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The coronavirus disease 2019 (COVID-19) pandemic has led to tremendous loss of

human life and has severe social and economic impacts worldwide. The spread of the

disease has also caused dramatic uncertainty in financial markets, especially in the

early stages of the pandemic. In this paper, we adopt the stochastic actor-oriented

model (SAOM) to model dynamic/longitudinal financial networks with the covariates

constructed from the network statistics of COVID-19 dynamic pandemic networks.

Our findings provide evidence that the transmission risk of the COVID-19, measured

in the transformed pandemic risk scores, is a main explanatory factor of financial

network connectedness from March to May 2020. The pandemic statistics and trans-

formed pandemic risk scores can give early signs of the intense connectedness of the

financial markets in mid-March 2020. We can make use of the SAOM approach to

predict possible financial contagion using pandemic network statistics and trans-

formed pandemic risk scores of the COVID-19 and other pandemics.
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1 | INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has accounted for more than 150 million confirmed cases and more than 3 million deaths

worldwide as of 30 April 2021 (WHO, 2021). The vaccination rollout in various nations from early 2021 onwards has not substantially reduced

the number of confirmed cases, and current pandemic risk is still high according to the online dashboard at http://covid-19-dev.github.io/ based

on So, Chu, Tiwari, et al. (2021). The various hygiene, social distancing and lockdown measures employed to control COVID-19 have had a signifi-

cant impact on human mobility, social activities, learning mode in schools (Adnan & Anwar, 2020; Chu, Chan, et al., 2021), the world economy

(Ozili & Arun, 2020; McKee & Stuckler, 2020) and financial markets (Shehzad et al., 2020). The outbreak of COVID-19 has also resulted in extraor-

dinary uncertainty for investors and may lead to a substantial increase in financial market connectedness and systemic risk.

An important research question is how we can quantify pandemic risk and the impact of COVID-19 on financial markets statistically. A num-

ber of statistical and econometric studies have examined the latter; see, for example, Shehzad et al. (2020) for studying the effect of COVID-19

on financial markets using an asymmetric power GARCH model; Verma et al. (2021) for a statistical analysis of the impact of COVID-19 on the

global economy and stock index returns using panel regression analysis and Salisu & Vo (2020) for a study looking at the predictability of stock

returns using a measure of investors' awareness and emotions (called the health news index) as predictors in a time series model. Most existing

research focuses on univariate or low-dimensional settings. Network analysis (Newman, 2003) is a natural approach for integrating information

from multiple places or markets to assess pandemic or financial risks. So, Tiwari, et al. (2020); So, Chu, and Chan (2021) propose formulating

dynamic pandemic networks to visualize and assess their connectedness, from which we can generate early warning signals of COVID-19. So,

Chu, Tiwari, et al. (2021) use the topological properties of pandemic networks to construct pandemic risk measures and introduce the online dash-

board to update these indicators. Chu, Liu, et al. (2021) develop a pandemic space modelling approach to visualize current pandemic status
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through network modelling. These network analyses of COVID-19 have prompted us to model financial networks by incorporating pandemic risk

information in our modelling. So, Chu, and Chan (2021) present evidence of significant changes in financial market connectedness in the Hong

Kong stock market during the early stage of COVID-19. So, Chan, and Chu (2021) study the financial connectedness and systemic risk during the

COVID-19. In terms of social and financial anxiety, panic can spread faster than COVID-19, especially when people have little knowledge of

the pandemic (Depoux et al., 2020). It is thus particularly meaningful to examine how COVID-19 affects, and perhaps may explain, financial

market contagions.

From the findings in Shehzad et al. (2020), there is evidence that COVID-19 has a substantial impact on financial markets and the world econ-

omy. Big financial events and global public health disasters, like the COVID-19 pandemic, often trigger financial contagion and induce systemic

risk in financial markets (Haldane & May, 2011; Elliott et al., 2014; Guo et al., 2021). To understand and model the impact of the COVID-19 pan-

demic on financial markets, it is natural to incorporate information regarding the pandemic situation in financial modelling. In this paper, we

introduce the use of the pandemic network statistics in So, Chu, Tiwari, et al. (2021), who have showed that the pandemic network statistics pro-

vide early warning signals of the pandemic. Specifically, we adopt the stochastic actor-oriented model (SAOM) in Snijders (2002) to incorporate

the pandemic statistics in modelling financial network evolution.

The SAOM has been applied to various fields. Boda et al. (2020) investigate how assigning fresh undergraduate cohorts into small groups two

months prior to their first day at university could influence their friendship network. Cao et al. (2017) apply the SAOM to study the evolution of

the macro structure of project-based collaborative networks. The SAOM regards longitudinal data as snapshots of a continuous-time Markov

process, which can be represented by networks. The nodes in the networks are also known as actors. The connections among the actors are

represented by edges or ties (which can be directed or undirected). We model financial networks with undirected edges using the SAOM. The

actors in the SAOM are the composite market indices of major financial markets. Each composite index is associated with several pandemic

network statistics and a pandemic risk score of the region to which the composite index belongs. Related network analysis of financial markets

during COVID-19 can be found in the literature. Billio et al. (2021) apply a semiparametric matrix regression model to the spread of COVID-19 in

financial networks. Lai & Hu (2021) study the systemic risk of global stock markets under COVID-19 based on complex financial networks. The

main advantage of using the SAOM to model financial networks is that we can take their dynamic features into consideration while incorporating

information from the pandemic networks explicitly to model network evolution.

