# nature aging



**Supplementary information** 

https://doi.org/10.1038/s43587-025-00835-z

# Plasma p-tau217 and tau-PET predict future cognitive decline among cognitively unimpaired individuals: implications for clinical trials

In the format provided by the authors and unedited

# SUPPLEMENTARY DATA CONTENT

| Table/Figure | Title                                                                           | Page  |
|--------------|---------------------------------------------------------------------------------|-------|
| Table 1      | Participant characteristics by cohort (all participants)                        | 2-10  |
| Table 2      | Performance indicators of models predicting mPACC5 decline                      | 11    |
| Table 3      | Comparison of different models predicting mPACC5 decline                        | 12    |
| Table 4      | Variance explained by different models predicting mPACC5 decline                | 13    |
| Table 5      | RMSE of different models predicting mPACC5 decline by cohort                    | 14    |
| Figure 1     | Simple and combined mPACC5 models by cohort                                     | 15    |
| Figure 2     | mPACC5 models with longer follow-up data                                        | 16    |
| Table 6      | Performance indicators mPACC5 in Aβ+ participants                               | 17    |
| Table 7      | Comparison of different models mPACC5 in Aβ+ participants                       | 18    |
| Table 8      | Variance explained mPACC5 in Aβ+ participants                                   | 19    |
| Table 9      | Performance of different models predicting MCI clinical progression             | 20    |
| Table 10     | Comparison (p-values) predicting MCI across all participants                    | 21    |
| Table 11     | C-index predicting MCI across all participants                                  | 22    |
| Figure 3     | Effect sizes combined plasma/PET models for predicting MCI by cohort            | 23    |
| Figure 4     | Associations between plasma/PET biomarkers and clinical progression to          | 24    |
|              | MCI in individuals with longer follow-up                                        |       |
| Table 12     | Performance of different models predicting clinical progression to MCI          | 25    |
|              | in Aβ+ participants                                                             |       |
| Table 13     | Comparison (p-values) of different models predicting clinical                   | 26    |
|              | progression to MCI in Aβ+ participants                                          |       |
| Figure 5     | Two-step approach for clinical trials using clinical progression to MCI         | 27    |
|              | using Tau-PET <sub>NEO</sub>                                                    |       |
| Figure 6     | A three-step screening with MCI progression as outcome measure                  | 28    |
| Figure 7     | Characterization of different plasma p-tau217/Tau-PET <sub>NEO</sub> groups     | 29    |
| Table 14     | Sample size reductions in a clinical trial following a two-step approach        | 30    |
| Table 15     | Combined plasma p-tau217 and Tau-PET <sub>MTL</sub> group characterizations: Aβ | 31    |
|              | status and clinical outcomes                                                    |       |
| Table 16     | Combined plasma p-tau217 and Tau-PET <sub>MTL</sub> group characterizations:    | 32    |
|              | Demographic information                                                         |       |
| Figure 8     | Relevant trial outcomes when using predefined cut-offs in BioFINDER-2           | 33    |
| Figure 9     | Projected costs that could be saved in a hypothetical trial with mPACC5         | 34    |
|              | as an endpoint                                                                  |       |
| Figure 10    | Projected costs that could be saved in a hypothetical trial with clinical       | 33    |
|              | progression to MCI as an endpoint                                               | 2125  |
| Table 17     | Cohort descriptions                                                             | 34-36 |
| Table 18     | Methods to determine Amyloid PET status by cohort                               | 37-38 |
| Table 19     | Methods to determine Tau PET status                                             | 39    |
| Table 20     | Composition of the mPACC5 for each cohort                                       | 41    |
|              | References                                                                      | 43-44 |

## Supplementary Table 1. Participant characteristics by cohort (all participants)

| ADC                              |                  |                       |  |  |  |
|----------------------------------|------------------|-----------------------|--|--|--|
|                                  | All participants | Aβ+ participants only |  |  |  |
| N                                | 44               | 17                    |  |  |  |
| Age, years                       | 65.0±7.5         | 66.4±6.3              |  |  |  |
| Sex, % female                    | 45.5%            | 47.1%                 |  |  |  |
| Education, years                 | 12.1±2.7         | 12.2±2.8              |  |  |  |
| MMSE score                       | 28.8±1.3         | 28.4±1.3              |  |  |  |
| APOE e4 status, % carriers       | 38.6%            | 64.7%                 |  |  |  |
| Aβ-status, % positive            | 38.6%            | 100%                  |  |  |  |
| Follow-up duration, years        | 4.6±1.8          | 3.8±1.6               |  |  |  |
| Follow-up visits, median (range) | 5 (2-8)          | 5 (3-7)               |  |  |  |
| Plasma p-tau217, z-score         | 0.62±1.4         | 1.59±1.28             |  |  |  |
| Tau-PET <sub>MTL</sub> , z-score | 0.71±1.75        | 1.84±2.10             |  |  |  |
| Tau-PET <sub>NEO</sub> , z-score | 0.81±2.50        | 2.10±3.51             |  |  |  |
| mPACC5, baseline score           | -0.19±0.74       | -0.50±0.61            |  |  |  |
| mPACC5, annual change            | -0.065±0.084     | -0.161±0.148          |  |  |  |
| % Progression to MCI             | 13.6%            | 35.3%                 |  |  |  |

| AIBL                             |                  |                       |  |  |  |
|----------------------------------|------------------|-----------------------|--|--|--|
|                                  | All participants | Aβ+ participants only |  |  |  |
| N                                | 180              | 34                    |  |  |  |
| Age, years                       | 74.7±5.3         | 77.5±6.4              |  |  |  |
| Sex, % female                    | 52.8%            | 58.8%                 |  |  |  |
| Education, years                 | 12.7±2.7         | 11.5±2.9              |  |  |  |
| MMSE score                       | 28.5 ±1.4        | 27.9±1.6              |  |  |  |
| APOE e4 status, % carriers       | 29.4%            | 58.8%                 |  |  |  |
| Aβ-status, % positive            | 18.9%            | 100%                  |  |  |  |
| Follow-up duration, years        | 3.2±0.8          | 2.9±0.9               |  |  |  |
| Follow-up visits, median (range) | 3 (2-4)          | 3 (2-4)               |  |  |  |
| Plasma p-tau217, z-score         | 0.21±0.99        | 0.95±0.88             |  |  |  |
| Tau-PET <sub>MTL</sub> , z-score | 0.28±1.17        | 1.57±1.30             |  |  |  |
| Tau-PET <sub>NEO</sub> , z-score | 0.27±1.43        | 1.27±2.36             |  |  |  |
| mPACC5, baseline score           | -0.02±0.71       | -0.27±0.80            |  |  |  |
| mPACC5, annual change            | -0.045±0.068     | -0.130±0.142          |  |  |  |
| % Progression to MCI             | 3.9%             | 8.8%                  |  |  |  |

| BioFINDER-1                      |                  |                       |  |  |
|----------------------------------|------------------|-----------------------|--|--|
|                                  | All participants | Aβ+ participants only |  |  |
| N                                | 40               | 12                    |  |  |
| Age, years                       | 73.5±7.0         | 74.2±5.9              |  |  |
| Sex, % female                    | 52.5%            | 58.3%                 |  |  |
| Education, years                 | 11.9±3.7         | 10.7±3.0              |  |  |
| MMSE score                       | 28.6±1.3         | 28.3±1.7              |  |  |
| APOE e4 status, % carriers       | 52.5%            | 75.0%                 |  |  |
| Aβ-status, % positive            | 30.0%            | 100%                  |  |  |
| Follow-up duration, years        | 3.4±0.75         | 3.3±0.9               |  |  |
| Follow-up visits, median (range) | 2 (2-5)          | 2 (2-5)               |  |  |
| Plasma p-tau217, z-score         | 0.13±1.23        | 0.53±1.70             |  |  |
| Tau-PET <sub>MTL</sub> , z-score | 0.36±1.69        | 1.40±2.48             |  |  |
| Tau-PET <sub>NEO</sub> , z-score | 0.41±1.91        | 1.45±2.99             |  |  |
| mPACC5, baseline score           | 0.04±0.74        | -0.22±0.87            |  |  |
| mPACC5, annual change            | -0.042±0.059     | -0.082±0.095          |  |  |
| % Progression to MCI             | 12.5%            | 41.7%                 |  |  |

| BioFINDER-2                      |                  |                       |  |  |
|----------------------------------|------------------|-----------------------|--|--|
|                                  | All participants | Aβ+ participants only |  |  |
| N                                | 481              | 137                   |  |  |
| Age, years                       | 65.0±11.4        | 70.1±9.1              |  |  |
| Sex, % female                    | 52.4%            | 49.6%                 |  |  |
| Education, years                 | 12.8±3.5         | 12.8±3.8              |  |  |
| MMSE score                       | 28.9±1.3         | 28.7±1.4              |  |  |
| APOE e4 status, % carriers       | 48.2%            | 71.5%                 |  |  |
| Aβ-status, % positive            | 28.5%            | 100%                  |  |  |
| Follow-up duration, years        | 3.0±1.1          | 3.0±1.2               |  |  |
| Follow-up visits, median (range) | 3 (2-6)          | 3 (2-6)               |  |  |
| Plasma p-tau217, z-score         | 0.48±1.36        | 1.78±1.23             |  |  |
| Tau-PET <sub>MTL</sub> , z-score | 0.26±1.58        | 1.53±2.05             |  |  |
| Tau-PET <sub>NEO</sub> , z-score | 0.13±1.66        | 0.99±2.52             |  |  |
| mPACC5, baseline score           | 0.17±0.78        | -0.11±0.81            |  |  |
| mPACC5, annual change            | -0.034±0.088     | -0.113±0.174          |  |  |
| % Progression to MCI             | 11.0%            | 26.3%                 |  |  |

| Knight ADRC                       |              |              |  |  |  |  |  |
|-----------------------------------|--------------|--------------|--|--|--|--|--|
| All participants Aβ+ participants |              |              |  |  |  |  |  |
| N                                 | 109          | 34           |  |  |  |  |  |
| Age, years                        | 70.2±6.4     | 70.6±6.3     |  |  |  |  |  |
| Sex, % female                     | 53.2%        | 61.8%        |  |  |  |  |  |
| Education, years                  | 16.3±2.3     | 16.6±2.3     |  |  |  |  |  |
| MMSE score                        | 29.3±1.1     | 29.4±1.1     |  |  |  |  |  |
| APOE e4 status, % carriers        | 29.4%        | 35.3%        |  |  |  |  |  |
| Aβ-status, % positive             | 31.2%        | 100%         |  |  |  |  |  |
| Follow-up duration, years         | 3.9±1.7      | 3.6±1.5      |  |  |  |  |  |
| Follow-up visits, median (range)  | 4 (2-8)      | 4 (2-8)      |  |  |  |  |  |
| Plasma p-tau217, z-score          | 0.71±1.79    | 2.10±2.23    |  |  |  |  |  |
| Tau-PET <sub>MTL</sub> , z-score  | 0.27±1.21    | 0.85±1.39    |  |  |  |  |  |
| Tau-PET <sub>NEO</sub> , z-score  | 0.31±1.53    | 0.94±2.17    |  |  |  |  |  |
| mPACC5, baseline score            | -0.08±0.68   | -0.13±0.76   |  |  |  |  |  |
| mPACC5, annual change             | -0.050±0.083 | -0.138±0.144 |  |  |  |  |  |
| % Progression to MCI              | 11.9%        | 20.6%        |  |  |  |  |  |

| MCSA                                 |              |              |  |  |  |  |  |
|--------------------------------------|--------------|--------------|--|--|--|--|--|
| All participants Aβ+ participants on |              |              |  |  |  |  |  |
| N                                    | 363          | 108          |  |  |  |  |  |
| Age, years                           | 68.3±12.0)   | 76.4±7.9     |  |  |  |  |  |
| Sex, % female                        | 45.7%        | 53.7%        |  |  |  |  |  |
| Education, years                     | 15.1±2.3     | 14.7±2.5     |  |  |  |  |  |
| MMSE score                           | 28.8±1.0     | 28.5±1.2     |  |  |  |  |  |
| APOE e4 status, % carriers           | 29.2%        | 47.2%        |  |  |  |  |  |
| Aβ-status, % positive                | 108 (29.8%)  | 100%         |  |  |  |  |  |
| Follow-up duration, years            | 5.6±2.1      | 4.9±2.2      |  |  |  |  |  |
| Follow-up visits, median (range)     | 5 (2-7)      | 5 (2-7)      |  |  |  |  |  |
| Plasma p-tau217, z-score             | 0.42±1.29    | 1.34±1.40    |  |  |  |  |  |
| Tau-PET <sub>MTL</sub> , z-score     | 0.17±1.18    | 0.76±1.41    |  |  |  |  |  |
| Tau-PET <sub>NEO</sub> , z-score     | 0.06±1.09    | 0.47±1.20    |  |  |  |  |  |
| mPACC5, baseline score               | -0.01±0.75   | -0.42±0.67   |  |  |  |  |  |
| mPACC5, annual change                | -0.038±0.053 | -0.102±0.084 |  |  |  |  |  |
| % Progression to MCI                 | 11.0%        | 25.0%        |  |  |  |  |  |

| PREVENT-AD                       |                  |                       |  |  |
|----------------------------------|------------------|-----------------------|--|--|
|                                  | All participants | Aβ+ participants only |  |  |
| N                                | 51               | 19                    |  |  |
| Age, years                       | 68.4±4.9         | 69.9±5.3              |  |  |
| Sex, % female                    | 70.6%            | 68.4%                 |  |  |
| Education, years                 | 15.2±3.39        | 14.5±3.2              |  |  |
| MMSE score                       | 28.5±1.5         | 27.7±2.5              |  |  |
| APOE e4 status, % carriers       | 47.1%            | 63.2%                 |  |  |
| Aβ-status, % positive            | 37.3%            | 100%                  |  |  |
| Follow-up duration, years        | 3.5±1.9          | 3.69±2.0              |  |  |
| Follow-up visits, median (range) | 4 (1-6)          | 4 (1-5)               |  |  |
| Plasma p-tau217, z-score         | 0.95±1.92        | 2.43±2.23             |  |  |
| Tau-PET <sub>MTL</sub> , z-score | 0.59±1.33        | 1.27±1.60             |  |  |
| Tau-PET <sub>NEO</sub> , z-score | 0.20±1.36        | 0.76±1.90             |  |  |
| mPACC5, baseline score           | -0.18±0.87       | -0.41±0.95            |  |  |
| mPACC5, annual change            | -0.078±0.078     | -0.101±0.109          |  |  |
| % Progression to MCI             | 29.4%            | 52.6%                 |  |  |

