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Abstract

The sandfish (Scincus scincus) is a lizard having the remarkable ability to move through desert sand for significant distances.
It is well adapted to living in loose sand by virtue of a combination of morphological and behavioural specializations. We
investigated the bodyform of the sandfish using 3D-laserscanning and explored its locomotion in loose desert sand using
fast nuclear magnetic resonance (NMR) imaging. The sandfish exhibits an in-plane meandering motion with a frequency of
about 3 Hz and an amplitude of about half its body length accompanied by swimming-like (or trotting) movements of its
limbs. No torsion of the body was observed, a movement required for a digging-behaviour. Simple calculations based on
the Janssen model for granular material related to our findings on bodyform and locomotor behaviour render a local
decompaction of the sand surrounding the moving sandfish very likely. Thus the sand locally behaves as a viscous fluid and
not as a solid material. In this fluidised sand the sandfish is able to ‘‘swim’’ using its limbs.
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Introduction

The scincid lizard genus Scincus [1] is distributed over an

extensive desert belt ranging from the African west coast (Morocco

to Senegal) through the Sahara and the Arabian peninsula into

Jordan, Iraq and SW Iran [2–6]. Within this vast range, which

biogeographically resides in Saharo-Sindian type, there are several

species of Scincus scincus (including S. s. conirostris, S. s. cucullatus, S. s.

meccensis), S. albifasciatus (including S. a. laterimaculatus), S. hemprichii,

and S. mitranus. The two last taxa include other previously

recognized species in synonymy [3]. All of these only rarely

coexisting forms exhibit the same general behavioural features in

being able to not only dive into loose, aeolian desert sand in order

to escape from predators (sand diving), but to also move beneath

the dry sand surface with considerable speed over significant

distances (sand swimming). Niche segregation in sympatric forms

(e.g. Scincus s. conirostris and S. mitranus in Saudi Arabia) is not yet

well understood and may relate to the grain size of the sandy

substrate. The morphological adaptations related to this lifestyle

have long been known [1,7,8]. These adaptations include a shovel-

shaped snout with the lower jaw wedged beneath the upper jaw,

reduced ear openings, a subquadrangular cross section of the body

(more precisely, a flattened pentagon), and strongly developed

limbs with fringed digits and toes. Recent authors have studied

and/or discussed anatomical, morphological and behavioural

aspects of the genus Scincus (the ‘‘sandfish’’ of the Arabs) in the

Saharo-Arabian region [3,9–18].

Movement in or under sand is also used by several other lizards

and has been independently acquired in several families (see

Table 1). Some of these families only perform sand burying

behaviour(sand diving) to hide from predators, especially during

night (e.g. some Liolaemus species [19]). Others actually move

under the sand (sand swimming). The majority of these lizards are

characterized by reduced limbs that are adpressed to the body

during sand swimming or even by absent limbs (Table 1). These

forms move through soil using a serpentine action, and only a few

species (see Table 1) with well-developed limbs perform true sand

swimming. Whether or not the exact mechanisms of sand

swimming are equal to that of Scincus is unclear.

The sand-diving techniques of species with well-developed limbs

show much variation and have recently been described and

discussed in detail [9]. They range from a vertical ‘‘burial’’ of the

body by rapid lateral oscillations, as in Phrynocephalus and

Phrynosoma, to the so-called ‘‘shimmy’’ burial of Uma, Callisaurus

and Cophosaurus. True sand swimming, however, where a lizard

with well-developed limbs remains for longer periods below the

surface and covers considerable distances with remarkable speed

appears to be restricted to the species of Scincus and possibly to the

lizard said to be most similar in its sand-swimming behaviour, the

gerrhosaurid Angolosaurus. It is tempting to assume that the

morphologically different lizards Meroles (Lacertidae) and Eremias-

cincus (Scincidae) may use a different mode of underground

locomotion. It is generally believed that in this locomotory-type

propulsive thrust is produced without the use of limbs [11,17].