The paper is structured as follows. Section 2 sets out the detailed methodology, including details of the construction of the financial net-

works, the SAOM modelling framework and the pandemic related variables used as our predictors in the SAOM. In Section 3, we describe the

data analysis, visualization of the fitted model results and our main findings. Section 4 sets out our conclusions.

2 | METHODOLOGY

2.1 | Dynamic financial networks

A major objective of this paper is to model the impact of the COVID-19 pandemic on financial networks using the SAOM. In particular, we will

incorporate pandemic network information in the prediction of financial network evolution. Specifically, we adopt the statistics of the pandemic

networks as the characteristics of the financial markets in the SAOM framework, which is a useful way to predict the formation of connections

within financial networks. A network is formulated by nodes and connections which link the nodes together. We denote the set of vertices at time

t by V(t) and the set of edges at time t by E(t). We first illustrate how to construct a dynamic financial network, which is a time series of networks

GðtÞ¼ ðVðtÞ,EðtÞÞ constructed based on partial correlations.

Suppose that we have data from N + G market indices in T days. Let Pit be the adjusted closing price of the ith index in day t, i¼1,2,…,NþG,

where the first N indices represent the stocks or composite indices of the international financial markets. The remaining G indices are the

benchmark market indices used to represent the common market factors explaining the co-movement of the first N indices (So, Chan, &

Chu, 2020). The variables of interest are the continuously compounded returns, Rit ¼ logPit� logPiðt�1Þ, for t¼2,…,T. We denote the vector of

returns of the first N indices by RðSÞ
t ¼ R1t R2t … RNt½ �T , and the vector of returns of the last G benchmark market indices by RðMÞ

t ¼
RðNþ1Þt RðNþ2Þt … RðNþGÞt
� �T

: In this paper, the vector RðSÞ
t represents the vector of composite index returns of the international stock markets

and are the vertices of the dynamic financial networks being constructed. Calculating the correlation matrix of Rt :¼ ðRðSÞ
t Þ

T
ðRðMÞ

t Þ
T

h iT
, the covari-

ance matrix can be expressed into the blocked matrix

CovðRtÞ¼
CovðRðSÞ

t Þ ΣSM,t

ΣMS,t CovðRðMÞ
t Þ

" #
, where ΣSM,t ¼

σ1ðNþ1Þ,t σ1ðNþ2Þ,t … σ1ðNþGÞ,t

σ2ðNþ1Þ,t σ2ðNþ2Þ,t … σ2ðNþGÞ,t

..

. ..
. . .

. ..
.

σNðNþ1Þ,t σNðNþ2Þ,t … σNðNþGÞ,t

2
666664

3
777775,
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and σij,t ¼CovðRit,RjtÞ. From the above expression, we can obtain the partial covariance matrix of RðSÞ
t given RðMÞ

t as

ΣSjM,t ¼CovðRðSÞ
t jRðMÞ

t Þ¼ΣSS,t�ΣSM,tΣ�1
MMΣMS,t, where ΣSS,t ¼CovðRðSÞ

t Þ and ΣMM,t ¼CovðRðMÞ
t Þ. After standardizing ΣSjM, t, we obtain the desired

partial correlation matrix, ρSjM,t.

To model the impact of the COVID-19 pandemic on financial network connectedness, we first construct time-varying financial networks by

estimating the partial correlation matrix derived from ΣSjM, t. The partial correlation matrix of RðSÞ
t , given RðMÞ

t , can capture the dependence

between stock market index returns which cannot be explained by global market movement. The connectedness due to this type of

dependence can help us to assess the systemic risk which can be attributed to unusually severe stock market co-movement. Following Xu

et al. (2017) and So, Chu, and Chan (2021), we use a moving-window approach to estimate ΣSjM, t, the partial covariance matrix at time t. Effec-

tively, for a window of width w, we estimate the partial covariance matrix at time t for t=w,w+1,… , T by calculating the sample covariance

matrix, Σ̂SS,tðwÞ¼ 1
w�1

Pt
s¼t�wþ1ðR

ðSÞ
s � μ̂tðwÞÞðRðSÞ

s � μ̂tðwÞÞ
T
, where μ̂tðwÞ is the sample mean of RðSÞ

s , s= t�w+1,… , t. Similarly, we calculate the

sample estimates Σ̂MM,tðwÞ and Σ̂SM,tðwÞ based on the window of w observations RðSÞ
s and RðMÞ

s , respectively, for s= t�w+1,… , t. Then, the partial

covariance and the partial correlation matrix ρSjM,t can be estimated by Σ̂SjM,tðwÞ¼ Σ̂SS,tðwÞ� Σ̂SM,tðwÞΣ̂MMðwÞ�1Σ̂MS,tðwÞ and ρ̂SjM,tðwÞ¼
diagfΣ̂SjM,tðwÞg

�1
2Σ̂SjM,tðwÞdiagfΣ̂SjM,tðwÞg

�1
2: Having computed the correlation matrices, we can define the (i, j)th entry of At, the adjacency matrix

of G(t) (i.e., the financial network at time t) as

Aij,t ¼
1 if½ρ̂SjM,tðwÞ�ij > r,
0 otherwise;

(

where ½ρ̂SjM,tðwÞ�ij is the (i, j)th element of ρ̂SjM,tðwÞ and r is the threshold. We take r¼0:5 in this paper, and Aii, t≡0 for convention.