| TRIAD                            |                       |              |  |  |
|----------------------------------|-----------------------|--------------|--|--|
|                                  | Aβ+ participants only |              |  |  |
| N                                | 124                   | 27           |  |  |
| Age, years                       | 71.4±5.8              | 74.2±4.8     |  |  |
| Sex, % female                    | 66.9%                 | 74.1%        |  |  |
| Education, years                 | 15.7±3.6              | 14.1±3.2     |  |  |
| MMSE score                       | 29.2±0.9              | 29.0±1.1     |  |  |
| APOE e4 status, % carriers       | 22.6%                 | 25.9%        |  |  |
| Aβ-status, % positive            | 21.8%                 | 100%         |  |  |
| Follow-up duration, years        | 2.4±0.7               | 2.2±0.5      |  |  |
| Follow-up visits, median (range) | 3 (2-4)               | 3 (2-4)      |  |  |
| Plasma p-tau217, z-score         | 0.31±1.20             | 1.61±0.98    |  |  |
| Tau-PET <sub>MTL</sub> , z-score | 0.36±1.38             | 1.55±1.88    |  |  |
| Tau-PET <sub>NEO</sub> , z-score | 0.15±1.12             | 0.60±1.28    |  |  |
| mPACC5, baseline score           | -0.02±0.75            | -0.083±0.81  |  |  |
| mPACC5, annual change            | -0.053±0.070          | -0.107±0.160 |  |  |
| % Progression to MCI             | 13.7%                 | 33.3%        |  |  |

| WRAP                                |              |              |  |  |  |  |
|-------------------------------------|--------------|--------------|--|--|--|--|
| All participants Aβ+ participants o |              |              |  |  |  |  |
| N                                   | 82           | 20           |  |  |  |  |
| Age, years                          | 68.1±5.9     | 70.5±4.5     |  |  |  |  |
| Sex, % female                       | 58.5%        | 50.0%        |  |  |  |  |
| Education, years                    | 16.5±2.1     | 17.1±2.1     |  |  |  |  |
| MMSE score                          | 29.4±0.9     | 28.9±1.3     |  |  |  |  |
| APOE e4 status, % carriers          | 41.5%        | 55.0%        |  |  |  |  |
| Aβ-status, % positive               | 24.4%        | 100%         |  |  |  |  |
| Follow-up duration, years           | 3.0±1.1      | 2.68±0.79    |  |  |  |  |
| Follow-up visits, median (range)    | 2 (2-3)      | 2 (2-3)      |  |  |  |  |
| Plasma p-tau217, z-score            | 0.70±1.66    | 2.82±1.43    |  |  |  |  |
| Tau-PET <sub>MTL</sub> , z-score    | 0.43±1.79    | 1.90±2.66    |  |  |  |  |
| Tau-PET <sub>NEO</sub> , z-score    | 0.25±1.53    | 0.93±2.52    |  |  |  |  |
| mPACC5, baseline score              | 0.01±0.74    | -0.22±0.88   |  |  |  |  |
| mPACC5, annual change               | -0.053±0.083 | -0.121±0.140 |  |  |  |  |
| % Progression to MCI                | 7.3%         | 25.0%        |  |  |  |  |

#### Supplementary Table 2. Performance indicators of models predicting decline on the mPACC5 across all participants

| Model                  | plasma p-tau217 β <sub>std</sub><br>[95%CI] | p plasma<br>p-tau217 | Tau-PET<br>β <sub>std</sub> [95%CI] | p Tau-PET | $\mathbb{R}^2$ | AICc        |
|------------------------|---------------------------------------------|----------------------|-------------------------------------|-----------|----------------|-------------|
|                        |                                             | All particip         | ants                                |           |                |             |
| Basic without APOE     | -                                           | -                    | -                                   | -         | 0.23           | 7524.3      |
| Basic with APOE        | -                                           | -                    | -                                   | -         | 0.24           | 7507.5      |
| Plasma p-tau217        | -0.08 [-0.10, -0.07]                        | < 0.001              | -                                   | -         | 0.33           | 7239.1      |
| Tau-PET <sub>MTL</sub> | -                                           | -                    | -0.08 [-0.09, -0.06]                | < 0.001   | 0.34           | 7232.8      |
| Tau-PET <sub>NEO</sub> | -                                           | -                    | -0.07 [-0.08, -0.06]                | < 0.001   | 0.33           | 7252.6      |
| Plasma p-tau217 & Tau- | -0.06 [-0.08, -0.05]                        | < 0.001              | -0.06 [-0.07, -0.04]                | < 0.001   | 0.35           | 7146.6      |
| PET <sub>MTL</sub>     | 0.00 [ 0.00, 0.02]                          |                      | 0.00[0.07, 0.01]                    |           | 0.55           | 711010      |
| Plasma p-tau217 & Tau- | -0.07 [-0.08, -0.06]                        | < 0.001              | -0.05 [-0.07, -0.04]                | < 0.001   | 0.35           | 7149.6      |
| PET <sub>NEO</sub>     | 3.37 [ 3.30, 6.00]                          |                      | 0.00 [ 0.07, 0.01]                  |           | 0.00           | , 1 . 5 . 0 |

Standardized  $\beta$ -coefficients,  $R^2$  and corrected AIC derived from linear regression models testing the association between the tau biomarker and annual change on the mPACC5, while adjusting for age, sex, education, cohort and  $APOE \ \epsilon 4$  status, across all participants.

## Supplementary Table 3. Comparison of different models predicting cognitive decline on the mPACC5 across all participants

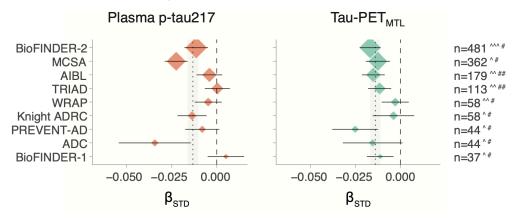
| P-values                                 | Basic without APOE | Basic with APOE | Plasma<br>p-tau217 | Tau-PET <sub>MTL</sub> | Tau-PET <sub>NEO</sub> | Plasma p-tau217<br>& Tau-PET <sub>MTL</sub> | Plasma p-tau217 & Tau-PET <sub>NEO</sub> |
|------------------------------------------|--------------------|-----------------|--------------------|------------------------|------------------------|---------------------------------------------|------------------------------------------|
|                                          |                    |                 | All Par            | rticipants             |                        |                                             |                                          |
| Basic without APOE                       | 1                  | 0.032           | < 0.001            | < 0.001                | < 0.001                | < 0.001                                     | < 0.001                                  |
| Basic with APOE                          |                    | 1               | < 0.001            | < 0.001                | 0.001                  | < 0.001                                     | < 0.001                                  |
| Plasma p-tau217                          |                    |                 | 1                  | 0.653                  | 0.752                  | < 0.001                                     | 0.001                                    |
| Tau-PET <sub>MTL</sub>                   |                    |                 |                    | 1                      | 0.356                  | < 0.001                                     | 0.028                                    |
| Tau-PET <sub>NEO</sub>                   |                    |                 |                    |                        | 1                      | 0.001                                       | < 0.001                                  |
| Plasma p-tau217 & Tau-PET <sub>MTL</sub> |                    |                 |                    |                        |                        | 1                                           | 0.757                                    |
| Plasma p-tau217 & Tau-PET <sub>NEO</sub> |                    |                 |                    |                        |                        |                                             | 1                                        |

Numbers represent p-values derived from linear regression models comparing different models (rows vs columns).

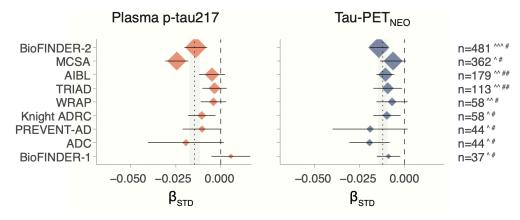
## Supplementary Table 4. Variance explained by different models predicting cognitive decline on the mPACC5 across all participants

| Model                  | Total R <sup>2</sup> | Partial R <sup>2</sup> | Partial R <sup>2</sup> plasma | Partial R <sup>2</sup> | Partial R <sup>2</sup> |
|------------------------|----------------------|------------------------|-------------------------------|------------------------|------------------------|
| TVIOUCI                | 1000110              | covariates             | p-tau217                      | Tau-PET                | shared                 |
|                        |                      | All par                | ticipants                     |                        |                        |
| Basic without APOE     | 0.23                 | 0.25                   | -                             | -                      | 0.00                   |
| Basic with APOE        | 0.24                 | 0.27                   | -                             | -                      | 0.00                   |
| Plasma p-tau217        | 0.32                 | 0.19                   | 0.10                          | -                      | 0.03                   |
| Tau-PET <sub>MTL</sub> | 0.32                 | 0.20                   | -                             | 0.11                   | 0.02                   |
| Tau-PET <sub>NEO</sub> | 0.31                 | 0.24                   | -                             | 0.09                   | 0.00                   |
| Plasma p-tau217 &      |                      |                        |                               |                        |                        |
| Tau-PET <sub>MTL</sub> | 0.36                 | 0.16                   | 0.05                          | 0.06                   | 0.08                   |
| Plasma p-tau217 &      |                      |                        |                               |                        |                        |
| Tau-PET <sub>NEO</sub> | 0.35                 | 0.19                   | 0.06                          | 0.06                   | 0.05                   |

Numbers represent R<sup>2</sup>'s derived from linear regression models


## Supplementary Table 5. Performance indicator (RMSE) [95% CI] of different models predicting decline on the mPACC5 by cohort

| Cohort         | N   | Basic without<br>APOE  | Basic with<br>APOE     | Plasma<br>p-tau217     | Tau-PET <sub>MTL</sub> | Tau-PET <sub>NEO</sub> | Plasma p-<br>tau217 & Tau-<br>PET <sub>MTL</sub> | Plasma p-<br>tau217 & Tau-<br>PET <sub>NEO</sub> |
|----------------|-----|------------------------|------------------------|------------------------|------------------------|------------------------|--------------------------------------------------|--------------------------------------------------|
| ADC            | 44  | 0.081<br>[0.081,0.082] | 0.079<br>[0.078,0.080] | 0.067<br>[0.064,0.069] | 0.061<br>[0.057,0.063] | 0.068<br>[0.066,0.069] | 0.057<br>[0.054,0.059]                           | 0.062<br>[0.060,0.063]                           |
| AIBL           | 179 | 0.069<br>[0.067,0.071] | 0.069<br>[0.067,0.071] | 0.066<br>[0.064,0.067] | 0.066<br>[0.064,0.068] | 0.064<br>[0.062,0.065] | 0.064<br>[0.062,0.065]                           | 0.062<br>[0.061,0.064]                           |
| BioFINDER-1    | 37  | 0.050<br>[0.047,0.053] | 0.051<br>[0.047,0.054] | 0.049<br>[0.046,0.052] | 0.049<br>[0.044,0.053] | 0.045<br>[0.041,0.049] | 0.049<br>[0.045,0.053]                           | 0.046<br>[0.043,0.049]                           |
| BioFINDER-2    | 481 | 0.081<br>[0.080,0.082] | 0.080<br>[0.079,0.081] | 0.076<br>[0.075,0.077] | 0.076<br>[0.075,0.077] | 0.075<br>[0.074,0.076] | 0.074<br>[0.073,0.074]                           | 0.074<br>[0.072,0.074]                           |
| Knight ADRC    | 58  | 0.080<br>[0.079,0.080] | 0.079<br>[0.078,0.080] | 0.067<br>[0.066,0.067] | 0.070<br>[0.068,0.071] | 0.075<br>[0.074,0.075] | 0.064<br>[0.063,0.065]                           | 0.067<br>[0.066,0.068]                           |
| MCSA           | 362 | 0.074<br>[0.073,0.074] | 0.073<br>[0.072,0.073] | 0.068<br>[0.067,0.068] | 0.073<br>[0.072,0.073] | 0.071<br>[0.070,0.072] | 0.069<br>[0.067,0.069]                           | 0.068<br>[0.066,0.068]                           |
| PREVENT-<br>AD | 44  | 0.076<br>[0.076,0.077] | 0.073<br>[0.072,0.075] | 0.068<br>[0.066,0.069] | 0.072<br>[0.070,0.073] | 0.065<br>[0.063,0.067] | 0.066<br>[0.064,0.067]                           | 0.062<br>[0.060,0.064]                           |
| TRIAD          | 113 | 0.060<br>[0.059,0.060] | 0.061<br>[0.059,0.061] | 0.064<br>[0.062,0.066] | 0.059<br>[0.058,0.060] | 0.059<br>[0.057,0.060] | 0.062<br>[0.060,0.063]                           | 0.062<br>[0.060,0.063]                           |
| WRAP           | 58  | 0.071<br>[0.069,0.072] | 0.071<br>[0.069,0.072] | 0.068<br>[0.066,0.069] | 0.064<br>[0.062,0.066] | 0.065<br>[0.063,0.066] | 0.063<br>[0.061,0.064]                           | 0.065<br>[0.063,0.066]                           |


Numbers represent Root-mean-square deviation (RMSE) derived from linear regression models

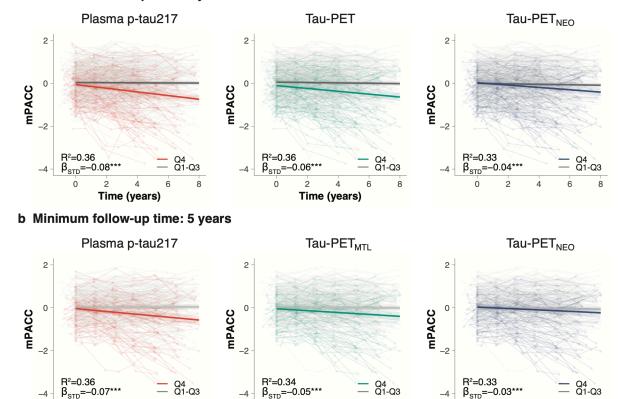
Supplementary Figure 1. Effect sizes of combined plasma and PET models for predicting mPACC5 decline by cohort

#### a Combined model: Plasma p-tau217 & Tau-PET<sub>MTL</sub>



#### b Combined model: Plasma p-tau217 & Tau-PET<sub>NEO</sub>




Effect sizes and 95%CI (expressed as standardized beta's) for predicting longitudinal changes on the mPACC5 in each of the cohorts. Size of the rhomboid relates to the sample size of each cohort. The vertical dashed line represents standardized beta = 0, while the vertical dotted line represent the average standardized beta across all cohorts with the 95% CI indicated in gray. Standardized β-coefficients shown here relate to the tau biomarker as a continuous variable.