Arnold [9] explicitly states that ‘‘the forelegs are then laid back

along the body as they become submerged but this happens to the

hindlimbs, while they are still fully exposed. From this stage,

locomotion is essentially serpentine with the body and tail

PLoS ONE | www.plosone.org 1 October 2008 | Volume 3 | Issue 10 | e3309



following the high-amplitude sinusoidal curve adopted by the

head.’’ For Angolosaurus, sand diving has been described [9] and is

stated to be very similar to that of Scincus [9], the lizards ‘‘moving

sinusoidally beneath the sand’’.

In this paper, we test this hypothesis of a serpentiform sand

swimming with adpressed limbs by S. scincus using NMR imaging,

because, along with the sensory system, the integument [10] and

the breathing mechanism, locomotion seems to be a particularly

important adaptation of this desert lizard.

Results

Along with conventional photography, 3D-laserscanning was

employed to document the macroscopic morphology of S. scincus.

Table 1. Summary of relevant sand-dwelling squamate reptiles [9,28].

Family 4 well-developed limbs limbs reduced or absent

Sand-diving (burial only)
Sand-swimming (locomotion
below sand) Sand-diving or -swimming

Phrynosomatidae Callisaurus draconoides

Cophosaurus texanus

Phrynosoma spp.

Uma notata

Tropiduridae Liolaemus spp.

Tropidurus spp.

Agamidae Agama etoshae

Phrynocephalus spp.

Lacertidae Eremias spp.

Meroles spp. Meroles anchietae

Gerrhosauridae Angolosaurus skoogi Angolosaurus skoogi

Scincidae Ctenotus spp. Acontias spp.

Eremiascincus spp. Eremiascincus spp. Chalcides (Sphenops) spp.

Scincopus fasciatus Cryptoscincus minimus

Scincus spp. Scincus spp. Lerista spp.

Trachylepis acutilabris Neoseps reynoldsi

Pygomeles spp.

Gymnophthalmidae Calyptommatus spp.

Notobachia spp.

Procellosaurinus spp.

Vanzoia rubricauda

Amphisbaenidae Amphisbaena spp.

Bipes spp.

Trogonophidae Agamodon spp.

Diplometopon zarudnyi

Pachypalaminus sp.

Trogonophis wiegmanni

Leptotyphlopidae Leptotyphlops spp.

Typhlopidae Typhlops spp.

Boidae Eryx spp.

Gongylophis spp.

Lichanura spp.

Colubridae Chilomeniscus spp.

Chionactis spp.

Phimophis spp.

Elapidae Simoselaps bertholdi

Viperidae Bitis peringueyi

Cerastes vipera

doi:10.1371/journal.pone.0003309.t001
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Typical results are depicted in Figure 1, and the full 3D-model is

available in the supplementary data (Figure S1). Typical

adaptations to the life in loose sand are evident in the spatula-

shaped snout, the streamlined body shape, the smooth integument,

and broadened and fringed digits [20]. It can be clearly seen that

the limbs are well developed and show no sign of reduction. The

transverse section of the skink approximates a flattened pentagon

with the apex, pointing dorsal. It has a maximal width of about

20 mm. No axillary grooves for the limbs are evident.

The rapid burying process of an adult sandfish released from the

experimenter’s hand is documented in Figure 2 in 60 ms intervals,

and also in a supplementary video (Video S1). The sinuous

movement of the body and tail can be clearly seen. Each point on

the body undergoes a sinusoidal lateral displacement with

amplitudes of about half the body length and a frequency of

approximately 3 Hz. Furthermore, it is clearly evident that the

limbs are not folded against the body and kept immobile, but are

actively used to generate thrust by an alternating paddling-like

movement. In all of the videotape sequences of burying sandfish

there was no clear indication of additional torsional movements of

the body.

To observe the sandfish in the sand, NMR-imaging, adjusted to

detect hydrogen atoms, was employed. This was found to be the

best method as the dry sand does not yield a hydrogen NMR-

signal whereas the tissues of the sandfish give a clear signal yielding

a sufficient signal to noise ratio. This enables fast, repetitive

imaging which is necessary for the investigation of locomotion

within the sand. An image of a sandfish resting beneath about

100 mm of sand is depicted in Figure 3. The body is flexed in the

plane of the image. The limbs are clearly visible and are obviously

extended from the body.