2.2 | Data source

To construct these dynamic financial networks, we collect from Bloomberg the adjusted closing prices (Pit, i¼1,…,N; t¼1,…,T) of N¼41 compos-

ite indices in 32 countries on T¼115 trading days from 19 December 2019 to 27 May 2020. The financial markets are relatively calm after

27 May compared to the period from March to May 2020, and thus, we do not include the subsequent data in this study. Note that G(t) is the

financial network and V(t) is the set of composite indices on day t, t¼1,2,…,T. The set V(t) generally varies over time. However, in this paper,

we fix it to be constant because we have the same set of financial indices over time. Then, we calculate their continuously compounded returns

(Rit, i¼1,…,N; t¼1,…,T). We use the MSCI World Index and MSCI Emerging Markets Index as the G¼2 benchmark indices to represent global

market factors in financial markets. The MSCI world index captures large and mid cap across 23 developed markets with 1,583 constituents

(MSCI Inc., 2021b), and the MSCI Emerging Markets Index captures large and mid cap across 27 emerging markets with 1,391 constituents

(MSCI Inc., 2021a). We believe that these two MSCI indices give good proxies to explain possible co-movement among composite indices due to

global market factors. Using a window width of w¼40 for the composite index and global amrket index data, we calculate the partial correlation

matrices Σ̂SjM,t for t=w,w+1,… , T, or from 12 February to 27 May 2020 (T�wþ1¼115�40þ1¼76 trading days). Then, we form the edge

set E(t) on each day t for the pairs with correlations on day t that are greater than the threshold r.

The financial networks on every Wednesday from 19 February to 27 May 2020 (a total of 15 snapshots) are selected as our observed

moments in the longitudinal analysis using the SAOM, and the data on or after 12 February 2020 are used as the lagged predictors in the model.

Choosing Wednesdays allows us to focus on weekly changes in the financial networks rather than being influenced by after-the-weekend or

weekend effects. Hence, we pick only the day in the middle of each week, that is, Wednesday, and use this to represent the network pattern in

the corresponding week.

Using the method in Section 2.1, we construct financial networks using data from 12 February to 27 May 2020 on 41 market indices.

Details of the markets including the countries and regions in which they are located are shown in Table 1. Figure 1a presents network dia-

grams on four selected days (for network illustration purposes), 4 March, 11 March, 15 April and 27 May 2020. Arcs indicate the connec-

tions between two financial market indices with the colours indicating the magnitudes of partial correlations. Note that the adjacency

matrices do not take the magnitude of the partial correlations into account. The coloured arcs are for showing supplementary information

on the strength of the partial correlations. It is not surprising to see that financial markets that are close to each other are highly con-

nected (Asgharian et al., 2013), especially during volatile periods (Solnik et al., 1996). On 4 March 2020, at an early stage of COVID-19, we

can see obvious connections in the financial network, and the network connectedness is quite high. Comparing the four selected days, the

financial network connectedness is the highest on 11 March 2020, when WHO declared COVID-19 as a global pandemic. It then drops in

April 2020 compared with March 2020 as shown in Figure 1a. On 15 April 2020, the financial network has sparse connections, which may

be due to the partial relief of the COVID-19 pandemic. On 27 May 2020, the network connectedness increases, which may be due to the

possible recurrence of the pandemic.
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2.3 | The SAOM: Network model construction and assumptions

In this section, we define the SAOM to model the evolution of the dynamic financial networks defined in the previous section. In particular, our

‘actors’ at the nodes in the SAOM are the international financial market indices. We investigate the impact of the COVID-19 on the time series

TABLE 1 A list of the 41 stock markets included in the study grouped by country and region

Region Country Short name Full name

America Brazil IBOV Bovespa Index

Canada SPTSX S&P/TSX Composite Index

Mexico MEXBOL S&P/BMV IPC Index

US CCMP NASDAQ Composite Index

US INDU Dow Jones Industrial Average Index

US RTY Russell 2000 Index

US SPX S&P 500 Index

US VIX CBOE Volatility Index

Asia Australia AS51 S&P/ASX 200 Index

India NIFTY NIFTY 50 Index

India SENSEX BSE Sensex 30 Index

Indonesia JCI Jakarta Stock Exchange Composite Index

Japan NKY Nikkei 225 Index

Korea KOSPI Korea Composite Stock Price Index

New Zealand NZDOW Dow Jones New Zealand Index

New Zealand NZSE50FG NZX 50 Index

Philippines PCOMP PSE Composite Index

Singapore STI FTSE Straits Times Singapore Index

Thailand SET SET Index

Vietnam HNX30 Hanoi Stock Exchange 30 Index

Eastern Pakistan KSE100 KSE 100 Index

Mediterranean Saudi Arabia SASEIDX Tadawul All Share Index

Europe Austria ATX Austrian Traded Index

Denmark OMXC25 OMX Copenhagen 25 Index

France BEL20 BEL 20 Index

France CAC CAC 40 Index

German DAX DAX Index

German SX5E EURO STOXX 50 Index

Hungry BUX Budapest SE Index

Israel TA-35 Tel Aviv 35 Index

Italy FTSEMIB FTSE Milano Indice di Borsa Index

Netherlands AEX Amsterdam Exchange Index

Poland WIG20 Warszawski Indeks Giełdowy 20 Index

Portugal PSI20 Portuguese Stock Index 20 Index

Russia IMOEX MOEX Russia Index

Russia RTSI Russia Trading System Index

Spain IBEX Índice Bursatil Español 35 Index

Sweden OMXS30B OMX Stockholm 30 Index

Switzerland SMI Swiss Market Index

Turkey XU100 Borsa Istanbul 100 Index

UK UKX Financial Times Stock Exchange 100 Index
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pattern of these financial networks by using the network statistics and the risk scores from the pandemic networks as covariate inputs to the

SAOM. We assign pandemic network statistics and risk scores to each financial market according to physical locations.