<sup>^[18</sup>F]flortaucipir PET, ^^[18F]MK6240 PET, ^^^[18F]RO948 PET; # Lilly plasma p-tau217 immunoassay, ## Janssen plasma p-tau217+ assay.

Supplementary Figure 2. Associations between plasma/PET biomarkers and mPACC5 decline in individuals with longer follow-up

#### a Minimum follow-up time: 4 years

Time (years)



Time (years)

We included individuals that had at least 4 (a) or 5 (b) years of follow-up, respectively. Classification into quartiles was done for visualization purposes only. Standardized  $\beta$ -coefficients and  $R^2$  statistics relate to the tau biomarker as a continuous variable. The shadow area indicates the 95% confidence interval derived from linear regression models. \*\*\*p<0.001.

Time (years)

## Supplementary Table 6. Performance indicators of models predicting decline on the mPACC5 in A $\beta$ + participants

| Model                  | plasma p-tau217<br>β <sub>std</sub> [95%CI] | p plasma<br>p-tau217 | Tau-PET<br>β <sub>std</sub> [95%CI] | p Tau-PET | $\mathbb{R}^2$ | AICc   |
|------------------------|---------------------------------------------|----------------------|-------------------------------------|-----------|----------------|--------|
|                        | psiu [50,7001]                              | p217                 | Aβ+ participants                    |           |                |        |
| Basic without          | -                                           | -                    | -                                   | -         |                |        |
| APOE                   |                                             |                      |                                     |           | 0.20           | 2535.5 |
| Basic with APOE        | -                                           | -                    | -                                   | -         | 0.20           | 2536.6 |
| Plasma p-tau217        | -0.13 [-0.16, -0.10]                        | < 0.001              | -                                   | -         | 0.33           | 2444.9 |
| Tau-PET <sub>MTL</sub> | -                                           | -                    | -0.11 [-0.14, -0.09]                | < 0.001   | 0.37           | 2420.0 |
| Tau-PET <sub>NEO</sub> | -                                           | -                    | -0.11 [-0.13, -0.09]                | < 0.001   | 0.36           | 2405.6 |
| Plasma p-tau217 &      |                                             | < 0.001              |                                     | < 0.001   |                |        |
| Tau-PET <sub>MTL</sub> | -0.09 [-0.12, -0.06]                        |                      | -0.09 [-0.11, -0.06]                |           | 0.39           | 2389.7 |
| Plasma p-tau217 &      |                                             | < 0.001              |                                     | < 0.001   |                |        |
| Tau-PET <sub>NEO</sub> | -0.09 [-0.12, -0.06]                        |                      | -0.08 [-0.10, -0.06]                |           | 0.38           | 2377.7 |

The effect sizes are derived from linear regression models.

## Supplementary Table 7. Comparison of different models predicting cognitive decline on the mPACC5 in $A\beta$ + participants

| P-values                                 | Basic without APOE | Basic with APOE | Plasma<br>p-tau217 | Tau-PET <sub>MTL</sub> | Tau-PET <sub>NEO</sub> | Plasma p-tau217<br>& Tau-PET <sub>MTL</sub> | Plasma p-tau217 & Tau-PET <sub>NEO</sub> |
|------------------------------------------|--------------------|-----------------|--------------------|------------------------|------------------------|---------------------------------------------|------------------------------------------|
|                                          |                    |                 | Aβ+ pa             | rticipants             |                        |                                             |                                          |
| Basic without APOE                       | 1                  | 0.661           | < 0.001            | < 0.001                | < 0.001                | < 0.001                                     | < 0.001                                  |
| Basic with APOE                          |                    | 1               | < 0.001            | < 0.001                | < 0.001                | < 0.001                                     | < 0.001                                  |
| Plasma p-tau217                          |                    |                 | 1                  | 0.257                  | 0.241                  | < 0.001                                     | 0.004                                    |
| Tau-PET <sub>MTL</sub>                   |                    |                 |                    | 1                      | 0.725                  | 0.005                                       | 0.079                                    |
| Tau-PET <sub>NEO</sub>                   |                    |                 |                    |                        | 1                      | 0.306                                       | 0.018                                    |
| Plasma p-tau217 & Tau-PET <sub>MTL</sub> |                    |                 |                    |                        |                        | 1                                           | 0.759                                    |
| Plasma p-tau217 & Tau-PET <sub>NEO</sub> |                    |                 |                    |                        |                        |                                             | 1                                        |

Numbers represent p-values derived from linear regression models comparing different models (rows vs columns).

## Supplementary Table 8. Variance explained by different models predicting cognitive decline on the mPACC5 in A $\beta$ + participants

| Model                  | Total R <sup>2</sup> | Partial R <sup>2</sup> | Partial R <sup>2</sup> plasma | Partial R <sup>2</sup> | Partial R <sup>2</sup> |
|------------------------|----------------------|------------------------|-------------------------------|------------------------|------------------------|
| WIOUCI                 | Total K              | covariates             | p-tau217                      | Tau-PET                | shared                 |
|                        |                      | Aβ+ pa                 | rticipants                    |                        |                        |
| Basic without APOE     | 0.23                 | 0.25                   | -                             | -                      | 0.00                   |
| Basic with APOE        | 0.24                 | 0.27                   | -                             | -                      | 0.00                   |
| Plasma p-tau217        | 0.32                 | 0.19                   | 0.10                          | -                      | 0.03                   |
| Tau-PET <sub>MTL</sub> | 0.32                 | 0.20                   | -                             | 0.11                   | 0.02                   |
| Tau-PET <sub>NEO</sub> | 0.31                 | 0.24                   | -                             | 0.09                   | 0.00                   |
| Plasma p-tau217 &      |                      |                        |                               |                        |                        |
| Tau-PET <sub>MTL</sub> | 0.36                 | 0.16                   | 0.05                          | 0.06                   | 0.08                   |
| Plasma p-tau217 &      |                      |                        |                               |                        |                        |
| Tau-PET <sub>NEO</sub> | 0.35                 | 0.19                   | 0.06                          | 0.06                   | 0.05                   |

Numbers represent R<sup>2</sup>'s derived from linear regression models

#### Supplementary Table 9. Performance of different models predicting clinical progression to MCI across all participants

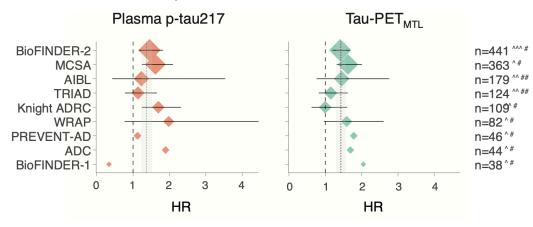
| Model                  | N non-<br>progressor | N<br>progressor | HR plasma p-<br>tau217 | p plasma<br>p-tau217 | HR Tau-PET        | p Tau-<br>PET | C-index | AICc |  |  |
|------------------------|----------------------|-----------------|------------------------|----------------------|-------------------|---------------|---------|------|--|--|
|                        | All participants     |                 |                        |                      |                   |               |         |      |  |  |
| Basic without          |                      |                 | -                      | -                    | -                 | -             |         |      |  |  |
| APOE                   | 1264                 | 162             |                        |                      |                   |               | 0.75    | 2054 |  |  |
| Basic with APOE        | 1264                 | 162             | -                      | -                    | -                 | =             | 0.77    | 2038 |  |  |
| Plasma p-tau217        | 1264                 | 162             | 1.57 [1.43, 1.72]      | < 0.001              | -                 | =             | 0.83    | 1960 |  |  |
| Tau-PET <sub>MTL</sub> | 1264                 | 162             | -                      | -                    | 1.61 [1.48, 1.76] | < 0.001       | 0.83    | 1937 |  |  |
| Tau-PET <sub>NEO</sub> | 1264                 | 162             | -                      | -                    | 1.43 [1.34, 1.52] | < 0.001       | 0.81    | 1967 |  |  |
| Plasma p-tau217 &      |                      |                 |                        | < 0.001              |                   | < 0.001       |         |      |  |  |
| Tau-PET <sub>MTL</sub> | 1264                 | 162             | 1.37 [1.23, 1.53]      |                      | 1.43 [1.30, 1.57] |               | 0.84    | 1910 |  |  |
| Plasma p-tau217 &      |                      |                 |                        | < 0.001              |                   | < 0.001       |         |      |  |  |
| Tau-PET <sub>NEO</sub> | 1264                 | 162             | 1.42 [1.28, 1.57]      |                      | 1.27 [1.18, 1.37] |               | 0.83    | 1927 |  |  |

Hazard ratios, C-index and corrected AIC derived from Cox proportional hazard models testing the association between the tau biomarker and progression to MCI, while adjusting for age, sex, education, cohort and *APOE* & status, across all participants.

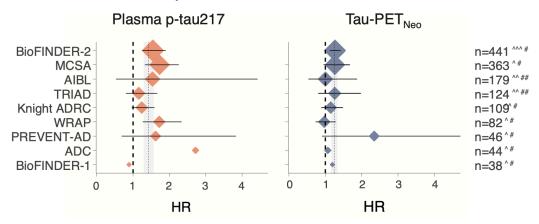
## Supplementary Table 10. Comparison (p-values) of different models predicting clinical progression to MCI across all participants

| P-values               | Basic without <i>APOE</i> | Basic with APOE | Plasma<br>p-tau217 | Tau-PET <sub>MTL</sub> | Tau-PET <sub>NEO</sub> | Plasma p-tau217<br>& Tau-PET <sub>MTL</sub> | Plasma p-tau217 & Tau-PET <sub>NEO</sub> |  |  |  |  |
|------------------------|---------------------------|-----------------|--------------------|------------------------|------------------------|---------------------------------------------|------------------------------------------|--|--|--|--|
|                        | All Participants          |                 |                    |                        |                        |                                             |                                          |  |  |  |  |
| Basic without APOE     | 1                         | 0.055           | 0.002              | < 0.001                | 0.001                  | < 0.001                                     | < 0.001                                  |  |  |  |  |
| Basic with APOE        |                           | 1               | 0.001              | < 0.001                | <0,001                 | < 0.001                                     | < 0.001                                  |  |  |  |  |
| Plasma p-tau217        |                           |                 | 1                  | 0.322                  | 0.750                  | < 0.001                                     | 0.009                                    |  |  |  |  |
| Tau-PET <sub>MTL</sub> |                           |                 |                    | 1                      | 0.059                  | 0.017                                       | 0.597                                    |  |  |  |  |
| Tau-PET <sub>NEO</sub> |                           |                 |                    |                        | 1                      | 0.002                                       | 0.004                                    |  |  |  |  |
| Plasma p-tau217 &      |                           |                 |                    |                        |                        |                                             |                                          |  |  |  |  |
| Tau-PET <sub>MTL</sub> |                           |                 |                    |                        |                        | 1                                           | 0.122                                    |  |  |  |  |
| Plasma p-tau217 &      |                           |                 |                    |                        |                        |                                             |                                          |  |  |  |  |
| Tau-PET <sub>NEO</sub> |                           |                 |                    |                        |                        |                                             | 1                                        |  |  |  |  |

Numbers represent p-values derived from Cox proportional hazard models comparing different models (rows vs columns).