Using the projection method described in the ‘‘Materials and

Methods’’ section, we were able to obtain dorsal and a lateral side

view with a periodicity of 120 ms. A typical image sequence is

depicted in Figure 4, and supplementary videos are available (top

view: Video S2, side view: Video S3). Because of the high temporal

resolution, the spatial resolution is limited. Nevertheless the body

axis can easily be determined, and the limbs are visible in many of

the images. Body undulation in the horizontal plane is clearly

evident, but there is no bending of the body in the vertical plane.

Along with the undulatory movement, the limbs are employed

reciprocating in a swinging fashion throughout the observation

interval in a similar fashion to the pattern observed during

burying. This is evident even when the sandfish is rather deep

underneath the sand surface. This indicates that propulsion is, at

least in part, generated by the limbs and feet.

In order to quantify the animal’s movement in the sand, the

longitudinal body axis was documented throughout the NMR-

image sequences. The result for the image sequence shown in

Figure 4 is depicted in Figure 5. Snapshots of the body axis are

depicted in different colours for the individual time points

(Figure 5A) which were spaced by 120 ms. It is evident that the

movement is not a snake-like undulatory pathway through the

sand along a constant longitudinal trajectory, but instead, involved

significant transverse movements in the sand. To depict the

individual snapshots of the body axis, the graphs in Figure 5A were

stretched laterally in a time dependent manner by adding a time

dependent lateral shift. The result is shown in Figure 5B. Here the

shape of the body axis during the movement is clearly seen. The

frequency of the meandering movement was again about 3 Hz.

The sandfish depicted in Figures 4 and 5 exhibited a moderate

locomotion in longitudinal direction with an initial velocity of

Figure 1. Morphology of a sandfish. (A) A living adult sandfish in the hand of the experimenter. (B) top-view (C) side-view of a 3D-reconstruction
of a fixed sandfish. The spatula-shaped snout, the streamlined body shape, the smooth integument, long limbs as well as long and fringed digits can
be seen representing typical adaptations to live in lose sand. The transversal section of the skink represents approximately a flattened pentagon
pointing dorsal. However, axillary grooves for the limbs are not evident.
doi:10.1371/journal.pone.0003309.g001

Sandfish NMR
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about 100 mm/s. In our experiments the velocity of the sandfish

in the sand of a depth up to 150 mm ranged up to 300 mm/s.

In order to analyse the movement of distinct parts of the body,

the lateral amplitude of the movement of the tip of the head, the

mid-part of the body axis and of the tip of the tail were

determined. The positions were phase matched. It is clearly

evident that the undulations are approximately identical for all

parts of the body yielding travelling waves. This can be seen in a

schematic drawing of one half-cycle of the sandfish’s movement

depicted in Figure 6. The drawing is based on the time series

shown in Figure 4. While the NMR time series clearly allowed

determination of the body axis and the principal movement of the

limbs, the exact movement of the feet could not be determined due

to the limited spatial resolution.

Figure 2. Time series of snapshots of the burying behaviour of the sandfish. After released from the experimenter’s hand, the lizard starts
to perform a serpentiform movement which is accompanied by a limb movement typically a way that a front limb is ‘‘swung’’ backwards when the
cranial part of the lizard is bent towards the colateral side.
doi:10.1371/journal.pone.0003309.g002

Sandfish NMR

PLoS ONE | www.plosone.org 4 October 2008 | Volume 3 | Issue 10 | e3309



As will be discussed below, one can estimate that at certain

oscillation frequencies granular media like sand could behave

more like a fluid than like a solid body. In order to test whether the

undulations at the observed frequency result in a so called

decompaction (see below), we measured the power consumption

which is direct proportional to the forces necessary to move an

aluminium rod of a diameter similar to that of a sandfish (20 mm)

at certain frequencies through sand in a depth of 100 mm. The

results are depicted in Figure 7. Clearly the necessary force drops

at about 3 Hz and then slowly increases. In the absence of sand

the force is, of course, much lower and increases slightly with

increasing frequency (not shown).

Discussion

In the present study we demonstrate the mode of movement

through sand of the sandfish S. scincus by using fast imaging NMR.

We found a meandering in plane body motion accompanied by a

‘‘trotting’’ like movement of the limbs. No torsion of the body,

especially of the head with its spatula-shaped snout was observed.

