in the CKD group had impaired spatial memory 
for the target quadrant and target platform, which reduced 
the distance and time they stayed in the target quadrant. 
Figure 4 shows the trajectory plots for day 1 and day 2 of 
the spatial exploration experiment results for both groups 
of rats. Together, these findings showed that the cognitive 
function of the rats in the CKD group was impaired.

Expression of α-KL in hippocampal tissue

The results of the western blotting analysis showed the 
bands of α-KL protein and β-actin (see Figure 5A), and the 
grayscale values of the strips were quantified (see Figure 5B).  
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The relative level of α-KL protein expression was 
significantly lower in the CKD group than the control 
group (P=0.0005). Similarly, the real-time quantitative 
polymerase chain reaction (RT-qPCR) results showed that 
hippocampal α-KL mRNA relative levels were significantly 

lower in the CKD group than the control group (P=0.0005; 
see Figure 5C).  The immunohistochemistry (IHC) 
results are shown in Figure 5D. Figure 5E,5F show the 
quantification of the IHC images, which showed a decrease 
in α-KL-positive cells (P=0.019) and mean optical density 
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(P=0.015) in the CA3 region of the hippocampus of the rats 
in the CKD group.

Discussion

Globally, the health burden of CKD is rapidly rising, and 
it has been proven to be an important independent risk 
factor for both cardiovascular disease and cerebrovascular  
disease (22). Doxorubicin can exert cytotoxic effects by 

embedding DNA and inhibiting topoisomerase II, but it 
cannot cross the blood-brain barrier (23). Doxorubicin-
induced nephrotoxic effects were found to be similar 
in humans and mice, with pathological manifestations 
characterized by inflammatory responses, apoptosis, and 
DNA damage (24). 

In this study, a CKD model was induced in rats by 2 
tail vein injections of doxorubicin. The 24-hour urine 
protein quantification started to increase after 2 weeks of 
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CKD rat hippocampal tissues; internal reference: β-actin, n=3. (D-F) The results of IHC staining against α-KL. (D) Representative IHC 
images. The expression of α-KL was significantly decreased in the CA3 region of the hippocampus of the CKD rats, which was quantified as 
positive cell count (E) and mean optical density (F); n=5, 7. *P<0.05, ***P<0.001. CKD, chronic kidney disease; IHC, immunohistochemistry; 
RT-qPCR, real-time quantitative polymerase chain reaction.
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doxorubicin injection and continued to increase for >3 
months, which indicated that the doxorubicin-injected 
rats had persistent renal injury with a chronic course 
of disease development. Additionally, the Cr and BUN 
levels were increased, and the kidney tissue structure was 
obviously disordered. Further, the HE staining revealed 
an inflammatory reaction and fibrosis. These results all 
suggested that the kidney damage was clear, and that the 
model had been successfully established. Approximately 
44% of patients with stage 3–4 CKD have combined 
cognitive dysfunction, and the severity of renal injury is 
independently and positively correlated with the severity 
of cognitive dysfunction, but the mechanism by which this 
occurs has not yet been fully elucidated (25). 

Klotho is an anti-aging gene. Mice in whom the gene 
has been knocked out exhibit aging phenotypes, such as 
a short life span, atherosclerosis, skin laxity, osteoporosis, 
and cognitive impairment (6). α-KL also performs multiple 
biological functions in CKD. First, as we mentioned above, 
α-KL protein plays an important role in calcium and 
phosphorus regulation in CKD because of its involvement 
in the parathyroid/renal/bone axis (25). Second, α-KL 
not only mediated the restoration of mitochondrial 
function by regulating Peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (PGC1α)/adenosine 
monophosphate-activated protein kinase (AMPK), but also 
inhibited the mTOR/transforming growth factor-β (TGF-β) 
pathway and phosphoinositide 3-kinase (PI3K)/protein 
kinase B (AKT)/forkhead box protein O1 (FoxO1) pathway, 
or activated the nuclear factor-erythroid 2-related factor 2 
(Nrf2) and heme oxygenase-1 (HO-1) expression to increase 
antioxidant enzyme activity, scavenge reactive oxygen 
species, and inhibit oxidative stress and apoptosis (26-29). 
In addition, α-KL can inhibit the inflammatory response in 
CKD, exert protective effects in the cardiovascular system, 
as well as regulate autophagy (12,30-32). However, its role 
in CKD combined with cognitive dysfunction is unclear.