## Supplementary Table 11. C-index of different models predicting clinical progression to MCI across all participants

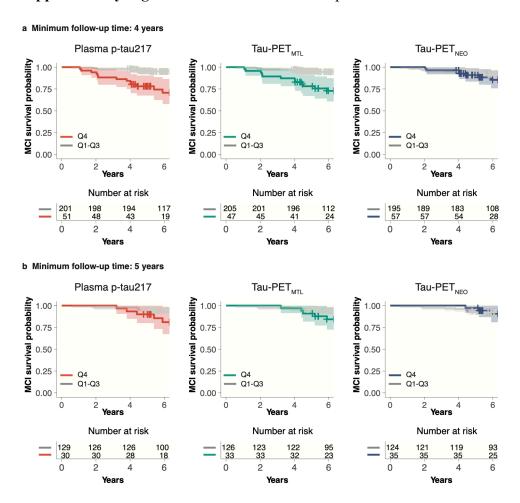
| Cohort         | N   | Basic without<br>APOE  | Basic with<br>APOE     | Plasma<br>p-tau217     | Tau-PET <sub>MTL</sub> | Tau-PET <sub>NEO</sub> | Plasma p-<br>tau217 & Tau-<br>PET <sub>MTL</sub> | Plasma p-<br>tau217 & Tau-<br>PET <sub>NEO</sub> |
|----------------|-----|------------------------|------------------------|------------------------|------------------------|------------------------|--------------------------------------------------|--------------------------------------------------|
| ADC            | 44  | 0.711<br>[0.677,0.790] | 0.786<br>[0.741,0.848] | 0.934<br>[0.911,0.968] | 0.912<br>[0.893,0.940] | 0.952<br>[0.941,0.971] | 0.947<br>[0.931,0.972]                           | 0.960<br>[0.948,0.974]                           |
| AIBL           | 179 | 0.637<br>[0.587,0.679] | 0.662<br>[0.628,0.707] | 0.682<br>[0.649,0.726] | 0.656<br>[0.628,0.687] | 0.708<br>[0.689,0.738] | 0.673<br>[0.642,0.716]                           | 0.705<br>[0.673,0.737]                           |
| BioFINDER-1    | 38  | 0.612<br>[0.515,0.707] | 0.785<br>[0.696,0.883] | 0.738<br>[0.669,0.815] | 0.877<br>[0.847,0.965] | 0.854<br>[0.812,0.898] | 0.792<br>[0.741,0.849]                           | 0.815<br>[0.775,0.862]                           |
| BioFINDER-2    | 441 | 0.714<br>[0.705,0.727] | 0.731<br>[0.725,0.748] | 0.828<br>[0.820,0.845] | 0.806<br>[0.796,0.827] | 0.826<br>[0.818,0.842] | 0.836<br>[0.826,0.854]                           | 0.838<br>[0.829,0.854]                           |
| Knight ADRC    | 109 | 0.822<br>[0.792,0.863] | 0.748<br>[0.708,0.791] | 0.827<br>[0.802,0.856] | 0.740<br>[0.686,0.801] | 0.703<br>[0.658,0.742] | 0.793<br>[0.762,0.819]                           | 0.784<br>[0.749,0.821]                           |
| MCSA           | 363 | 0.754<br>[0.748,0.766] | 0.776<br>[0.767,0.792] | 0.829<br>[0.823,0.842] | 0.793<br>[0.786,0.806] | 0.826<br>[0.819,0.841] | 0.830<br>[0.822,0.841]                           | 0.852<br>[0.846,0.866]                           |
| PREVENT-<br>AD | 46  | 0.711<br>[0.671,0.760] | 0.717<br>[0.698,0.751] | 0.754<br>[0.744,0.772] | 0.784<br>[0.765,0.825] | 0.838<br>[0.836,0.870] | 0.762<br>[0.746,0.782]                           | 0.784<br>[0.772,0.802]                           |
| TRIAD          | 124 | 0.618<br>[0.600,0.642] | 0.640<br>[0.623,0.672] | 0.631<br>[0.610,0.644] | 0.667<br>[0.643,0.694] | 0.595<br>[0.568,0.619] | 0.664<br>[0.645,0.685]                           | 0.625<br>[0.600,0.639]                           |
| WRAP           | 82  | 0.627<br>[0.595,0.635] | 0.614<br>[0.577,0.650] | 0.910<br>[0.889,0.942] | 0.885<br>[0.857,0.910] | 0.856<br>[0.827,0.894] | 0.923<br>[0.899,0.946]                           | 0.904<br>[0.874,0.928]                           |


The presented C-index is derived from Cox proportional hazard models.

Supplementary Figure 3. Effect sizes of combined plasma and PET models for predicting clinical progression to MCI by cohort

#### a Combined model: Plasma p-tau217 & Tau-PET<sub>MTL</sub>




#### b Combined model: Plasma p-tau217 & Tau-PET<sub>Neo</sub>



Hazard ratios and 95%CI for predicting progression to MCI in each of the cohorts. The vertical dashed line represents HR=1, while the vertical dotted line represent the average hazard ratio across all cohorts with the 95% CI indicated in gray. HRs shown here relate to the tau biomarker as a continuous variable.

^ [18F]flortaucipir PET, ^^ [18F]MK6240 PET, ^^^ [18F]RO948 PET; # Lilly plasma p-tau217 immunoassay, ## Janssen plasma p-tau217+ assay.

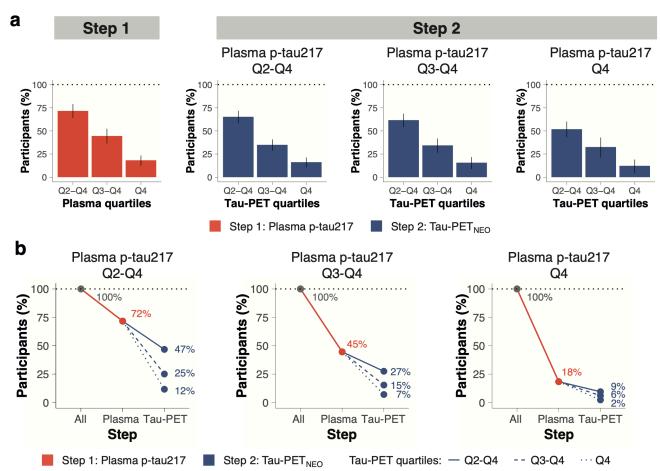
#### Supplementary Figure 4. Associations between plasma/PET biomarkers and clinical progression to MCI in individuals with longer follow-up



Survival curves for progression to mild cognitive impairment (Quartile 1-3 vs Quartile 4) across all participants with at least 4 (a) or 5 (b) years of follow-up data, including a Table showing the total number of participants available at each time point. The shadow area indicates the 95% confidence interval around the mean.

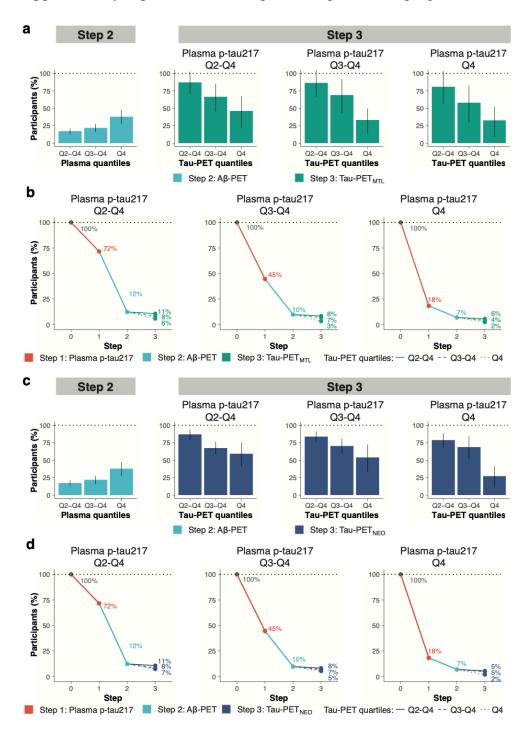
## Supplementary Table 12. Performance of different models predicting clinical progression to MCI in Aβ+ participants

| Model                  | N non-<br>progressor | N<br>progressor | HR plasma p-<br>tau217 | p plasma<br>p-tau217 | HR Tau-PET        | p Tau-<br>PET | C-index | AICc |
|------------------------|----------------------|-----------------|------------------------|----------------------|-------------------|---------------|---------|------|
|                        |                      |                 | Аβ+ р                  | articipants          |                   |               |         |      |
| Basic without          |                      |                 | -                      | -                    | -                 | -             |         |      |
| APOE                   | 288                  | 108             |                        |                      |                   |               | 0.67    | 1139 |
| Basic with APOE        | 288                  | 108             | -                      | -                    | -                 | -             | 0.67    | 1136 |
| Plasma p-tau217        | 288                  | 108             | 1.58 [1.38, 1.80]      | < 0.001              | -                 | -             | 0.75    | 1094 |
| Tau-PET <sub>MTL</sub> | 288                  | 108             | -                      | -                    | 1.53 [1.39, 1.70] | < 0.001       | 0.78    | 1072 |
| Tau-PET <sub>NEO</sub> | 288                  | 108             | -                      | -                    | 1.34 [1.25, 1.44] | < 0.001       | 0.75    | 1088 |
| Plasma p-tau217 &      |                      |                 |                        | < 0.001              |                   | < 0.001       |         |      |
| Tau-PET <sub>MTL</sub> | 288                  | 108             | 1.40 [1.21, 1.62]      |                      | 1.42 [1.27, 1.58] |               | 0.79    | 1055 |
| Plasma p-tau217 &      |                      |                 |                        | < 0.001              |                   | < 0.001       |         |      |
| Tau-PET <sub>NEO</sub> | 288                  | 108             | 1.40 [1.21, 1.62]      |                      | 1.25 [1.15, 1.35] |               | 0.77    | 1070 |


Presented effect sizes are derived from from Cox proportional hazard models.

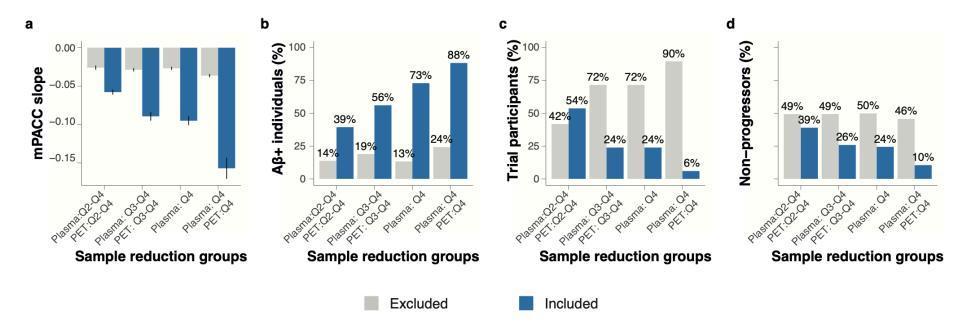
## Supplementary Table 13. Comparison (p-values) of different models predicting clinical progression to MCI in Aβ+ participants

| P-values               | Basic without <i>APOE</i> | Basic with APOE | Plasma<br>p-tau217 | Tau-PET <sub>MTL</sub> | Tau-PET <sub>NEO</sub> | Plasma p-tau217<br>& Tau-PET <sub>MTL</sub> | Plasma p-tau217 & Tau-PET <sub>NEO</sub> |
|------------------------|---------------------------|-----------------|--------------------|------------------------|------------------------|---------------------------------------------|------------------------------------------|
|                        |                           |                 | Aβ+ parti          | cipants                |                        |                                             |                                          |
| Basic without APOE     | 1                         | 0.524           | 0,010              | < 0.001                | 0.002                  | < 0.001                                     | 0.001                                    |
| Basic with APOE        |                           | 1               | 0.004              | < 0.001                | 0.003                  | < 0.001                                     | 0.001                                    |
| Plasma p-tau217        |                           |                 | 1                  | 0.200                  | 0.711                  | 0.007                                       | 0.031                                    |
| Tau-PET <sub>MTL</sub> |                           |                 |                    | 1                      | 0.209                  | 0.042                                       | 0.891                                    |
| Tau-PET <sub>NEO</sub> |                           |                 |                    |                        | 1                      | 0.024                                       | 0.061                                    |
| Plasma p-tau217 &      |                           |                 |                    |                        |                        |                                             |                                          |
| Tau-PET <sub>MTL</sub> |                           |                 |                    |                        |                        | 1                                           | 0.133                                    |
| Plasma p-tau217 &      |                           |                 |                    |                        |                        |                                             |                                          |
| Tau-PET <sub>NEO</sub> |                           |                 |                    |                        |                        |                                             | 1                                        |


Numbers represent p-values derived from Cox proportional hazard models comparing different models (rows vs columns).

#### Supplementary Figure 5. Two-step approach for clinical trials using clinical progression using Tau-PET<sub>NEO</sub>




**a**, the obtained sample size reduction using different percentiles (75th, 50th and 25th) of the samples' baseline plasma p-tau217 baseline levels using the mPACC5 as the primary endpoint (step 1). Then, we repeated the approach selecting the 75th, 50th and 25th percentiles of the new samples' Tau-PET<sub>NEO</sub> measures (step 2). Red lines represent step 1 with plasma p-tau217 and blue lines represent step 2 with Tau-PET<sub>NEO</sub>. Different linestyles represent different quartiles of Tau-PET<sub>NEO</sub> from those subjects already selected from step 1. Dotted black lines represent 100% participants needed without that step. Note that 100% in step 2 refers to the participants selected by plasma p-tau217 in step 1. **b** shows the calculated sample size reductions for various plasma p-tau217 and Tau-PET<sub>NEO</sub> quantile combinations. The analyses presented in this figure are based on 1376 CU individuals.

#### Supplementary Figure 6. A three-step screening with MCI progression as outcome measure



**a,c**, the obtained sample size reduction using different percentiles (75th, 50th and 25th) of the samples' baseline plasma p-tau217 baseline levels using the mPACC5 as the primary endpoint (step 1). Then, we repeated the Aβ-PET positive individuals (step 2) from those selected in step 1. Finally, we repeated the approach selecting the 75th, 50th and 25th percentiles of the new samples' Tau-PET<sub>MTL</sub> (**a**) Tau-PET<sub>NEO</sub> (**c**) measures (step 3) from those already selected in step 2. Dotted black lines represent 100% participants needed without that step. Note that 100% in step 2 refers to the participants selected by plasma p-tau217. Also, 100% in step 3 in step 1 refers to the participants selected by plasma p-tau217 and Aβ-PET positivity (step 2). **b** shows the calculated sample size reductions for various plasma p-tau217 and Tau-PET<sub>NEO</sub> quantile combinations. Red lines represent step 1 with plasma p-tau217, light blue lines represent Aβ-PET, and green/dark blue lines represent step 2 with Tau-PET<sub>MTL</sub>/Tau-PET<sub>NEO</sub>. Different linestyles represent different quartiles of Tau-PET<sub>NEO</sub> from those subjects already selected from step 1. The analyses presented in this figure are based on 1426 CU individuals.