This intuitively logical torsional movement was initially assumed to

occur [14]. However, given the tendency of sand to flow, it is clear

that the sandfish does not dig tunnels through the loose sand using

the snout, but relies upon other methods for progression. It was

advocated in accounts published [9,11,17,19], that the meander-

ing movement of the body alone is sufficient to generate the thrust

necessary for the movement through the sand. This hypothesis

may have been predicted on observations of some lizards (and

snakes) swimming in water. Most swimming lizards adpress their

limbs against the body during swimming and generate thrust by

their body and tail alone [21] (to our knowledge the only exception

is another skink, Tiliqua rugosa [21]). However, for an undulatory

movement to generate thrust, some sort of symmetry-breaking is

necessary. This symmetry-breaking can be a modulation of the

amplitude of the sinusoidal body movement over the length of the

body as observed in water-swimming lizards. When swimming in

water, the head remains almost still, whereas the amplitude of the

sinusoidal movement increases towards the tail tip [21]. Other

possibilities for symmetry-breaking are a modulation of the

frequency of a significant change of the body form. In the case

of the sandfish swimming in sand, none of these possibilities

appear to be adopted. It is evident from the NMR-images that the

amplitude and frequency of the sinusoidal lateral movements are

almost identical over the entire length of the sandfish. Further-

more, the body does not get broader towards the tail which itself is

not laterally compressed. Additionally the limbs are used in the

process. We propose that two important effects take place during

sand swimming: i) the limbs are moved forward in loose sand and

Figure 3. NMR image of a sandfish buried approximately 100
mm deep in loose sand (top-view). - Clearly the body is contorted
in a serpentiform manner and the limbs are not laid back along the
body as suggested in the literature. The NMR-image is of the same
individual shown in Figure 1.
doi:10.1371/journal.pone.0003309.g003

Figure 4. Time series (side- and top-view) NMR-images during
the burying process of a sandfish. Whereas a clear serpentiform
(sinusoidal) movement can be observed in the top view, no significant
contortion of the body can be seen in the side view. Although the SNR
is not sufficient to see fine details of the lizard, in several images the
limbs can be clearly identified and can be seen to perform a swimming
or walking like movement. The time interval tD images was set to 120
ms for this experiment. Due to the NMR-protocol used, the object
leaving the imaging area at the top side appears to enter at the bottom
side and vice versa as explained in detail in the Methods. The image
marked with asterisk is shown at the bottom in detail showing three
visible limbs extended from the body (legs marked by arrows).
doi:10.1371/journal.pone.0003309.g004

Sandfish NMR
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backward in compacted (compressed) sand. This leads to a net

forward thrust; ii) a decompaction of the sand occurs around most

of the body of the sandfish.

A complete physical description of the processes in the sand

around the ‘‘swimming’’ sandfish is currently under investigation.

However, we can estimate the processes taking place in the sand,

and do so here by approximating the sandfish problem. Let us first

consider the limbs generating thrust. We can only recognise the

general characteristics of a trot but cannot distinguish details of the

gait pattern [22]. Nevertheless, it can be clearly seen from the time

series related the burying, as well as from the NMR-images, that

the forward-movement of a limb occurs during bending of the

body to the contralateral side, while the backward movement is

performed during bending to the ipsilateral (collateral) side (see

Figure 6). In the latter case there is pressure from the body applied

onto the sand surrounding the limb. Thus the pore-number is

reduced leading to an increase in the shear strength of the sand.