The SAOM is a class of network models which mimics network evolution as individual actors/nodes creating, maintaining or terminating ties/

edges to other actors, which can be characterized by covariates or behaviours. We adopt the non-directed network setting to model the financial

networks. Following Snijders (2017), we need to focus on the ‘opportunity’ and ‘decision rule’ about changing a tie/edge/connection, where the

formation of edges can be described in two microsteps. For simplicity, we select the one-sided initiative; that is, one actor or financial market is

selected and has a multinomial choice about changing one of the edges. The selected actor/node has the right to change an edge. We first state

some of the underlying model assumptions (following Snijders, 2017) before proceeding to describe the SAOM construction. In the SAOM setting,

we define a continuous time network characterized by the adjacency matrix at time t, At ¼ ½Aij,t�Nt

i,j¼1. The network is a continuous time stochastic

F IGURE 1 (a) Four selected snapshots of the financial networks on 4 March, 11 March, 14 April and 27 May 2020 with connections coloured
by partial correlations for illustrative purposes. (b–d) Time series plots of the edge density, global clustering coefficient and assortativity of the
pandemic networks from February to May 2020, coloured by four regions. (e) Heatmap of the transformed PRS for 32 countries in which stock
markets were located from February to May 2020
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process defined on the time domain T :¼ ½t0,tM� with the discrete states in the edges represented by At � f0,1gNt�Nt at each time t� T , where Nt

is the number of actors/nodes (financial market indices) in the network at time t. In our case, Nt ¼N since we have a constant number of financial

market indices in the network over time. At any given time point t� T , only one edge variable Aij, t can change. Assume that {At}, t� [t0, tM] is

a continuous time Markov chain, observed at t¼ t0,…,tM. The Markov property implies that At is conditionally independent of As and s< tm�1

given Atm�1 .

From now on, we use the terms actor and node interchangeably to represent financial market indices. The SAOM takes a micro-step mecha-

nism. At each time t, only one selected actor has the opportunity to make a change. The selected actor can decide whether to make a change in

his/her edges. The network change process can be decomposed into two sub-processes: the opportunity to change and the actor's decision. The

Markov assumption implies that the waiting time between consecutive changes for an actor is exponentially distributed. Let λi(x; ρm) be the rate

of change of the network at time point t with network x, that is, the mean parameter of the exponential distribution, where t� T m :¼ ½tm,tmþ1Þ
and ρm is a parameter. We set T m to be the mth period. In general, λi(x; ρm) takes the form (Snijders et al., 2007)

λiðx;ρmÞ¼ ρmexp
XK
k¼1

αkakiðxÞ
 !

,

where aki(x) denotes the kth statistics of actor i determining the characteristics of the ith actor in network x and αk is the coefficient indicating

dependence on the statistics aki(At), i¼1,2,…,Nt. In the first microstep, actor i in network x is selected to have an opportunity to make changes in

his/her edge with the probability (Snijders, 2017)

Pðactor i is selectedÞ¼ λiðx;ρmÞ
λþðx;ρmÞ

,

where λþðx;ρmÞ¼
XNt

i¼1
λiðx;ρmÞ. In this paper, we take λiðx;ρmÞ¼ ρm, meaning that the transition rates of all actors are the same in the interval

[tm, tm+1) for m¼0,1,…,M�1. Then, the probability of actor i being selected at time t� [tm, tm+1) is

Pðactoriis selectedÞ¼ λiðx;ρmÞ
λþðx;ρmÞ

¼ ρmXNt

i¼1
ρm

¼ 1
Nt

;

that is, all actors have the same probability of being chosen. The change that takes place in the SAOM in a microstep is regarded as an actor's

choice and so the model is ‘actor-oriented’.
In the second microstep, the selected actor may create or drop one edge, or make no change. Let xð�ijÞ � f0,1gNt�Nt be the candidate network

which is identical to x except for the edge Aij, t. The decision of actor i to make a change from x to x(± ij ) is based on utility theories suggesting that

the action will be decided by maximizing the following utility function

Uiðxð�ijÞ,v;βÞ¼ fiðxð�ijÞ,v;βÞþεi,

where fiðxð�ijÞ,v;βÞ is an objective function capturing all related information from the current network and covariates v and εi is a random

component. A common assumption in utility theories is to set εj �Gumbelð0,1Þ, i.e., the pdf of εj is e�ðεjþe�εj Þ, to be identical and independent

for j¼1,2,…,Nt. Then, it can be shown that Uiðxð�ijÞ,v;βÞ is maximized with the transition probability to change from x to x(± ij) given by

(Snijders, 2017)

pij ¼
expðfiðxð�ijÞ,v;βÞÞPNt
h¼1expðfiðxð�ihÞ,v;βÞÞ

, ð1Þ

where x(± ii) = x when there is no change being made. In the SAOM adopted in this paper, fiðxð�ijÞ;βÞ takes a linear form

fiðxð�ijÞ,v;βÞ¼
XK
k¼1

βkskiðxð�ijÞ,vÞ,

where ski(x
(± ij ), v)'s are the K effects of the networks, which depend on the candidate network x(± ij ) and the covariates v only,1and β�ℝK is a vec-

tor of parameters. We specify below various choices for the effects based on the data.