#### **Supplementary Figure 7.** Characterization of different plasma p-tau217/Tau-PET<sub>NEO</sub> groups



This figure shows how different group compositions based on their baseline plasma p-tau217 and Tau-PET<sub>NEO</sub> levels are related to various relevant trial metrics, including the annual mPACC5 slope ( $\bf a$ , n=1376), proportion of Aeta+ individuals ( $\bf b$ , n=1473), the proportion of individuals from the entire population that would be included in a clinical trial based on the group definitions described on the x-axis ( $\bf c$ , all participants) and the proportion of "non-progressors" on the mPACC5 (defined as slope > -0.016, see Methods section for details) ( $\bf d$ , n=1376). Error bars in  $\bf a$  represent the 95% CI around the mean. More efficient trials are expected with lower mPACC slopes, higher percentages of A $\bf \beta$ + individuals and trial participants, but lower percentages of non-progressors

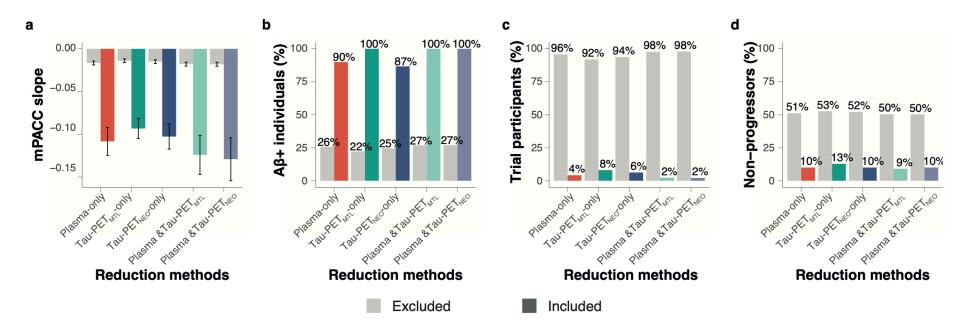
Supplementary Table 14. Sample size reductions in a clinical trial following a two-step approach

| Step 1.         | Step 2.                                                       | Plasma           | Tau-PET <sub>MTL</sub> | Tau-PET <sub>NEO</sub> | Tau-PET <sub>MTL</sub> | Tau-PET <sub>NEO</sub> |  |  |  |  |  |  |
|-----------------|---------------------------------------------------------------|------------------|------------------------|------------------------|------------------------|------------------------|--|--|--|--|--|--|
| Quantile Plasma | Quantile PET                                                  | (%)              | (%)                    | (%)                    | (%, ref plasma)        | (%, ref plasma)        |  |  |  |  |  |  |
|                 | Modified Preclinical Alzheimer Cognitive Composite 5 (mPACC5) |                  |                        |                        |                        |                        |  |  |  |  |  |  |
|                 | Q2-Q4                                                         |                  | 51[44, 72]             | 56[49, 78]             | 75[65, 96]             | 83[73, 105]            |  |  |  |  |  |  |
| Q2-Q4           | Q3-Q4                                                         | 68[59, 86]       | 35[32, 53]             | 43[37, 64]             | 52[46, 74]             | 63[54, 88]             |  |  |  |  |  |  |
|                 | Q4                                                            |                  | 18[15, 28]             | 22[17, 34]             | 27[21, 40]             | 32[23, 48]             |  |  |  |  |  |  |
|                 | Q2-Q4                                                         |                  | 28[22, 41]             | 29[23, 42]             | 79[65, 97]             | 81[70, 97]             |  |  |  |  |  |  |
| Q3-Q4           | Q3-Q4                                                         | 36[28, 49]       | 19[15, 29]             | 22[18, 33]             | 54[43, 71]             | 61[51, 82]             |  |  |  |  |  |  |
|                 | Q4                                                            |                  | 12[10, 19]             | 15[11, 24]             | 34[27, 49]             | 43[30, 62]             |  |  |  |  |  |  |
|                 | Q2-Q4                                                         |                  | 15[12, 24]             | 17[13, 26]             | 84[68, 108]            | 94[79, 114]            |  |  |  |  |  |  |
| Q4              | Q3-Q4                                                         | 18[14, 27]       | 10[8, 16]              | 13[10, 20]             | 56[42, 77]             | 69[52, 94]             |  |  |  |  |  |  |
|                 | Q4                                                            |                  | 7[6, 12]               | 9[7, 14]               | 39[29, 59]             | 48[31, 73]             |  |  |  |  |  |  |
|                 | C                                                             | linical progress | sion to mild cogn      | itive impairment       | (MCI)                  |                        |  |  |  |  |  |  |
|                 | Q2-Q4                                                         |                  | 60[49, 70]             | 47[40, 53]             | 84[71, 96]             | 65[58, 72]             |  |  |  |  |  |  |
| Q2-Q4           | Q3-Q4                                                         | 72[64, 79]       | 44[31, 55]             | 25[20, 30]             | 61[45, 75]             | 35[29, 41]             |  |  |  |  |  |  |
|                 | Q4                                                            |                  | 25[13, 34]             | 12[7, 15]              | 34[19, 48]             | 16[11, 21]             |  |  |  |  |  |  |
|                 | Q2-Q4                                                         |                  | 37[27, 46]             | 27[21, 33]             | 83[68, 97]             | 62[54, 69]             |  |  |  |  |  |  |
| Q3-Q4           | Q3-Q4                                                         | 45[36, 52]       | 29[18, 39]             | 15[11, 19]             | 66[46, 84]             | 34[26, 42]             |  |  |  |  |  |  |
|                 | Q4                                                            |                  | 12[5, 17]              | 7[4, 10]               | 26[13, 37]             | 16[9, 22]              |  |  |  |  |  |  |
|                 | Q2-Q4                                                         |                  | 16[9, 22]              | 9[6, 13]               | 89[68, 109]            | 52[43, 60]             |  |  |  |  |  |  |
| Q4              | Q3-Q4                                                         | 18[13, 23]       | 12[6, 18]              | 6[3, 8]                | 66[39, 91]             | 33[21, 43]             |  |  |  |  |  |  |
|                 | Q4                                                            |                  | 4[1, 7]                | 2[1, 4]                | 24[7, 38]              | 12[4, 19]              |  |  |  |  |  |  |

Table shows the percentages of participants required for a clinical based on the different plasma (step 1) and Tau-PET (step 2) combinations. Results are shown for Tau-PET<sub>MTL</sub> and Tau-PET<sub>MTL</sub>, both in actual percentages and in percentages relative to the reductions already achieved by plasma p-tau217 (columns including label "(%, ref plasma)". Data are presented for both mPACC5 (top) and progression to MCI (bottom) and are based on the assumption of 80% power to detect a 30% change during a 4-year clinical trial.

## Supplementary Table 15. Combined plasma p-tau217 and Tau-PET<sub>MTL</sub> group characterizations: Aβ status and clinical outcomes

|        |       |          |          | INC   | LUDED POPUI  | LATION        | EXCI  | LUDED POPUI  | LATION        |
|--------|-------|----------|----------|-------|--------------|---------------|-------|--------------|---------------|
| Plasma | PET   | Excluded | Included | Αβ+   | mPACC        | % Progressors | Αβ+   | mPACC        | % Progressors |
|        |       |          |          |       | slope        |               |       | slope        |               |
| Q2-Q4  | All   | 344      | 1032     | 35.0% | -0.05 (0.09) | 59.1%         | 7.8%  | -0.02 (0.06) | 48.5%         |
| Q2-Q4  | Q2-Q4 | 602      | 774      | 40.8% | -0.06 (0.09) | 62.4%         | 12.0% | -0.02 (0.06) | 48.8%         |
| Q2-Q4  | Q3-Q4 | 860      | 516      | 48.4% | -0.08 (0.10) | 68.4%         | 16.0% | -0.02 (0.07) | 49.3%         |
| Q2-Q4  | Q4    | 1118     | 258      | 67.8% | -0.11 (0.11) | 79.8%         | 19.1% | -0.03 (0.07) | 51.1%         |
| Q3-Q4  | All   | 688      | 688      | 47.4% | -0.07 (0.10) | 66.3%         | 9.0%  | -0.02 (0.06) | 46.7%         |
| Q3-Q4  | Q2-Q4 | 860      | 516      | 53.7% | -0.08 (0.10) | 70.5%         | 12.9% | -0.02 (0.06) | 48.0%         |
| Q3-Q4  | Q3-Q4 | 1032     | 344      | 62.2% | -0.10 (0.11) | 76.2%         | 16.9% | -0.03 (0.07) | 49.9%         |
| Q3-Q4  | Q4    | 1204     | 172      | 82.0% | -0.13 (0.12) | 85.5%         | 20.5% | -0.03 (0.07) | 52.3%         |
| Q4     | All   | 1032     | 344      | 73.0% | -0.09 (0.11) | 75.6%         | 13.3% | -0.03 (0.07) | 50.1%         |
| Q4     | Q2-Q4 | 1118     | 258      | 79.8% | -0.11 (0.11) | 79.1%         | 16.3% | -0.03 (0.07) | 51.3%         |
| Q4     | Q3-Q4 | 1204     | 172      | 88.4% | -0.13 (0.12) | 85.5%         | 19.6% | -0.03 (0.07) | 52.3%         |
| Q4     | Q4    | 1290     | 86       | 96.5% | -0.17 (0.13) | 89.5%         | 23.6% | -0.04 (0.07) | 54.3%         |


mPACC slopes are expressed as standardized beta-coefficients with a 95% confidence around the mean.

Supplementary Table 16. Combined plasma p-tau217 and Tau-PET<sub>MTL</sub> group characterizations: Demographic information

|        |       | INCLUDED POPULATION |         |            |                 |   | EXCLUDED POPULATION |          |            |                 |  |
|--------|-------|---------------------|---------|------------|-----------------|---|---------------------|----------|------------|-----------------|--|
| Plasma | PET   | Age                 | Females | Education  | <i>ΑΡΟΕ</i> ε4+ |   | Age                 | % female | Education  | <i>APOE</i> ε4+ |  |
| Q2-Q4  | All   | 70.0 (10.3)         | 51.6%   | 13.9 (3.3) | 40.2%           | _ | 66.7 (10.5)         | 56.1%    | 14.1 (3.5) | 27.0%           |  |
| Q2-Q4  | Q2-Q4 | 71.3 (9.9)          | 49.6%   | 14.0 (3.3) | 41.5%           | _ | 66.5 (10.6)         | 56.8%    | 13.9 (3.3) | 31.1%           |  |
| Q2-Q4  | Q3-Q4 | 73.1 (9.0)          | 50.8%   | 13.9 (3.3) | 44.0%           |   | 66.8 (10.6)         | 54.0%    | 14.1 (3.3) | 32.7%           |  |
| Q2-Q4  | Q4    | 74.5 (7.8)          | 51.6%   | 13.7 (3.5) | 49.6%           |   | 68.0 (10.6)         | 53.0%    | 14.1 (3.3) | 34.0%           |  |
| Q3-Q4  | All   | 71.2 (10.3)         | 50.6%   | 13.9 (3.4) | 45.3%           |   | 67.2 (10.3)         | 54.9%    | 14.0 (3.2) | 28.5%           |  |
| Q3-Q4  | Q2-Q4 | 72.5 (9.7)          | 49.6%   | 13.9 (3.5) | 47.5%           |   | 67.2 (10.4)         | 54.7%    | 14.0 (3.2) | 30.6%           |  |
| Q3-Q4  | Q3-Q4 | 73.8 (9.1)          | 50.3%   | 13.7 (3.4) | 50.6%           |   | 67.7 (10.5)         | 53.6%    | 14.1 (3.3) | 32.4%           |  |
| Q3-Q4  | Q4    | 75.3 (7.2)          | 55.2%   | 13.6 (3.6) | 57.6%           |   | 68.3 (10.6)         | 52.4%    | 14.0 (3.3) | 34.0%           |  |
| Q4     | All   | 73.6 (9.2)          | 52.6%   | 13.8 (3.5) | 51.7%           |   | 67.7 (10.5)         | 52.8%    | 14.0 (3.3) | 32.0%           |  |
| Q4     | Q2-Q4 | 74.8 (8.5)          | 51.9%   | 13.8 (3.6) | 55.0%           |   | 67.9 (10.5)         | 53.0%    | 14.0 (3.3) | 32.7%           |  |
| Q4     | Q3-Q4 | 75.3 (7.9)          | 53.5%   | 13.6 (3.5) | 60.05%          | _ | 68.3 (10.5)         | 52.7%    | 14.0 (3.3) | 33.6%           |  |
| Q4     | Q4    | 74.0 (7.7)          | 59.3%   | 13.4 (3.5) | 66.3%           |   | 68.9 (10.6)         | 52.3%    | 14.0 (3.3) | 35.0%           |  |

Table shows the characteristics of populations included and excluded for a clinical trial based on different plasma (step 1) and Tau-PET (step 2) combinations.

#### Supplementary Figure 8. Relevant trial outcomes when using predefined cut-offs in BioFINDER-2



Using pre-specified cut-offs in the BioFINDER-2 cohort, this figure shows how different group compositions based on different methods are related to various relevant trial metrics, including the annual mPACC5 slope (a), proportion of  $A\beta$ + individuals (b), the proportion of individuals from the entire population that would be included in a clinical trial based on the group definitions described on the x-axis (c) and the proportion of "non-progressors" on the mPACC5 (defined as slope > -0.016, see Methods section for details) (d). Errorbars in a represent the 95% CI. More efficient trials are expected with lower mPACC slopes, higher percentages of  $A\beta$ + individuals and trial participants, but lower percentages of non-progressors. The analyses presented in this figure are based on 441 CU individuals.

Supplementary Figure 9. Projected costs that could be saved in a hypothetical trial with mPACC5 as an endpoint

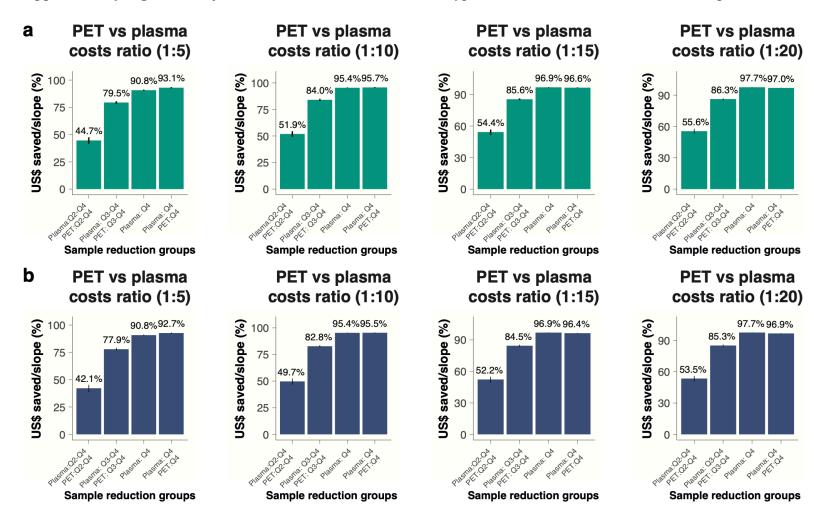
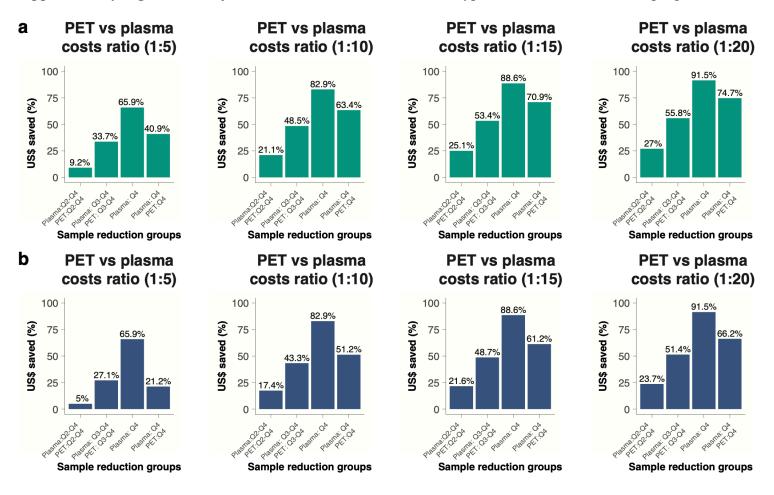




Figure shows the % of cost reductions that can be achieved when implementing different Tau-PET (Tau-PET<sub>MTL</sub> in panel **a**, Tau-PET<sub>NEO</sub> in panel **b**) vs plasma p-tau217 combinations when using the mPACC as an endpoint. The ratio of 1:5 reflects that the cost of 1 Tau-PET scan resembles the cost of 5 plasma p-tau217 assessment.