Conversely, during forward movement of the limb, which is during

bending of the body towards the contralateral side, sand flow is

induced in the vicinity of the limb leading to a reduction of the

shear strength. It can be estimated that a change from theoretically

most dense packing (pore-number for quartz sand: e,0.54) to

loose packing (pore number e,1) alone will result in a decrease of

the shear strength t up to a value of 45%, as e?t is approximately

constant in dry quartz sand [9,23]. Thus the backward drag which

the limbs generate during forward movement is considerably

reduced in comparison to the forward drag during backward

movement of the limbs. This effect might be amplified due to

Figure 5. Time series of the behaviour of the longitudinal axis of the sandfish. This series was obtained from the NMR-images shown in
Figure 4. The central body axis was measured and depicted showing the principal body shape. (A) Time dependent position and contortion of the
length axis of the sandfish from snout to tail. Clearly after submersion in the sand there is always a transverse relative movement between body and
sand, i.e. the sandfish body does not glide through a hole made by the snout but shears the sand as it moves. (B) In order to clearly show the
sinusoidal shape of the body length axis during the movement, the reconstruction of the length axis was laterally displaced for each time point
allowing the determination of amplitude and frequency of the oscillation underlying the sandfish locomotion. Following the lateral displacement of
the head, the tail and the centre of the body over time shows an almost identical sinusoidal motion. Clearly similar amplitudes and frequencies of the
lateral movement can be observed for all parts of the body.
doi:10.1371/journal.pone.0003309.g005

Figure 6. Schematic drawing of the sandfish’s movement in the sand for one half-cycle. Dashed arrows indicate the local movement of
the body axis while solid arrows indicate the movement of the limbs. The body axis and the limb direction were extracted from figure 4 and 5
respectively comprising NMR-image 7 to 10 in these figures. The limb direction is indicated however, the feet and the exact attitudes of the feet and
toes were not drawn, because it is impossible to determine these data from the NMR-images due to the limited resolution.
doi:10.1371/journal.pone.0003309.g006

Sandfish NMR
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coordinated spreading of the toes during retraction. This would

lead to a net forward thrust. Here, we should like to add that a

detailed analysis of the feet and toe movements would go far

beyond the goals of the present study. Although it would be

interesting to resolve the exact action of feet and toes, their

influence on the decompaction of the sand seems to be only

marginal.

Additionally, the undulatory movement may lead to a

decompaction of the sand surrounding the body of the sandfish.

This can be roughly approximated according to the Janssen model

[9], in which a sinusoidal vertical movement of a pile of granular

medium is assumed. Due to the lateral oscillations of the sandfish,

besides particle flows around the body, a vertical acceleration of

the sand particles is induced. This is facilitated by the spatula-

shaped snout, the streamline body shape with a flattened

pentagonal cross section, and the lizard’s integument (which

exhibits an extremely low friction coefficient for quartz sand

[10,14]). If the vertical oscillation is slow, the sand particles will

simply stay in contact and perform the oscillation as a compact

pile. If the oscillation is fast, i.e. the accelerations the particles

experience is above a critical acceleration (the ‘lift-off’ accelera-

tion), the particles will separate and stay separated due to collisions

(Figure 8). According to the Janssen model, this phenomenon is

called decompaction of the granular material (the sand). This takes

place if the acceleration, C, is beyond the lift-off acceleration,

which was found to be Clo<1.9, according to the calculations,

presented in the methods section. This lift-off acceleration is

reached at an oscillation frequency of approximately 5 Hz vertical

(2.5 Hz oscillation in the horizontal plane). This is clearly below

the frequency of the sandfish’s meandering motion in the

horizontal plane (3 Hz in plane and 6 Hz vertical oscillation

respectively). Thus, we may expect a local decompaction of the

sand which results in the sand locally behaving more like a fluid

than a solid body [23]. The fact that the acceleration is not greatly

beyond the lift-off acceleration, but close to it, is not surprising: it

would be energetically useless and exhausting for the sandfish to

spend a large of effort to further accelerate the sand without

having the benefit of a further significant drag-reduction.

Performing force measurements in loose sand clearly showed

that at a frequency of 3 Hz, a horizontal sinusoidal movement of a

cylindrical probe mimicking the geometry of the sandfish

movement required the least force. This experimental result is in

excellent agreement with the prediction according to the Janssen

model.

Although the above calculation is a rough estimation based on

very simplifying assumptions and neglecting some geometrical

restrictions, it is instructive to assume that the undulatory

movement of the sandfish results in a local decompaction of the

sand. This allows the sandfish to ‘‘swim’’ in this fluid-like granular

medium by propelling itself forward by using the limbs, which face

low drag during forward movement and high drag during

backward movement due to the bending of the body. The drag

induced by movement through the decompacted sand is orders of

magnitude lower than it would be in compact sand [23].