1In general, the effects could be dependent on the current network x.
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2.4 | Network effects

To estimate the unknown parameters in the SAOM, we apply SIENA (Simulation Investigation of Empirical Network Analysis) using R for our

financial network modelling. More details of SIENA can be found in Ripley et al. (2021) and Snijders (2019). To study the temporal properties of

the dynamic financial networks, we consider two different kinds of effects ski(x
(± ij ), v). The following effects depend only on the network configu-

rations, which are (1) density effect (degree in RSiena, the SIENA in R), defined as s1iðAt,vÞ¼Aiþ,t, where Aiþ,t ¼
P

jAij,t; (2) transitive triads

effect (transTriads in RSiena), defined as s2iðAt,vÞ¼
P

k < hAik,tAkh,tAhi,t; (3) out-isolation (outIsoin RSiena), defined as

s3iðAt,vÞ¼ IfAiþ,t ¼0g, and (4) out degree related activity effect (outAct in RSiena), defined as s4iðAt,vÞ¼A2
iþ,t. To understand the implications

of these effects, we can re-write (1) by dividing both the numerator and the denominator by expðfiðx,v;βÞ:

pij ¼
expffiðxð�ijÞ,v;βÞ� fiðx,v;βÞgXNt

h¼1
expffiðxð�ihÞ,v;βÞ� fiðx,v;βÞg

¼
exp

XK

k¼1
βkðskiðxð�ijÞÞ� skiðxÞÞ

n o
XNt

h¼1
exp

XK

k¼1
βkðskiðxð�ihÞÞ� skiðxÞÞ

n o :

In particular, if i = j, it corresponds to the case that no action has been taken, and pii ¼
PNt

h¼1expf
PK

k¼1βkðskiðxð�ihÞÞ� skiðxÞÞg
h i�1

: Hence, the

probability that the network x changes to the network x(± ij) depends only on the difference in the effects evaluated at x and x(± ij). Inputting x¼At,

let Að�ijÞ
t be the network identical to At except Aij, t. For notation simplicity, we write ski(At) for ski(At, v). A useful measure to compare the two net-

works At and Að�ijÞ
t is the log-odds defined by

LOðAt,A
ð�ijÞ
t Þ¼ log

pij
pii

� �
¼
XK
k¼1

βkðskiðA
ð�ijÞ
t Þ� skiðAtÞÞ,

implying that the difference, Δski ¼ skiðAð�ijÞ
t Þ� skiðAtÞ, contributes linearly to the log-odds ratio. We now examine how the four Δski,

k = 1, …, 4, affect the log-odds ratio.

(1) The term in LOðAt,A
ð�ijÞ
t Þ relating to the difference in the density is β1Δs1i, where Δs1i ¼Að�ijÞ

iþ,t �Aiþ,t. If β1 > 0, then creating an additional link

in the graph Að�ijÞ
t increases the log-odds, while deleting a link decreases it. The effect of Δs1i is similar to the effect of a categorical variable in

linear regressions.

(2) The term in LOðAt,A
ð�ijÞ
t Þ relating to the difference in the transitive triads is β2Δs2i, where Δs2i is the number of additional closed triplets cre-

ated in Að�ijÞ
t . If β2 > 0, creating a link that forms additional triangles in the graph Að�ijÞ

t increases the log-odds and encourages the small-world

property.

(3) The term in LOðAt,A
ð�ijÞ
t Þ relating to the difference in the out-isolation is β3Δs3i, where Δs3i ¼ IfAð�ijÞ

iþ,t ¼0g� IfAiþ,t ¼0g, the number of addi-

tional isolated nodes when the graph is changed from At to Að�ijÞ
t . This effect is included because we want to test whether isolated nodes have

different behavior than connected nodes on link formation.

(4) The term in LOðAt,A
ð�ijÞ
t Þ relating to the difference in the out degree related activity is β4Δs4i, where Δs4i ¼ðAð�ijÞ

iþ,t Þ
2
�A2

iþ,t: The purpose of

including this effect is to see if the degree of node i itself, Ai+ , t , affects the log-odds rather than their difference. To understand this effect,

consider the change from Aij,t ¼0 in At to Að�ijÞ
ij,t ¼1 in Að�ijÞ

t . Then, we have

Δs4i ¼ðAð�ijÞ
iþ,t Þ

2
�A2

iþ,t ¼ðAiþ,tþ1Þ2�A2
iþ,t ¼2Aiþ,tþ1:

Similarly if Aij,t ¼1 and Að�ijÞ
ij,t ¼0, then Δs4i ¼�2Aiþ,tþ1. This effect is a good proxy for including the degree of nodes in the log-odds.

2.5 | Using pandemic networks to define covariates

A main objective of this paper is to investigate the impact of the COVID-19 on financial network evolution. Specifically, we test whether the pan-

demic information set out in So, Chu, Tiwari, et al. (2021) is useful in explaining changes in the financial network dynamic under the SAOM. In So,

Chu, Tiwari, et al. (2021), the dynamic pandemic networks based on changes in the number of COVID-19 confirmed cases are constructed, from

which we can calculate the time series of network statistics (including network density, clustering coefficient and assortativity) and a pandemic

risk score called the preparedness risk score (PRS) and use these as covariates in the SAOM. The PRS accounts for the risk of asymptomatic or

presymptomatic transmission. We adopt it as a measure of the transmission risk, which potentially influences the financial networks.
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The following details for the construction of the pandemic networks and the pandemic network statistics can be found in So, Chu, Tiwari,

et al. (2021). Let Xi, t be the number of confirmed COVID-19 cases of country i in day t, i¼1,2,…,32 countries. We calculate the daily changes for

each country as Yi,t ¼
ffiffiffiffiffiffiffi
Xi,t

p
�

ffiffiffiffiffiffiffiffiffiffiffi
Xi,t�1

p
. The sample correlation between country i and country j's daily changes in day t, ρ̂ij,t, is calculated using

(Yi, t� k,Yj, t� k), for k¼0,…,13. We build the pandemic network at time t by defining Ap
ij,t, the (i, j)th element of the adjacency matrix (Ap

t ) of the pan-

demic network at time t:

Ap
ij,t ¼

1 ifρ̂ij,t > rp,

0 otherwise;

�
ð2Þ

where rp ¼0:5. Let Ept and Vp
t be the number of edges and the number of nodes (countries) in the pandemic network, respectively. The network

density of the pandemic network at time t is defined as

Dp
t ¼

2Ept
Vp
t ðV

p
t �1Þ ,

which measures how dense the pandemic network is at time t. The global clustering coefficient of the pandemic network is defined as

Cp
t ¼

XVt

i¼1

kit
2

� �
cit

XVt

i¼1

kit
2

� � ,

where kit is the number of neighbours (or degree) of node i, and cit ¼ðnumber of triangles formed by node iÞ= kit
2

� 	
. Cp

t measures how strong nodes,

or countries in the pandemic network, at time t are clustered together. The assortativity of the pandemic network at time t is defined as

ASpt ¼

XVp
t

i¼1

XVp
t

j¼1

kitkjt
Vp
t

IðAp
ij,t ¼1Þ�

XVp
t

i¼1

XVp
t

j¼1

ðkitþkjtÞ
2Vp

t

IðAp
ij,t ¼1Þ


 �2
XVp

t

i¼1

XVp
t

j¼1

ðk2itþk2jtÞ
2Vp

t

IðAp
ij,t ¼1Þ�

XVp
t

i¼1

XVp
t

j¼1

ðkitþkjtÞ
2Vp

t

IðAp
ij,t ¼1Þ


 �2 ,

which measures the correlation of the degree of the nodes in the pandemic networks. The PRS of country i at time t is defined as

St ¼ωT
t A

P
tωt,

where ωt is the vector of the population size of each country subtracted by the total number of confirmed cases in each country up to time t. The

PRS counts the total number of possible interactions of susceptible population contributed from all pairs of countries which are linked together at

time t.

As in the COVID-19 case reporting in WHO and So, Chu, Tiwari, et al. (2021), we classify financial markets according to their geographical

locations into four regions: Asia, America, Europe and Eastern Mediterranean. Based on this classification, we use pandemic network statistics in

the four regions to define the SAOM covariates for the financial networks. For example, we take pandemic network statistics in Europe as

covariates for the market index in the United Kingdom. The network statistics are helpful in accounting for the different stages of COVID-19

between regions, as shown in the time series plots in Figure 1b–d. For each network statistic, their lag-1 to lag-5 values are used as predictors in

the SAOM.

For the pandemic risk score, we can use the country-wise time-varying PRS in Figure 1 to form the SAOM covariates for the financial markets

by mapping financial market indices to their respective countries. For example, we use the PRS of the United States as a covariate for SP500. A

problem in using the PRS data is that the distribution of the PRS is highly right skewed and the magnitude of the scores is extremely small, which

leads to unstable estimation of the SAOM using RSiena. To address this, we define the transformed PRS as logð1þ109�PRSÞ, which has a more

symmetrical distribution and is of similar magnitude to the network statistics. Note that the PRS plotted in the heat maps shown in Figure 1e are

not standardized. For better convergence of the algorithm (Ripley et al., 2021), we standardize all covariates before inputting them into the

SAOM. Most of the covariates fall between �2 to 2 after standardization.

The fifth and sixth effects included in the SAOM are defined by vit, the covariates defined by pandemic network statistics and their lagged

values. The pandemic network statistics we consider are the network density, DP
t ; the global clustering coefficient, CP

t ; the assortativity, ASPt , and
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the PRS, St. These two effects are known as (5) covariate-ego (egoX in RSiena), defined as si5ðAtÞ¼ vitAiþ,t, and (6) covariate-ego � alter

(egoXaltX in RSiena), defined as si6ðAtÞ¼
P

kAik,tvitvkt, where vit is a covariate of market index i at time t. Similar to the first four effects, the

corresponding log-odds are given as follows:

(5) The term in LOðAt,A
ð�ijÞ
t Þ relating to the difference of covariate-ego is β5Δs5i, where Δs5i ¼ vitðAð�ijÞ

iþ,t �Aiþ,tÞ¼ vitðAð�ijÞ
ij,t �Aij,tÞ: (This is because

all the edges are the same in graph At and Að�ijÞ
t except for the edge between actor i and j.) In this case, the log-odds is proportional to the pan-

demic covariate vi, and thus, the SAOM can test whether pandemic network statistics and the PRS for COVID-19 have any effect on financial

network evolution.

(6) The term in LOðAt,A
ð�ijÞ
t Þ relating to the difference of covariate-ego � alter is β6Δs6i, where Δs6i ¼ vit

P
kvktðA

ð�ijÞ
ik,t �Aik,tÞ¼ vitvjtðAð�ijÞ

ij,t �Aij,tÞ:
In this case, the log-odds will be affected by the product of both covariates vit and vjt.

2.6 | Estimation

The detailed estimation procedure, which is based on the method of moments, was described in Amati et al. (2015) and Ripley et al. (2021). Briefly

speaking, moment equations are established based on the sufficient statistics of the transition rates and the parameters of the effects discussed

in Amati et al. (2015), with Robbins-Monro stochastic approximation being used to solve the system of moment equations. The RSiena package

in R provides necessary functions for the estimation.

3 | SAOM ANALYSIS OF FINANCIAL NETWORKS DURING THE COVID-19

3.1 | Pandemic data description

To further explore the detailed changes in the financial networks during the COVID-19, Figure 2 shows a summary. The networks were stable

from mid-February 2020 until 24 February 2020, when many connections were added. The growth trend reached its peak in mid-March 2020.