Supplementary Figure 10. Projected costs that could be saved in a hypothetical trial with clinical progression to MCI as an endpoint



The % of cost reductions that can be achieved when implementing different Tau-PET (Tau-PET<sub>MTL</sub> in panel **a**, Tau-PET<sub>NEO</sub> in panel **b**) vs plasma p-tau217 combinations when using clinical progression to MCI as an endpoint. The ratio of 1:5 reflects that the cost of 1 Tau-PET scan resembles the cost of 5 plasma p-tau217 assessment.

## Supplementary Table 17. Cohort descriptions

| Cohort        | Cohort description                                                                                                                                                                                                     | References |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| BioFINDER-1 & | The Swedish BioFINDER studies are longitudinal studies covering the entire AD continuum in which                                                                                                                       | 3,4        |
| D' EDIDED 4   | participants were recruited at Skåne University Hospital and the Hospital of Angelholm, Sweden. The main                                                                                                               |            |
| BioFINDER-2   | inclusion criteria were absence of cognitive symptoms as assessed by a physician with special interest in                                                                                                              |            |
|               | cognitive disorders, being fluent in Swedish, having no significant unstable systemic illness that made it difficult to participate in the study, having no current significant alcohol or substance misuse, and no    |            |
|               | significant neurological or psychiatric illness. For the current study participants above > 50 years old were                                                                                                          |            |
|               | included. Both cognitively healthy older adults and SCD participants were included. The SCD participants                                                                                                               |            |
|               | were referred from participating memory clinic because of cognitive complaints, but did not fulfill criteria                                                                                                           |            |
|               | for MCI (defined using criteria by Petersen and operationalized according to 1,2) following a                                                                                                                          |            |
|               | neuropsychological test battery.                                                                                                                                                                                       |            |
| MCSA          | The Mayo Clinic Study of Aging (MCSA) is a longitudinal population-based study of cognitive aging in                                                                                                                   | 5          |
|               | Olmsted County, Minnesota. The study was designed to study prevalence, incidence and risk factors for                                                                                                                  |            |
|               | MCI and dementia. Potential participants are randomly enumerated from the Olmsted County, MN, census                                                                                                                   |            |
|               | and enrolled by age/sex strata. Enumeration is repeated to maintain a sample of approximately 3000 active participants. At entry, every person underwent evaluations that included a medical history review and        |            |
|               | interview with the participant and a study partner, a neurological examination by a physician; and a                                                                                                                   |            |
|               | neuropsychological examination. For this study, participants were considered MCI only if the study                                                                                                                     |            |
|               | coordinator, physician, and neuropsychologist were all in agreement regarding the MCI diagnosis.                                                                                                                       |            |
|               | Participants were judged cognitively normal if they did not meet MCI criteria. Participants aged between                                                                                                               |            |
|               | 50 and 89 years old were included in the current study.                                                                                                                                                                |            |
| Knight ADRC   | The Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) is one of                                                                                                                             | 6          |
|               | approximately 30 Centers funded by the National Institute on Aging (NIA) located at major medical                                                                                                                      |            |
|               | institutions across the United States. Researchers at these Centers are working to translate research                                                                                                                  |            |
|               | advances into improved diagnosis and care for people with Alzheimer disease, as well as working to find                                                                                                                |            |
| DDEVENTE A D  | a treatment or way to prevent Alzheimer disease and other types of dementia.                                                                                                                                           | 7          |
| PREVENT-AD    | The PREVENT-AD (Pre-symptomatic Evaluation of Experimental or Novel Treatments                                                                                                                                         |            |
|               | for Alzheimer Disease) cohort is composed of cognitively healthy participants over 55 years old, at risk of developing Alzheimer Disease (AD) as their parents and/or siblings were/are affected by the disease. These |            |
|               | developing Aizhenner Disease (AD) as their parents and/or storings were/are affected by the disease. These                                                                                                             |            |

|      | 'at-risk' participants have been followed for a naturalistic study of the presymptomatic phase of AD since 2011 using multimodal measurements of various disease indicators. Two clinical trials intended to test pharmaco-preventive agents have also been conducted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| AIBL | The Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) is a longitudinal, prospective cohort with participants coming from two-site study – Melbourne and Perth. To be included in the study, participants were (1) ≥60 years old; (2) fluent in English; (4) had completed at least 7 years of education; (5) did not have any history of neurological or psychiatric disorders, drug or alcohol abuse or dependence, or any other unstable medical condition; and (6) were deemed to be cognitively unimpaired (CU), based on their performance on a battery of cognitive assessments that AIBL participants undergo every 12 to 18 months. A multidisciplinary clinical review panel determines whether an individual is CU, based on the available clinical and neuropsychological information.                                                                                                                                                                                                                                                                                                                                                   | 8  |
| ADC  | The Amsterdam Dementia Cohort (ADC) is a prospective cohort study including (amongst others) individuals with subjective cognitive decline (SCD) presenting at the Alzheimer Center of the VU University Medical Center Amsterdam. All participants have been referred to the memory clinic by their general practitioner, and a neurologist or geriatrician in the case of a second opinion for evaluation of cognitive complaints. They receive standardized dementia screening at the memory clinic, including an interview with a neurologist, physical and neurological examination, neuropsychological assessment. Individuals with SCD can additionally be included in the SCIENCe study, for which the main inclusion criteria are a diagnosis of SCD (i.e., cognitive complaints and normal cognition) and age ≥ 45 years. Exclusion criteria for participation in the SCIENCe study are MCI, dementia, major psychiatric disorder (i.e., current depression, personality disorders, schizophrenia), neurological diseases known to cause memory complaints (i.e., Parkinson's disease, epilepsy), HIV, abuse of alcohol or other substances, and language barrier. | 9  |
| WRAP | The Wisconsin Registry for Alzheimer's Prevention is a longitudinal observational cohort study enriched with persons with a parental history (PH) of probable Alzheimer's disease (AD) dementia. Recruitment sources included memory clinics in which a parent was diagnosed or treated, limited radio and newspaper advertisements, and word of mouth. Participants generally meet the following inclusion criteria at study entry: age 40–65 years; fluent English speaker; visual and auditory acuity adequate for neuropsychological testing; good health with no diseases expected to interfere with study participation over time. Participants are excluded from enrollment if they have a prior diagnosis of dementia or evidence of dementia at baseline testing (one was excluded due to baseline dementia).                                                                                                                                                                                                                                                                                                                                                       | 10 |

| TRIAD | The Translational Biomarkers of Aging and Dementia (TRIAD) cohort study is a longitudinal                  |  |
|-------|------------------------------------------------------------------------------------------------------------|--|
|       | observational cohort study in Montréal, Québec, Canada. Participants are recruited from the community      |  |
|       | and from the the McGill Centre for Studies in Aging. All participants are clinically evaluated by dementia |  |
|       | specialists. Participants were excluded from this study if they had systemic conditions which were not     |  |
|       | adequately controlled through a stable medication regimen. Other exclusion criteria were active substance  |  |
|       | abuse, recent head trauma, recent major surgery, or MRI/PET safety contraindications. The study was        |  |
|       | approved by the Montreal Neurological Institute PET working committee and the Douglas Mental Health        |  |
|       | University Institute Research Ethics Board. Written informed consent was obtained for all participants.    |  |

## Supplementary Table 18. Methods to determine Amyloid PET status by cohort

| Cohort         | Tracer                         | Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cut-off               | References |
|----------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|
| BioFINDER-1    | [ <sup>18</sup> F]flutemetamol | Global neocortical composite standardized uptake value ratios (SUVR) for the 90-110min interval p.i. with whole cerebellum as reference region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >1.03 SUVR            | 4          |
| BioFINDER-2    | [ <sup>18</sup> F]flutemetamol | Global neocortical composite SUVR for the 90-110min interval p.i. with whole cerebellum as reference region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >1.03 SUVR            | 4          |
| MCSA           | [ <sup>11</sup> C]PIB          | Late uptake amyloid PET images were acquired from 40-60 minutes p.i. A meta-ROI was calculated as the voxel-number weighted average of uptake in a target region including prefrontal, orbitofrontal, parietal, temporal, anterior and posterior cingulate, and precuneus regions divided by the uptake in the cerebellar crus gray matter.                                                                                                                                                                                                                                                                                                                                                               | >1.48 SUVR<br>(>21CL) | 5          |
| Knight ADRC    | [ <sup>11</sup> C]PIB          | Data were processed using a region of interest approach using Freesurfer. Amyloid deposition was summarized using the average across the left and right lateral orbitofrontal, medial orbitofrontal, rostral middle frontal, superior frontal, superior temporal, middle temporal, and precuneus regions.                                                                                                                                                                                                                                                                                                                                                                                                 | >20 CL                | 6          |
| PREVENT-<br>AD | [ <sup>18</sup> F]NAV4694      | A $\beta$ -PET images were realigned onto their respective MRI, masked to remove the scalp and CSF in an attempt to avoid contamination by nongray or nonwhite matter voxels, and smoothed using a full width at half maximum Gaussian kernel of 8mm. Resulting images were scaled using whole cerebellum uptake values (whole cerebellum was preferred to cerebellum gray matter to account better for white matter off-target binding variability between tracers). Global neocortical A $\beta$ burden was quantified by extracting, in native space, the mean standardized uptake value ratio (SUVR) of the frontal, temporal, parietal, and posterior cingulate cortex of the Desikan-Killiany atlas | >1.33 SUVR            | 12         |
| AIBL           | [[ <sup>18</sup> F]NAV4694     | The standard Centiloid (CL) cortical and whole cerebellar volumes of interest template were applied to the summed and spatially normalised PET images in order to obtain SUVR's. These SUVR were transformed into CL units by linear transformation using the PET tracer-specific equations published for conversion of CL method SUVR to CL units.                                                                                                                                                                                                                                                                                                                                                       | >24 CL                | 13         |

| ADC   | [ <sup>18</sup> F]florbetapir | Visual read following guidelines provided by Avid Radiopharmaceuticals                                                                                                                                                                                                                                                                                                                                                      | -          | 14 |
|-------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
|       |                               | corresponding to >17 CL.                                                                                                                                                                                                                                                                                                                                                                                                    |            |    |
| WRAP  | [ <sup>11</sup> C]PIB         | Amyloid burden was assessed as a global average <sup>11</sup> C-PiB distribution volume ratio (DVR; Logan graphical analysis, cerebellum gray matter reference region), taken across 8 bilateral cortical ROIs. A+ was ascertained using a global <sup>11</sup> C-PiB DVR≥1.16 a threshold previously shown to predict subsequent amyloid accumulation.                                                                     | >1.16 DVR  | 15 |
| TRIAD | [ <sup>18</sup> F]NAV4694     | [18F]AZD4694 PET images were acquired 40-70 min after bolus injection and reconstructed on a 4-dimensional volume with 3 frames (3 x 600s). Amyloid-β SUVR from a neocortical region of interest (ROI) for each participant was estimated by averaging the SUVR from the precuneus, prefrontal, orbitofrontal, parietal, temporal, and cingulate cortices, with amyloid-β positivity defined as an [18F]AZD4694 above 1.55. | >1.55 SUVR | 16 |

CL = Centiloid; DVR = Distribution volume ratio; SUVR = Standardized uptake value ratio.

Centiloid (CL) units were presented when available.

Supplementary Table 19. Methods to determine Tau PET status in the medial temporal lobe (MTL) and neocortex (NEO) by cohort

| Cohort      | Tracer                         | Scanning interval | Reference region       | Reference |
|-------------|--------------------------------|-------------------|------------------------|-----------|
| BioFINDER-1 | [ <sup>18</sup> F]flortaucipir | 80-100min p.i.    | Inferior cerebellar GM | 17        |
| BioFINDER-2 | [ <sup>18</sup> F]RO948        | 70-90min p.i.     | Inferior cerebellar GM | 18        |
| MCSA        | [ <sup>18</sup> F]flortaucipir | 80-100min p.i.    | Cerebellar crus GM     | 19        |
| Knight ADRC | [ <sup>18</sup> F]flortaucipir | 80-100min p.i.    | Cerebellar GM          | 6         |
| PREVENT-AD  | [ <sup>18</sup> F]flortaucipir | 80-100min p.i.    | Inferior cerebellar GM | 7         |
| AIBL        | [ <sup>18</sup> F]MK6204       | 90-110 min p.i.   | Cerebellar GM          | 13        |
| ADC         | [ <sup>18</sup> F]flortaucipir | 80-100min p.i.    | Cerebellar GM          | 20        |
| WRAP        | [ <sup>18</sup> F]MK6240       | 70-90min p.i.     | Inferior cerebellar GM | 15        |
| TRIAD       | [ <sup>18</sup> F]MK6240       | 90-100min p.i.    | Cerebellar Crus GM     | 21        |

GM = Gray matter; MTL = Medial temporal lobe; NEO = Neocortical; p.i. = Post-injection; SUVR = Standardized uptake value ratio.