In currently-ongoing work we are attempting to develop a better

model for the physical phenomena in the sand around a

meandering sandfish based on the NMR-data obtained so far.

This might prove useful in two respects. Firstly, we may again a

better understanding of the sandfish and other sand-living animals.

Secondly, we may be able to learn more about the physics of

granular media and some of the means available to effectively

decompact these. This might be useful in the engineering sciences

in the near future for applications to industrial processing,

conveyor technique and handling of grain, sand, powders and

the like.

Materials and Methods

Photography
Photographic images of the sandfish were taken using a Canon

EOS 350D (Canon inc., Tokyo, Japan) with the original telephoto

Figure 7. Frequency dependence of the force necessary to
move a round body cyclical through sand. A round piece of
aluminium was moved using of a home-built apparatus (see
supplementary material S5) 100 mm underneath the sand surface in a
sinusoidal path with an amplitude of 60 mm. Because the current for
the linear motor was controlled to perform the desired movement, the
current consumption was a direct measure for the force the motor has
to overcome. The minimum of the required current can be seen at
about 3 Hz.
doi:10.1371/journal.pone.0003309.g007

Figure 8. Behaviour of a single column of particles when
oscillated vertically. When a single column of particles of a granular
medium (A) is oscillated vertically, the particles experience a time-
dependent acceleration C. If this acceleration is below the lift-off
acceleration loC (B), the particles stay in contact and the whole column
(pile) will stay together and perform the movement: the pile will
therefore behave like a solid body. If the acceleration is larger (C), the
particles will separate and stay mostly separated due to collisions. The
pile will behave more like a fluid.
doi:10.1371/journal.pone.0003309.g008

Sandfish NMR
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lens (Canon EF-S 18–55 mm, 1:3.5–5.6) attached. The auto

exposure setting was used without flash.

3D-Laserscanning
The digital 3D model of the sandfish was acquired using the

following process. Firstly the specimen was scanned from 26

different vantage points using a Minolta VI-900 non-contact laser

range digitizer. The scanner casts a moving plane of laser light

onto the object to be digitized and captures, for each position of

the plane, an image of the laser projection using a CCD camera.

The object’s shape is then derived from the sequence of observed

contours (see [24] for more details on optical triangulation). The

scanner’s output is a depth-image related to each vantage point,

which are then easily transformed into a surface patch. Since the

positions and orientations of the resulting surface patches are not

aligned after scanning, the patches have to be transformed into a

common coordinate frame. This was done using a custom

implementation of the Iterative Closest Points (ICP) algorithm

[25]. Finally the individual surface patches were merged to a single

watertight triangle mesh by applying the surface reconstruction

method [26].

NMR - imaging
The movement of the sandfish was measured in a MRI-

compatible setup with a time resolution of 120 ms and a spatial

resolution of 1.56 mm61.17 mm. The experimental setup was

optimized for a sufficient signal-to-noise ratio, while allowing the

sandfish to move through the sand. Rapid 3D imaging was done

using a newly developed MRI method, as described below. Three

individuals were investigated.

Experimental Setup. The imaging experiments were

performed using a 1.5 T whole-body scanner (Magnetom VISION;

Siemens Medical Systems, Erlangen, Germany) with a peak gradient

amplitude of 25 mT/m and a slew rate of 83 T/m/second. For

signal reception, a head coil was used in all measurements. The

sensitive area of this coil has a length of approximately 30 cm. Signal

transmission was done using the built in body coil. Since the

sandfishes, and especially the sand, did not load the body coil

sufficiently, additionally four bottles, each filled with 1.5 litres of

water containing nickel sulphide (NiSO4), were also placed

symmetrically around the head coil. T1 and T2 relaxation time

was due to high concentration of nickel sulphide less than 0.1 ms,

meaning, that equilibrium magnetization is reached directly after

excitation. No MRI-signal were generated from this additional load

since typical echo times for imaging methods and especially the

described method is typical beyond 1 ms. The coil was filled with a

cylindrical box, 40 cm long, and 22 cm in diameter. The size was

chosen to fill the imaging volume of the receiver coil. The lower 60%

of the box was filled with ‘‘ExoTerra Desert Sand - White’’ with a

grain size of 0.1–1 mm. In the head direction there was an entrance

with an attached platform directly above the sand surface. The

sandfish was set on the platform. In all cases the animals moved

directly into the sand surface, quickly burying themselves. Typical

MRI scanners, such as the VISION, require a setup procedure for

each measurement. Machine settings for the following imaging

experiment rely on these parameters. During setup an object

generating MR-signal is required in an isocentric axial plane.