After that, a substantial number of old edges tended to be dropped in April 2020. The network evolution became active again in May 2020.

Following the rationale in So, Chu, and Chan (2021) which identified abnormal financial network connectedness during the COVID-19, we

plot the time series of pandemic network statistics in Figure 1b–d. We observe quite different network characteristics in the pandemic networks

in early March, April and May 2020. Similarly, the heatmap of the transformed PRS in Figure 1e also shows distinct patterns in early March, April

and May 2020. These changes in the pattern of the network statistics and the PRS may explain the different financial connectedness in Figure 1a.

For example, a higher PRS seems to be associated with higher financial network connectedness. Therefore, we adopt pandemic network

covariates in the SOAM, that is, vit as defined in Section 2.5, to investigate whether or not the severity of the pandemic (using statistics from the

pandemic networks, as well as the risk scores as proxies) can predict financial connectedness.

3.2 | Model fitting

The full SAOM considered in this paper contains 14 rate of change parameters and four network effects (density, transitive triads, out-isolation

and out degree related activity). To specify the two covariate effects, that is, covariate-ego and covariate-ego � alter as set out in Section 2.5, for

each of the four pandemic network statistics (network density, global clustering coefficient, assortativity and transformed PRS), we include their

five lagged values separately as vit to define multiple effects five and six. Thus, we have a total of 14 (for the rate parameters) + 4 (for effects one

to four) + 4 � 5 � 2 (for effects five and six) = 58 parameters in the full model. We then conduct variable elimination to remove insignificant

effects from the full model using F tests and eventually retain the 23 variables listed in Table 2. All 14 rate parameters are kept and restricted to

be positive in the estimation (Ripley et al., 2021). The out-isolation and out degree effects defined in Section 2.4 are removed, implying that the

isolation and the degree of nodes are not useful for predicting financial network connectedness and evolution. Seven pandemic covariates effects

are retained. These represent the lagged effects of pandemic network density, global clustering coefficient, assortativity and the transformed

PRS. From the seven significant pandemic covariate effects, we obtain strong statistical evidence that pandemic network properties and the

related pandemic risk scores can help explain financial network evolution during the COVID-19. The impact may not be spontaneous and may

take up to 5 days to become apparent. We will see how the propagation of pandemic risk can potentially lead to changes in financial market

connectedness.

In the SAOMmodelling, an essential objective is to investigate how pandemic networks possibly influence the formation of financial networks

over time. To examine this, we focus on the two effects in Section 2.5 in the log-odds:
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β5Δs5iþβ6Δs6i ¼ β5vitðA
ð�ijÞ
ij,t �Aij,tÞþβ6vitvjtðA

ð�ijÞ
ij,t �Aij,tÞ¼ ðβ5vitþβ6vitvjtÞðA

ð�ijÞ
ij,t �Aij,tÞ, ð3Þ

where β5 and β6 are unknown parameters corresponding to the covariate effects and vit is a pandemic network covariate of node i at time t in

Section 2.5. To visualize the effects efficiently, consider specifically the effect of adding one edge between node i and j in At to form Að�ijÞ
t , in this

case, Að�ijÞ
ij,t �Aij,t ¼1. Since we standardize all vi before inputting them to the SAOM for model fitting, the log-odds in (3) due to the pandemic

covariates vit and vjt can be written as a two-dimensional function of vit and vjt,

Fðvit ,vjtÞ¼ β5
vit� �v
σv

� �
þβ6

vit� �v
σv

� �
vjt� �v
σv

� �
, ð4Þ

where �v and σv are, respectively, the sample mean and standard deviation of the covariates vit. We call F(vit, vjt) in Equation 4 the composite

effect. Table 3 shows six heat maps of F(vit, vjt) to visualize the composite effect of different pandemic network covariates vit and vjt on the

evolution of the financial network. Note that we have seven significant effects in Table 2 but only six heat maps in Table 3 because we com-

bine the two lag-five global clustering coefficient effects together to form a composite effect. In the heat maps in Table 3, the x axis corre-

sponds to the covariate (we call it vit) of node i which is given an opportunity to make a change, and the y axis refers to the covariate (we call

it vjt) of node j that may be connected or disconnected by node i. From the covariates constructed from the pandemic network statistics, only

network density shows a significant effect at lag one. When both vit and vjt are large/small, the chance of network link formulation in the

financial networks tends to be higher. This observation is consistent with the result from Table 2 that the significant covariate-ego � alter

effects described in Section 2.5 are all positive. Similarly, in the global clustering coefficient of the pandemic networks, simultaneously large

or small vit and vjt may trigger financial network edge formation but the effect appears in lag-2. High lag-three pandemic network

assortativity also encourages financial link formulation. Regarding the effect of the PRS, it takes three to 4 days to show a significant impact

on financial network connectedness. Again, when the lag-3 PRS in node i and node j simultaneously increase or decrease, the financial net-

work will tend to be denser. In short, when pandemic network connectedness or the PRS (reflecting the pandemic severity) in the two loca-

tions corresponding to nodes i and jmove in the same direction in the past few days, the financial networks tend to be more connected

during the COVID-19. In terms of financial risk management, we can keep track of the pandemic severity at different locations to foresee

how the financial networks will evolve.