The cut-offs were generated in each individual cohort, based on the mean +2\*standard deviation across all A $\beta$ -negative participants within each cohort. We computed tau PET status for a medial temporal lobe (MTL; unweighted average of bilateral entorhinal cortex and amygdala) and a neocortical (NEO; weighted average of bilateral middle temporal and inferior temporal gyri) region-of-interest.

### Supplementary Table 20. Composition of the mPACC5 for each cohort

| Cohort      | Global Cognition  | Episodic Memory               | Time executive function      | Semantic memory           |
|-------------|-------------------|-------------------------------|------------------------------|---------------------------|
| BioFINDER-1 | MMSE              | ADAS-COG delayed word recall  | Symbol digit modalities test | Animal fluency            |
| BioFINDER-2 | MMSE              | ADAS-COG delayed word recall  | Symbol digit modalities test | Animal fluency            |
| MCSA        | MMSE <sup>a</sup> | AVLT delayed recall           | WAIS-R Digit Symbol          | Sum of animal, fruits and |
|             |                   |                               |                              | vegetables fluency        |
| Knight ADRC | MMSE              | CVLT – Delayed recall         | Symbol digit modalities test | Animal fluency            |
| PREVENT-AD  | RBANS total score | RBANS – Delayed recall        | RBANS - EE                   | Animal fluency            |
| AIBL        | MMSE              | CVLT – Delayed recall         | Symbol digit modalities test | Sum of animal and names   |
|             |                   |                               |                              | fluency                   |
| ADC         | MMSE              | RAVLT – Delayed recall        | TMT-B                        | Animal fluency            |
| WRAP        | MMSE              | AVLT – Delayed recall         | WAIS-R Digit Symbol          | Animal fluency            |
| TRIAD       | MMSE              | Logical Memory test - Delayed | Letter fluency               | Category fluency          |
|             |                   | recall                        |                              |                           |

Note that the episodic memory test was given double weight and thus accounted for 40% of the mPACC5 score.

<sup>&</sup>lt;sup>a</sup> A 38-point test, the Short Test of Mental Status (STMS)<sup>22</sup>, was converted to MMSE scores using an in-house developed algorithm<sup>23</sup>.

#### **REFERENCES**

- 1. Palmqvist, S., *et al.* Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. *JAMA* **324**, 772-781 (2020).
- 2. Petrazzuoli, F., *et al.* Brief Cognitive Tests Used in Primary Care Cannot Accurately Differentiate Mild Cognitive Impairment from Subjective Cognitive Decline. *J Alzheimers Dis* **75**, 1191-1201 (2020).
- 3. Leuzy, A., *et al.* Diagnostic Performance of RO948 F 18 Tau Positron Emission Tomography in the Differentiation of Alzheimer Disease From Other Neurodegenerative Disorders. *JAMA Neurol* 77, 955-965 (2020).
- 4. Palmqvist, S., *et al.* Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid beta-amyloid 42: a cross-validation study against amyloid positron emission tomography. *JAMA Neurol* 71, 1282-1289 (2014).
- 5. Jack, C.R., Jr. & Holtzman, D.M. Biomarker modeling of Alzheimer's disease. *Neuron* **80**, 1347-1358 (2013).
- 6. Gordon, B.A., *et al.* The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging. *Brain* **139**, 2249-2260 (2016).
- 7. Strikwerda-Brown, C., *et al.* Association of Elevated Amyloid and Tau Positron Emission Tomography Signal With Near-Term Development of Alzheimer Disease Symptoms in Older Adults Without Cognitive Impairment. *JAMA Neurol* **79**, 975-985 (2022).
- 8. Fowler, C., *et al.* Fifteen Years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: Progress and Observations from 2,359 Older Adults Spanning the Spectrum from Cognitive Normality to Alzheimer's Disease. *J Alzheimers Dis Rep* 5, 443-468 (2021).
- 9. Slot, R.E.R., *et al.* Subjective Cognitive Impairment Cohort (SCIENCe): study design and first results. *Alzheimers Res Ther* **10**, 76 (2018).
- 10. Johnson, S.C., *et al.* The Wisconsin Registry for Alzheimer's Prevention: A review of findings and current directions. *Alzheimers Dement (Amst)* **10**, 130-142 (2018).
- 11. Pascoal, T.A., *et al.* Discriminative accuracy of the A/T/N scheme to identify cognitive impairment due to Alzheimer's disease. *Alzheimers Dement (Amst)* **15**, e12390 (2023).
- 12. Gonneaud, J., *et al.* Association of education with Abeta burden in preclinical familial and sporadic Alzheimer disease. *Neurology* **95**, e1554-e1564 (2020).
- 13. Krishnadas, N., *et al.* Rates of regional tau accumulation in ageing and across the Alzheimer's disease continuum: an AIBL (18)F-MK6240 PET study. *EBioMedicine* **88**, 104450 (2023).
- 14. Coomans, E.M., *et al.* Performance of a [(18)F]Flortaucipir PET Visual Read Method Across the Alzheimer Disease Continuum and in Dementia With Lewy Bodies. *Neurology* **101**, e1850-e1862 (2023).
- 15. Cody, K.A., *et al.* Characterizing brain tau and cognitive decline along the amyloid timeline in Alzheimer's disease. *Brain* (2024).
- 16. Therriault, J., *et al.* Determining Amyloid-beta Positivity Using (18)F-AZD4694 PET Imaging. *J Nucl Med* **62**, 247-252 (2021).
- 17. Ossenkoppele, R., *et al.* Associations between tau, Abeta, and cortical thickness with cognition in Alzheimer disease. *Neurology* **92**, e601-e612 (2019).
- 18. Coomans, E.M., *et al.* Interactions between vascular burden and amyloid-beta pathology on trajectories of tau accumulation. *Brain* **147**, 949-960 (2024).

- 19. Jack, C.R., *et al.* The bivariate distribution of amyloid-beta and tau: relationship with established neurocognitive clinical syndromes. *Brain* **142**, 3230-3242 (2019).
- 20. Visser, D., *et al.* Tau pathology as determinant of changes in atrophy and cerebral blood flow: a multi-modal longitudinal imaging study. *Eur J Nucl Med Mol Imaging* **50**, 2409-2419 (2023).
- 21. Pascoal, T.A., *et al.* In vivo quantification of neurofibrillary tangles with [(18)F]MK-6240. *Alzheimers Res Ther* **10**, 74 (2018).
- 22. Kokmen, E., Smith, G.E., Petersen, R.C., Tangalos, E. & Ivnik, R.C. The short test of mental status. Correlations with standardized psychometric testing. *Arch Neurol* **48**, 725-728 (1991).
- 23. Tang-Wai, D.F., *et al.* Comparison of the short test of mental status and the minimental state examination in mild cognitive impairment. *Arch Neurol* **60**, 1777-1781 (2003).

# Acknowledgements for the contributors to the PREVENT-AD Dataset

| Full Name          | Citation Name      | Affiliations                                                                                                                                                                                       | Degrees       | Titles | Roles                                                                                                                                           |
|--------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Sylvia Villeneuve  | Villeneuve, Sylvia | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • PhD         |        | <ul> <li>Director</li> <li>Investigator</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> <li>Project<br/>Administration</li> </ul> |
| Judes Poirier      | Poirier, Judes     | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • PhD         |        | <ul><li>Co-Director</li><li>Investigator</li><li>Genetic Analysis<br/>and Biochemical<br/>Assays</li></ul>                                      |
| John C.S. Breitner | Breitner, John     | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • MD<br>• MPH |        | <ul><li>Director<br/>Emeritus</li><li>Investigator</li><li>Project<br/>Administration</li></ul>                                                 |
| Mohamed Badawy     | Badawy, Mohamed    | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                | • MD          |        | <ul><li>Investigator</li><li>LP/CSF</li><li>Collection</li></ul>                                                                                |
| Sylvain Baillet    | Baillet, Sylvain   | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                | • PhD         |        | <ul> <li>Investigator</li> </ul>                                                                                                                |
| Andrée-Ann Baril   | Baril, Andrée-Ann  | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • PhD         |        | <ul><li>Investigator</li><li>Data Analysis</li></ul>                                                                                            |

| Pierre Bellec      | Bellec, Pierre         | <ul> <li>Université de Montréal, Montreal, QC, CA</li> <li>Centre de recherche Institut Universitaire de Gériatrie de Montréal, Montreal, QC, CA</li> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • PhD | <ul> <li>Investigator</li> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul> |
|--------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|
| Véronique Bohbot   | Bohbot, Véronique      | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                                                                                              | • PhD | • Investigator                                                                                                   |
| Danilo Bzdok       | Bzdok, Danilo          | McGill University, Montreal, QC, CA                                                                                                                                                                                                                                                                                                             | • PhD | Investigator                                                                                                     |
| Mallar Chakravarty | Chakravarty,<br>Mallar | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                                                                                              | • PhD | <ul> <li>Investigator</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                        |
| D. Louis Collins   | Collins, D. Louis      | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                  | • PhD | <ul> <li>Investigator</li> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul> |
| Mahsa Dadar        | Dadar, Mahsa           | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                                                                                                                                                             | • PhD | <ul> <li>Investigator</li> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul> |

| Simon Ducharme    | Ducharme, Simon    | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                                       | • MD  | <ul> <li>Investigator</li> <li>Clinical Evaluation LP/CSF Collection</li> </ul>                                  |
|-------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|
| Alan Evans        | Evans, Alan        | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                                       | • PhD | Investigator     Processing and     Evaluation     (MRI/PET/MEG)                                                 |
| Claudine Gauthier | Gauthier, Claudine | Concordia University, Montreal, QC, CA                                                                                                                                                                                                                                                                                                                               | • PhD | <ul> <li>Investigator</li> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul> |
| Maiya R. Geddes   | Geddes, Maiya      | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>Stop-Alzheimer Centre, Montreal, QC, CA</li> <li>McGill University Research Centre for Studies in<br/>Aging, Montreal, QC, CA</li> </ul> | • MD  | <ul><li>Investigator</li><li>Clinical</li><li>Evaluation</li></ul>                                               |
| Rick Hoge         | Hoge, Rick         | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                                       | • PhD | <ul> <li>Investigator</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                        |
|                   |                    |                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                                                                  |

| Yasser Ituria-Medina | Ituria-Medina,<br>Yasser | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>           | • PhD         | <ul> <li>Investigator</li> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul> |
|----------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------|
| Maxime Montembeault  | Montembeault,<br>Maxime  | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                                       | • PhD         | <ul><li>Investigator</li><li>Consultant</li></ul>                                                                |
| Gerhard Multhaup     | Multhaup, Gerhard        | McGill University, Montreal, QC, CA                                                                                                                                                                                                                                                      | • PhD         | • Investigator                                                                                                   |
| Lisa-Marie Münter    | Münter, Lisa-Marie       | McGill University, Montreal, QC, CA                                                                                                                                                                                                                                                      | • PhD         | • Investigator                                                                                                   |
| Natasha Rajah        | Rajah, Natasha           | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                                       | • PhD         | <ul> <li>Investigator</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                        |
| Pedro Rosa-Neto      | Rosa-Neto, Pedro         | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>McGill University Research Centre for Studies in<br/>Aging, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • PhD<br>• MD | <ul> <li>Investigator</li> <li>Clinical Evaluation LP/CSF Collection</li> </ul>                                  |
| Taylor Schmitz       | Schmitz, Taylor          | Western University, London, ON, CA                                                                                                                                                                                                                                                       | • PhD         | Investigator                                                                                                     |
| Jean-Paul Soucy      | Soucy, Jean-Paul         | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>           | • MD          | • Investigator                                                                                                   |

| Nathan Spreng               | Spreng, Nathan              | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                  | • PhD         | <ul> <li>Investigator</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                                                   |
|-----------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Christine Tardif            | Tardif, Christine           | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>   | • PhD         | <ul> <li>Investigator</li> <li>Acquisition (MRI/PET/MEG)</li> <li>Data Analysis</li> <li>Processing and Evaluation (MRI/PET/MEG)</li> </ul> |
| Etienne Vachon-<br>Presseau | Vachon-Presseau,<br>Etienne | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>Northwestern University, Chicago, IL, USA</li> </ul> | • PhD         | <ul><li>Investigator</li><li>Consultant</li></ul>                                                                                           |
| Mohammadali Javanray        | Javanray,<br>Mohammadali    | McGill University, Montreal, QC, CA                                                                                                                                                                  | • MSc         | <ul> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                                                  |
| Meishan Ai                  | Ai, Meishan                 | Northeastern University, Boston, MA, USA                                                                                                                                                             | • BA          | Data Analysis                                                                                                                               |
| Philippe Amouyel            | Amouyel, Philippe           | • Université de Lille, Lille, HDF, FR                                                                                                                                                                | • PhD<br>• MD | <ul> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                                                                         |
| Jiarui Ao                   | Ao, Jiarui                  | McGill University, Montreal, QC, CA                                                                                                                                                                  | • BSc         | <ul> <li>Data Analysis</li> <li>Genetic Analysis<br/>and Biochemical<br/>Assays</li> </ul>                                                  |