Therefore during the setup procedure a 50 ml water-filled centrifuge

tube (Thermo Fisher Scientific, Roskilde, Denmark) was placed in the

magnet isocenter. This tube was removed before the sandfish

measurement was started.

The three dimensional and time resolved detection of sandfish

movement was started when the sandfish was placed on the

platform. The entire burying process and the movement within the

sand was imaged until the sandfish settled in its final position.
Imaging protocol. The newly developed MRI sequence

acquires two orthogonal projections of the entire volume with a

high resolution. These projections show only the signal from the

sandfish, because the sand does not contribute to the MRI signal. The

coronally oriented projection delivers an image showing the sandfish

as seen in dorsal view, which reveals the shape of the body in the

horizontal plane and also the position of the feet during movement

(Figure 4). The transverse projection depicts the body shape as seen

from the side. From this, one can determine the depth of the sandfish

within the sand filled container. Since the sandfish is approximately a

concave object, all necessary information concerning spatial position,

movement and foot position can be derived from the acquired image

series. To achieve a high temporal resolution, which is necessary for

monitoring sandfish movement, image folding in phase encoding

direction was beneficially used. In typical MRI measurements it

appears as an unwanted artefact, but in this case it allows to image

with a high spatial resolution with the need to cover only a small field

of view (FOV) resulting a fast image acquisition. All objects

exceeding, or in this case moving out of, the field of view in the

phase-encoding direction, will appear with same intensity on the

opposite side. If the FOV is adjusted to the dimension of the sandfish

instead of the whole setup including the sand, imaging speed can be

increased, and always delivers a complete image of the reptile. This

conserves the possibility of monitoring arbitrary 3D movement of the

sandfish with high resolution. Read encoding direction was chosen

for both projections in bore direction of the scanner. Therefore the

FOV was chosen to 300 mm in read direction to cover the entire

sand bowl and 37.5 mm in phase encoding direction to guarantee

that no body parts of the sandfish fold on each other.
Imaging sequence. Simultaneous imaging of both

orthogonal projections was done with a modified FLASH

sequence [27] with double echo readout. In order to obtain

projection of the entire setup, no slice selection gradient was used.

Read encoding gradient was chosen for both echoes in axial

direction. The first echo was phase encoded in coronal direction.

After the first echo acquisition, all gradients were refocused. The

second echo was phase encoded in transversal direction. A

schematic of the pulse sequence can be seen in figure 4.

Imaging parameters were optimized to a FOV of

300 mm637.5 mm and a matrix size of 246256 pixels, resulting

in a spatial resolution of 1.56 mm61.17 mm. Duration for both

projection images was 120 ms, resulting in an image rate of 8

times two orthogonal projections per second. The repetition time

TR of the FLASH sequence was 5.0 ms. The echo time TE of the

first echo was 1.2 ms and of the second echo 3.9 ms. The nominal

flip angle a was optimized for imaging of the sandfish

experimentally to 8u. Since the flip angle calculation is based on

the scanner setup procedure done with a 50 ml water tube, it is

assumed, that the real flip angle in sandfish can differ from this

value. In total, 128 consecutive sets of two orthogonal projections

were taken, covering the first 16 seconds of sandfish movement.