The hippocampus is the main site of action for 
memory function. A previous study showed how the 
hippocampus contributes to memory and cognition from 
different perspectives (33). α-KL is normally expressed 
in hippocampal cells. Xiang et al. injected an adeno-
associated viral-mediated overexpression of klotho into 
the bilateral hippocampus of rats and found that the 
expression of the Nod-like receptor family pyrin domain 
containing 3, interleukin (IL)-1β and caspase-1 protein were 
significantly alleviated, but the activation of nuclear factor 
erythroid 2-related factor 2 was upregulated in the brains 

of the temporal lobe epilepsy model rats, which alleviated 
neuroinflammation, neuronal injury, and improved cognitive 
function (34). Additionally, α-KL was also found to have an 
inhibitory effect on ferroptosis in this rat model (35).

Further,  some researches have shown that  the 
overexpression of α-KL in the brain not only inhibits 
phosphorylation of protein kinase B (PKB or Akt) and 
forkhead box protein O1 (FoxO1), decreases oxidative 
stress, and reduces neuronal and synaptic damage, but also 
ameliorates neurobehavioral deficits in cerebrally under 
perfused mice, increases the number of live neurons in 
the region I cornus ammonis (CA1) and caudate shell 
nucleus regions of the hippocampus, and decreases nuclear 
translocation of nuclear factor kappa light chain enhancer of 
activated B cells and the production of the pro-inflammatory 
cytokines tumor necrosis factor alpha and IL-6 (36,37). 

Additionally, α-KL is directly involved in regulating adult 
hippocampal neurogenesis (38). In studies on Alzheimer’s 
disease, α-KL was found to be involved in the regulation 
of several mechanisms, such as microglia transformation, 
Aβ aggregation and transport, and the neuroinflammatory 
response (39-41). In this study, we found that the CKD rats 
had a longer latency period for finding the platform in the 
last 2 days of the positioning navigation test and a reduced 
number of platform crossings in the space exploration 
test in the MWM experiment, which suggests a decrease 
in their spatial memory ability. Further, α-KL mRNA, 
and α-KL protein were found to be more decreased in 
the hippocampal tissues of rats in the CKD group than 
the control group, which suggests that α-KL protein 
in hippocampal tissues is involved in the mechanism of 
combined cognitive impairment in CKD and leads to the 
downregulation of this gene expression.

The role of hippocampal area CA1 in cognition has 
been widely recognized. However, from the IHC staining 
of our hippocampal tissue, α-KL-positive cells in the CA1 
region of the hippocampus were barely visible in either the 
control or CKD groups. It may be that α-KL mainly acts 
in the hippocampus in the CA3 region, but not in the CA1 
region; however, this needs to be verified. In recent years, 
hippocampal area of CA3 has received much attention 
for its specific role in memory (42). The dysregulation of 
autophagy and apoptotic genes in the CA3 region of the 
hippocampus was shown to mediate cysteine-dependent 
neuronal death in a rat model of Alzheimer’s disease (43). 
We assessed α-KL expression in the hippocampal tissues 
of rats in each group by RT-qPCR, Western blot, and 
IHC staining, and the results all showed decreased α-KL 
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expression in the hippocampus of rats with CKD, especially 
in the CA3 region, which suggests that the cognitive 
dysfunction of rats with CKD may be related to the 
downregulation of α-KL in hippocampal CA3.

Our study confirmed that the combined cognitive 
dysfunction of rats with CKD was related to the lack of 
α-KL in the hippocampus; however, we did not change 
the expression of this gene through genetic technology to 
explore the mechanism, which will be one of the aims of 
our future research. We also hope to further explore the 
mechanism of how α-KL affects cognitive function in CKD 
through cell experiments and clinical studies.

In summary, α-KL is involved in the onset and 
development of cognitive function in CKD rats, and its 
mechanism may be related to the downregulation of α-KL 
expression in the hippocampus. We may have revealed a 
novel direction for preventing or alleviating CKD-related-
cognitive impairment by artificially increasing α-KL 
protein.
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