| Gabriel Aumont-<br>Rodrigue | Aumont-Rodrigue,<br>Gabriel | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul> | • MSc         | Genetic Analysis<br>and Biochemical<br>Assays                                                         |
|-----------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------|
| Julie Bailly                | Bailly, Julie               | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul> | • PhD         | <ul><li>Acquisition<br/>(MRI/PET/MEG)</li><li>Data Entry</li><li>Project<br/>Administration</li></ul> |
| Guilia Baracchini           | Baracchini, Guilia          | McGill University, Montreal, QC, CA                                                                                                               | • PhD         | <ul><li>Data Analysis</li><li>Data Entry</li></ul>                                                    |
| Charles Beauchesne          | Beauchesne,<br>Charles      | McGill University, Montreal, QC, CA                                                                                                               | • BSc         | <ul><li>Acquisition<br/>(MRI/PET/MEG)</li><li>Data Entry</li></ul>                                    |
| Kaj Blennow                 | Blennow, Kaj                | University of Gothenburg, Gothenburg, SE-O, SE                                                                                                    | • PhD<br>• MD | <ul> <li>Genetic Analysis<br/>and Biochemical<br/>Assays</li> </ul>                                   |
| Christian Bocti             | Bocti, Christian            | • Université de Sherbrooke, Sherbrooke, QC, Canada                                                                                                | • PhD<br>• MD | <ul><li>Clinical<br/>Evaluation</li><li>Consultant</li></ul>                                          |
| Lianne Boisvert             | Boisvert, Lianne            |                                                                                                                                                   | • BA          | Data Entry                                                                                            |
| Daniel Bowie                | Bowie, Daniel               | McGill University, Montreal, QC, CA                                                                                                               | • PhD         | Data Analysis                                                                                         |
| Ann Brinkmalm<br>Westman    | Brinkmalm<br>Westman, Ann   | University of Gothenburg, Gothenburg, SE-O, SE                                                                                                    | • PhD         | <ul> <li>Genetic Analysis<br/>and Biochemical<br/>Assays</li> </ul>                                   |

| Nolan-Patrick<br>Cunningham | Cunningham,<br>Nolan-Patrick | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                                       | • BA                             | <ul> <li>Acquisition (MRI/PET/MEG)</li> <li>Cognitive Evaluation</li> <li>Data Entry</li> <li>Interview Data Collection</li> </ul>                         |
|-----------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alain Dagher                | Dagher, Alain                | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                                                                                                      | • PhD                            | Data Analysis                                                                                                                                              |
| Xing Dai                    | Dai, Xing                    | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul>                                                                                                                                        |                                  | Clinical     Evaluation                                                                                                                                    |
| Thien Thanh Dang-Vu         | Dang-Vu, Thien<br>Thanh      | Concordia University, Montreal, QC, CA                                                                                                                                                                                                                                                   | <ul><li>PhD</li><li>MD</li></ul> | Consultant                                                                                                                                                 |
| Samir Das                   | Das, Samir                   | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                                                                                                      | • MSc                            | Database     Management                                                                                                                                    |
| Marina Dauar-Tedeschi       | Dauar-Tedeschi,<br>Marina    | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>McGill University Research Centre for Studies in<br/>Aging, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • PhD<br>• MD                    | <ul> <li>Clinical<br/>Evaluation</li> <li>Data Analysis</li> <li>Genetic Analysis<br/>and Biochemical<br/>Assays</li> <li>LP/CSF<br/>Collection</li> </ul> |

| Christine Dery         | Dery, Christine            | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • MSc | <ul> <li>Cognitive Evaluation</li> <li>Data Entry</li> <li>Project Administration</li> </ul> |
|------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------|
| Maxime Descoteaux      | Descoteaux,<br>Maxime      | Université de Sherbrooke, Sherbrooke, QC, Canada                                                                                                                                                   | • PhD | <ul> <li>Consultant</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>      |
| Manon Edde             | Edde, Manon                | Université de Sherbrooke, Sherbrooke, QC, Canada                                                                                                                                                   | • PhD | <ul> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                          |
| Alfonso Fajardo Valdez | Fajardo Valdez,<br>Alfonso | McGill University, Montreal, QC, CA                                                                                                                                                                | • MSc | Data Analysis                                                                                |
| Sofia Fernandez Lozano | Fernandez Lozano,<br>Sofia | McGill University, Montreal, QC, CA                                                                                                                                                                | • MSc | <ul> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                          |
| Vladimir Fonov         | Fonov, Vladimir            | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                | • PhD | <ul> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>   |
| David G. Morgan        | G. Morgan, David           | Michigan State University, Grand Rapids, MI, CA                                                                                                                                                    | • MD  | <ul> <li>Genetic Analysis<br/>and Biochemical<br/>Assays</li> </ul>                          |
| Jonathan Gallago       | Gallego, Jonathan          | McGill University, Montreal, QC, CA                                                                                                                                                                | • MSc | <ul><li>Acquisition<br/>(MRI/PET/MEG)</li><li>Data Analysis</li></ul>                        |

| Aurelie Garrone | Garrone, Aurelie | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • BSc         | <ul> <li>Acquisition (MRI/PET/MEG)</li> <li>Cognitive Evaluation</li> <li>Data Entry</li> <li>Interview Data Collection</li> </ul> |
|-----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------|
| Louise Hudon    | Hudon, Louise    | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • BSc         | <ul><li>Cognitive<br/>Evaluation</li><li>Interview Data<br/>Collection</li></ul>                                                   |
| Adam Hull       | Hull, Adam       | McGill University, Montreal, QC, CA                                                                                                                                                                | • PhD         | Data Entry                                                                                                                         |
| Gabriel Jean    | Jean, Gabriel    | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • MSc         | <ul><li>Acquisition<br/>(MRI/PET/MEG)</li><li>Data Entry</li><li>Project<br/>Administration</li></ul>                              |
| Anne Labonté    | Labonté, Anne    | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • BSc         | Genetic Analysis<br>and Biochemical<br>Assays                                                                                      |
| Robert Laforce  | Laforce, Robert  | Université Laval, Quebec, QC, CA                                                                                                                                                                   | • PhD<br>• MD | <ul><li>Clinical Evaluation</li><li>Consultant</li></ul>                                                                           |
| Marc Lalancette | Lalancette, Marc | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                | • MSc         | Acquisition     (MRI/PET/MEG)                                                                                                      |
|                 |                  |                                                                                                                                                                                                    |               |                                                                                                                                    |

| Jean-Charles Lambert        | Lambert, Jean-<br>Charles    | • Université de Lille, Lille, HDF, FR                                                                                                                                                              | • PhD | <ul> <li>Genetic Analysis<br/>and Biochemical<br/>Assays</li> </ul>                                                                                                        |
|-----------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Corina Lazarenco            | Lazarenco, Corina            | McGill University, Montreal, QC, CA                                                                                                                                                                | • BA  | Data Entry                                                                                                                                                                 |
| Jeannie-Marie<br>Leoutsakos | Leoutsakos,<br>Jeannie-Marie | Johns Hopkins University, Baltimore, MD, USA                                                                                                                                                       | • PhD | <ul><li>Consultant</li><li>Data Analysis</li></ul>                                                                                                                         |
| Julia Loncke                | Loncke, Julia                | McGill University, Montreal, QC, CA                                                                                                                                                                | • BSc | <ul><li>Data Analysis</li><li>Genetic Analysis<br/>and Biochemical<br/>Assays</li></ul>                                                                                    |
| Laurence Maligne<br>Bruneau | Maligne Bruneau,<br>Laurence | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> |       | <ul> <li>Clinical Evaluation</li> <li>Data Entry</li> <li>Genetic Analysis and Biochemical Assays</li> <li>Interview Data Collection</li> <li>LP/CSF Collection</li> </ul> |
| Amelie Metz                 | Metz, Amelie                 | McGill University, Montreal, QC, CA                                                                                                                                                                | • MSc | <ul> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                                                                                 |
| Bratislav Misic             | Misic, Bratislav             | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                | • PhD | Data Analysis                                                                                                                                                              |

| Bery Mohammediyan                      | Mohammediyan,<br>Bery           | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul>                                                                                                                                                                                               | • BSc         | <ul> <li>Acquisition<br/>(MRI/PET/MEG)</li> </ul>                                                                             |
|----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------|
| Eugenia Nita Capota                    | Nita Capota,<br>Eugenia         | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul>                                                                                                                                                                                               | • BSc         | <ul> <li>Clinical         Evaluation</li> <li>Interview Data         Collection</li> <li>LP/CSF         Collection</li> </ul> |
| Alix Noly-Gandon                       | Noly-Gandon, Alix               | McGill University, Montreal, QC, CA                                                                                                                                                                                                                                                                                                             | • PhD         | Interview Data     Collection                                                                                                 |
| Adrian Eduardo Noriega<br>de la Colina | Noriega de la<br>Colina, Adrian | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                                                                                                                                                             | • PhD<br>• MD | Interview Data     Collection                                                                                                 |
| Pierre Orban                           | Orban, Pierre                   | <ul> <li>Université de Montréal, Montreal, QC, CA</li> <li>Centre de recherche Institut Universitaire de Gériatrie de Montréal, Montreal, QC, CA</li> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • PhD         | <ul> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                                    |
| Valentin Ourry                         | Ourry, Valentin                 | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul>                                                                                                                                                                                               | • PhD         | Data Analysis                                                                                                                 |
| Cynthia Picard                         | Picard, Cynthia                 | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                                                                                              | • PhD         | Genetic Analysis<br>and Biochemical<br>Assays                                                                                 |
|                                        |                                 |                                                                                                                                                                                                                                                                                                                                                 |               |                                                                                                                               |

| Alexa Pichet Binette | Pichet Binette,<br>Alexa | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • PhD | <ul> <li>Cognitive Evaluation</li> <li>Data Analysis</li> <li>Interview Data Collection</li> <li>Processing and Evaluation (MRI/PET/MEG)</li> </ul> |
|----------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Nathalie Prenevost   | Prenevost,<br>Nathalie   | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>                                                                | • BSc | <ul> <li>Acquisition (MRI/PET/MEG)</li> <li>Cognitive Evaluation</li> <li>Data Entry</li> <li>Interview Data Collection</li> </ul>                  |
| Ting Qiu             | Qiu, Ting                | McGill University, Montreal, QC, CA                                                                                                                                                                | • MSc | Data Analysis                                                                                                                                       |
| Marc James Quesnel   | Quesnel, Marc            | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul>                                                  | • MSc | <ul> <li>Data Analysis</li> <li>Genetic Analysis<br/>and Biochemical<br/>Assays</li> </ul>                                                          |
| Charles Ramassamy    | Ramassamy,<br>Charles    | • Institut national de la recherche scientifique, Laval, QC, CA                                                                                                                                    | • PhD | Genetic Analysis     and Biochemical     Assays                                                                                                     |
| Jean-Michel Raoult   | Raoult, Jean-<br>Michel  | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • BSc | <ul> <li>Database         Management         Database         Programming     </li> </ul>                                                           |

| Jordana Remz      | Remz, Jordana      | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul>                                                  | • BSc | <ul> <li>Data Analysis</li> <li>Database     Programming</li> <li>Processing and     Evaluation     (MRI/PET/MEG)</li> </ul>       |
|-------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------|
| Erica Rothman     | Rothman, Erica     | McGill University, Montreal, QC, CA                                                                                                                                                                |       | Data Entry                                                                                                                         |
| Safa Sanami       | Sanami, Safa       | Concordia University, Montreal, QC, CA                                                                                                                                                             | • PhD | <ul> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                                         |
| Isabel Sarty      | Sarty, Isabel      | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul>                                                  | • MSc | <ul><li>Data Analysis</li><li>Genetic Analysis<br/>and Biochemical<br/>Assays</li></ul>                                            |
| Elisabeth Sylvain | Sylvain, Elisabeth | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul> | • BA  | <ul> <li>Acquisition (MRI/PET/MEG)</li> <li>Cognitive Evaluation</li> <li>Data Entry</li> <li>Interview Data Collection</li> </ul> |
| Andras Tikasz     | Tikasz, Andras     | McGill University, Montreal, QC, CA                                                                                                                                                                | • PhD | Data Analysis                                                                                                                      |
| Stefanie Tremblay | Tremblay, Stefanie | Concordia University, Montreal, QC, CA                                                                                                                                                             | • MSc | Data Analysis                                                                                                                      |
|                   |                    |                                                                                                                                                                                                    |       |                                                                                                                                    |

| Jennifer Tremblay-<br>Mercier | Tremblay-Mercier,<br>Jennifer | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>StoP-Alzheimer Centre, Montreal, QC, CA</li> </ul>                                                                                                                  | • MSc         | <ul> <li>Data Analysis</li> <li>Project     Administration</li> <li>Randomization     and Pharmacy     Allocation</li> </ul> |
|-------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------|
| Stephanie Tullo               | Tullo, Stephanie              | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul>                                                                                                                                                                   | • BSc         | <ul> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                                   |
| Jacob Turcotte                | Turcotte, Jacob               | McGill University, Montreal, QC, CA                                                                                                                                                                                                                                                                                 | • BSc         | Data Analysis                                                                                                                |
| Irem Ulku                     | Ulku, Irem                    | McGill University, Montreal, QC, CA                                                                                                                                                                                                                                                                                 | • PhD         | Data Analysis                                                                                                                |
| Paolo Vitali                  | Vitali, Paolo                 | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> <li>McGill University Research Centre for Studies in<br/>Aging, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul> | • PhD<br>• MD | • Consultant                                                                                                                 |
| Ellen Wang                    | Wang, Ellen                   | McGill University, Montreal, QC, CA                                                                                                                                                                                                                                                                                 | • MSc         | <ul> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                                                          |
| Alfie Wearn                   | Wearn, Alfie                  | McGill University, Montreal, QC, CA                                                                                                                                                                                                                                                                                 | • PhD         | <ul> <li>Data Analysis</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul>                                   |
| Kayla Williams                | Williams, Kayla               | McGill University, Montreal, QC, CA                                                                                                                                                                                                                                                                                 | • BA          | Data Analysis     Data Entry                                                                                                 |

| Yara Yakoub       | Yakoub, Yara       | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Douglas Mental Health University Institute Research<br/>Centre, Montreal, QC, CA</li> </ul> | • MSc | <ul> <li>Data Analysis</li> <li>Data Entry</li> <li>Processing and<br/>Evaluation<br/>(MRI/PET/MEG)</li> </ul> |
|-------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------|
| Robert Zatorre    | Zatorre, Robert    | <ul> <li>McGill University, Montreal, QC, CA</li> <li>Montreal Neurological Institute and Hospital,<br/>Montreal, QC, CA</li> </ul>               | • PhD | • Consultant                                                                                                   |
| Henrik Zetterberg | Zetterberg, Henrik | University of Gothenburg, Gothenburg, SE-O, SE                                                                                                    | • PhD | <ul> <li>Genetic Analysis<br/>and Biochemical<br/>Assays</li> </ul>                                            |