Mathematical model
For description of the granular sand surrounding the sandfish, the

Janssen model was used [23]. This model describes the decompac-

tion of granular media, i.e. a transition from a solid like to a fluid like

behaviour in the case of a vertical acceleration of the medium. In

our case, each point on the axis of the sandfish moves laterally as

x~AB
:sin vBtð Þ

With AB standing for the amplitude of the meandering motion of the

sandfish, vB is the angular frequency of this movement and t
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denotes time. The meandering movement of the lizard in the

horizontal plane will induce a sinusoidal vertical movement of the

surrounding sand. The vertical acceleration of the sand due to the

body moving in the described manner would be

c~
d2H

dt2

with H being the body height at a certain position at a certain time. In

our case when approximating the body cross section by a circle of

diameter A, we can do a Fourier-series approximation of the above

formula. Using only the first term of the series, i.e. the basic frequency

v, we obtain a vertically acceleration of c<Av2 with A as the bodies

diameter, i.e. the maximal body height and v stands for the angular

frequency of the up- and down-oscillation. As during a single cycle of

the sandfish in the horizontal plane the sand is moved up and down

twice, v = 2vB. Thus the frequency of vertical acceleration results

from the oscillation frequency of the body, which is about 3 Hz, to be

approximately 6 Hz. In our case the amplitude, i.e. the body’s

diameter is about 20 mm. For convenience we introduce the

dimensionless acceleration C = c/g with g being the gravitational

acceleration.

According to the theory on the Janssen model a so called

decompaction of the granular material, i.e. the sand takes place,

when the acceleration C is beyond the lift-off acceleration which

was found to be

Clo~2{e{x

with x being the decompaction parameter which is defined as

x~S0
:ms
:K

[23]. Here S0 describes the aspect ratio of the geometry, ms is the

static granular friction coefficient of the medium and K is a

parameter comprising the stacking of the granular medium. For a

compact triangular stack (dense globular packing) the parameter

K = 0.58 and the static friction coefficient for sand was found to be

about 0.7 [23]. The aspect ratio S0 describes the ratio of the height

of the sand pile (i.e. the immersion depth of the sandfish) times the

perimeter of the pile divided by the cross section of the pile. In our

case, if we assume the pile of height 100 mm to be rectangular

over the moving sandfish which has a length of 120 mm and is

oscillating about 60 mm laterally, we obtain a lift-off acceleration

of Clo<1.9. Assuming the sandfish diameter 20 mm, the lift-off

acceleration will be reached at a frequency for the vertical

oscillation of the sand pile of 5 Hz which corresponds to an

oscillation of the sandfish in the horizontal plane with 2.5 Hz.

Drag measurements in sand
For determination of the force necessary to move a non flexible

body of the diameter of a sandfish through loose sand sinusoidally, a

150 mm long aluminium rod with diameter 20 mm was mounted at

the end by a tin construction to a linear motor (LinMot PS 01-

23x80, Linmot Coorp. Spreitenbach, CH) which was controlled by

a E 100 controler (LinMot). The controller was commanded by a

PC using the manufacturer’s controller software for the E 100. This

allowed performing sinusoidal motions of the aluminium rod in

bowl of sand at a depth of 100 mm with an amplitude of about

60 mm and defined frequencies ranging from 0.5 Hz to 6 Hz. The

force necessary to perform the programmed movement could be

directly recorded via the controller by measuring the current

consumption over time. This current consumption is, according to

the manufacturer, direct proportional to the axial force of the linear

motor. The tin construction hardly influenced the results as only the

thickness (1 mm) of the tin faced the moving direction. The

measuring device is depicted in the supplementary material (Figure

S2). The measurements were carried out using the ExoTerra desert

sand also used for the observations of the sandfish.

Supporting Information

Figure S1 3D-polygonal surface model of a sandfish obtained by

3D-laser scanning. Best seen with quich3D viewer when saved as

OBJ-file.

Found at: doi:10.1371/journal.pone.0003309.s001 (0.40 MB

VRML)

Figure S2 Photograph of the used force measuring apparatus

Found at: doi:10.1371/journal.pone.0003309.s002 (0.39 MB JPG)

Video S1 Real time video of the burying behaviour of an adult

sandfish observed from above.

Found at: doi:10.1371/journal.pone.0003309.s003 (1.51 MB AVI)

Video S2 NMR-imaging sequence of a sand-swimming skink in

top view.

Found at: doi:10.1371/journal.pone.0003309.s004 (1.35 MB

MOV)

Video S3 NMR-imaging sequence of a sand-swimming skink in

side view.

Found at: doi:10.1371/journal.pone.0003309.s005 (1.35 MB

MOV)
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