To study the actual longitudinal impact of the pandemic covariates on financial market connectedness, we calculate F(vit, vjt) for sig-

nificant effects vit and all possible pairs of i and j (there are N(N � 1)/2 pairs, N¼41 in our case), to obtain the distribution of F(vit, vjt) on

day t. Figure 3a–f presents these distributions using boxplots for all six covariates listed in Table 3 on each trading day. From Figure 3a–d, we

F IGURE 2 The number of network connections added or dropped compared to the previous trading day, from February to May 2020
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observe that the boxplots of the four network statistics in mid- to late-February 2020 are wider than that after March 2020, meaning that

they may have made a substantial contribution to the formation of financial network connections over that period in February. For exam-

ple, for vit (the network density) in panel (a), F(vit, vjt) is highly volatile in late-February and mid-March, with a strongly positive effect in

many of the pairs (i, j) in terms of edge formulation in the financial networks. Similarly, we also observe high variability in the clustering

coefficients and assortativity in panels (b) and (c) in late-February and early-March. On the other hand, from Figure 3e, F(vit, vjt)

corresponding to the transformed PRS are predominately positive and large in late-February and early-March and quite highly volatile

throughout the investigation period of February to May 2020. From the above findings, we can categorize the effect of the pandemic net-

work statistics and the pandemic risk scores as short- and long-term effects, respectively, because the network statistics only affect the

financial networks in the earlier stages but the transformed PRS affects them across all periods. In particular, the transmission risk of the

COVID-19, measured using the transformed PRS, is a main explanatory factor of financial network connectedness for the period March to

May 2020. More severe transmission risk may lead to further lockdown of businesses and cities which may harm the economy, thus affect-

ing the financial markets. We can keep track of lagged pandemic network statistics and transformed PRS to evaluate financial risk through

financial market connectedness.

We observe from Figure 3a–e that the implied F(vit, vjt) from the pandemic networks is volatile in mid-February 2020, whereas the financial

networks from Figure 2 are quite stable in mid-February 2020. The pandemic statistics and transformed PRS can give early signals of the intense

connectedness of the financial markets in March 2020. This is useful for financial management since we can use lagged pandemic network statis-

tics and transformed PRS to infer future financial connectedness and, thus, to monitor systemic risk in financial markets more effectively. Further-

more, we can use the SAOM approach to predict possible financial contagion using pandemic network statistics and transformed PRS of the

COVID-19 and other pandemics.

TABLE 2 Summary statistics of the final model

Effects Estimate Standard error t ratio p value

Rate of change of period 1 0.5750 0.1463 3.9305 1e-04*

Rate of change of period 2 3.8998 0.4783 8.1541 0*

Rate of change of period 3 2.7093 0.6367 4.2553 0*

Rate of change of period 4 16.0101 17.5514 0.9122 0.3617

Rate of change of period 5 1.1982 0.2649 4.5236 0*

Rate of change of period 6 0.3542 0.1183 2.9946 0.0027*

Rate of change of period 7 0.3620 0.1239 2.9216 0.0035*

Rate of change of period 8 0.1294 0.0688 1.8807 0.06*

Rate of change of period 9 0.0916 0.0574 1.5956 0.1106

Rate of change of period 10 0.3079 0.1132 2.7198 0.0065*

Rate of change of period 11 0.5344 0.1613 3.3127 9e-04*

Rate of change of period 12 2.6265 0.6447 4.0738 0*

Rate of change of period 13 7.5786 5.2842 1.4342 0.1515

Rate of change of period 14 1.0487 0.2751 3.8127 1e-04*

Financial network effects

Density �3.9538 0.2676 �14.7724 0*

Transitive triads 0.4880 0.0293 16.6524 0*

Pandemic covariates

Covariate-ego � alter of lag-3 transformed PRS 0.7757 0.1280 6.0592 0*

Covariate-ego of lag-4 transformed PRS 0.3920 0.1190 3.2949 0.001*

Covariate-ego � alter of lag-1 pandemic network density 0.3199 0.1136 2.8155 0.0049*

Covariate-ego � alter of lag-2 global clustering coefficient 0.4082 0.1068 3.8214 1e-04*

Covariate-ego of lag-5 global clustering coefficient �0.2900 0.0922 �3.1466 0.0017*

Covariate-ego � alter of lag-5 global clustering coefficient 0.1814 0.0552 3.2847 0.001*

Covariate-ego of lag-3 degree assortativity 0.4065 0.0819 4.9644 0*

∗Significant at the 0.1 level.
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TABLE 3 Two-dimensional plots of the composite effects F(vi, vj), where the subscript t is omitted for brevity

Covariate Lagged effect (I) Lagged effect (II)

Network density (a) lag 1: 0:3199ðvi� �vÞðvj� �vÞ=σ2v

Global clustering coefficient (b) lag 2: 0:4082ðvi� �vÞðvj� �vÞ=σ2v (c) lag 5: �0:2900ðvi� �vÞ=σv þ0:1814ðvi� �vÞðvj� �vÞ=σ2v

Assortativity (d) lag 3: 0:4065ðvi� �vÞ=σv

Transformed PRS (e) lag 3: 0:7757ðvi� �vÞðvj� �vÞ=σ2v (f ) lag 4: 0:3920ðvi� �vÞ=σv

Note: All heatmaps use the same colour scale.
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4 | CONCLUSIONS

Using the SAOM with longitudinal financial and pandemic datasets, we investigate how financial networks evolve by applying pandemic network

statistics and transformed PRS as predictors. The results provide evidence that financial markets where the pandemic statistics and prevalence of

the COVID-19 co-move in the same direction tend to be more connected. Moreover, pandemic network statistics contribute to financial network

connectedness in the short term in the early stages of the pandemic, while the long-term connectedness is driven by the pandemic risk. The

results also show that we can detect the early signs of financial contagion by observing the lagged pandemic networks. Future research on model-

ling longitudinal pandemic and financial networks simultaneously is worthy of study.
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