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Pseudomonas aeruginosa is the leading cause of infection in burn patients. The
increasing carbapenem resistance of P. aeruginosa has become a serious challenge
to clinicians. The present study investigated the molecular typing and carbapenem
resistance mechanisms of 196 P. aeruginosa isolates from the bloodstream and
wound surface of patients in our burn center over a period of 6 years. By multilocus
sequence typing (MLST), a total of 58 sequence types (STs) were identified. An
outbreak of ST111, a type that poses a high international risk, occurred in 2014.
The isolates from wound samples of patients without bacteremia were more diverse
and more susceptible to antibiotics than strains collected from the bloodstream or
the wound surface of patients with bacteremia. Importantly, a large proportion of the
patients with multisite infection (46.51%) were simultaneously infected by different STs
in the bloodstream and wound surface. Antimicrobial susceptibility testing of these
isolates revealed high levels of resistance to carbapenems, with 35.71% susceptibility
to imipenem and 32.14% to meropenem. To evaluate mechanisms associated with
carbapenem resistance, experiments were conducted to determine the prevalence
of carbapenemase genes, detect alterations of the oprD porin gene, and measure
expression of the ampC β-lactamase gene and the mexB multidrug efflux gene. The
main mechanism associated with carbapenem resistance was mutational inactivation
of oprD (88.65%), accompanied by overexpression of ampC (68.09%). In some cases,
oprD was inactivated by insertion sequence element IS1411, which has not been found
previously in P. aeruginosa. These findings may help control nosocomial P. aeruginosa
infections and improve clinical practice.
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INTRODUCTION

Pseudomonas aeruginosa is one of the most common pathogens
isolated from burn patients throughout the world (Revathi et al.,
1998; Singh et al., 2003; Yali et al., 2014; Dou et al., 2017; Sousa
et al., 2017). The increasing prevalence of multidrug-resistant
(MDR), extensively drug resistant (XDR), and pandrug-resistant
(PDR) P. aeruginosa poses a grim challenge for antimicrobial
therapy (El Zowalaty et al., 2015). Especially in burn centers, the
high prevalence and progressive increasing of MDR P. aeruginosa
seriously threats the patients with severe burn injure (de Almeida
Silva et al., 2017; Dou et al., 2017). Therefore, continuous
surveillance of this high-risk pathogen and understanding its
resistance mechanisms are important to effectively guide clinical
treatment and support infection control programs, as well as to
prevent its global dissemination.

Currently, carbapenems are the main antibiotics used for
treating MDR P. aeruginosa infections. However, carbapenem
resistance is increasing year by year especially in the isolates
collected from burn patients (Dou et al., 2017; Sousa et al., 2017)
and thus presents a difficult challenge for clinicians. Carbapenem
resistance in P. aeruginosa is usually multifactorial and can be
caused by several different mechanisms (Castanheira et al., 2014).
Generally, P. aeruginosa can acquire resistance to carbapenems
by acquisition of transferable genes encoding carbapenemases,
such as the metallo-β-lactamases (MBLs), Klebsiella pneumoniae
carbapenemases (KPC), and GES enzymes (Queenan and Bush,
2007; Tzouvelekis et al., 2012; Liakopoulos et al., 2013). Moreover,
repression or inactivation of the carbapenem porin OprD and
hyperexpression of the chromosomal cephalosporinase AmpC
are associated with the reduced susceptibility to carbapenems
(Lister et al., 2009; Cabot et al., 2011; Li et al., 2012).
In addition, the overexpression of efflux pump system such
as MexAB-OprM also contributes directly to meropenem
resistance (Masuda et al., 1995, 2000; Lister et al., 2009). These
mechanisms alone or together confer P. aeruginosa resistance to
carbapenems.

Wound infections and bacteremia caused by P. aeruginosa
usually happen in severe burn patients and are often refractory. In
order to understand the characteristics of P. aeruginosamolecular
typing and antimicrobial resistance profiles in our center, we
collected and analyzed 196 P. aeruginosa strains isolated from
the wound surface and bloodstream (Bl) of burn patients for a
period of 6 years (2011–2016). A subset of 141 carbapenem-non-
susceptible isolates was selected to evaluate their major resistance
mechanisms, with emphasis on the prevalence of carbapenemase
genes, upregulation of AmpC and efflux pump MexAB-OprM,
and loss or alteration of OprD.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Ethics Committee of Southwest
Hospital, Third Military Medical University. No written
informed consent was required because we received anonymized
isolate samples with all the personal information removed.

Bacterial Strains
Clinical P. aeruginosa isolates were collected from 2011 to 2016
at the Institute of Burn Research at Southwest Hospital in
Chongqing, one of the largest burn center in China, with 150
beds that takes a mass of patients mainly from southwest China.
Strains were isolated from the Bl and wound surface of burn
patients and identified using the API 20 NE system (BioMerieux)
and 16S rRNA gene sequence analysis (AbdulWahab et al.,
2015). The isolates were grouped depending on whether they
were obtained from the Bl, the wound surface of a patient
without bacteremia (WN), or the wound surface of a patient with
bacteremia (WB). Every strain was the first isolate of a series of
sample collection during hospitalization that isolated from the
specific source of the patient. P. aeruginosa PAO1 (Jacobs et al.,
2003) was used as a reference strain in the quantification of ampC
and the efflux pump gene expression.

Multilocus Sequence Typing
Multilocus sequence typing was performed as described in the
PubMLST database of P. aeruginosa1. Briefly, genomic DNA
from each isolate was extracted from cultures grown to the late
exponential phase by using a Genomic DNA Purification Kit
(Promega). The resulted genomic DNA was used as template
to amplify seven housekeeping genes (acsA, aroE, guaA, mutL,
nuoD, ppsA, and trpE) by PCR as described in the PubMLST
database2 with a few modifications. 2 × Taq premix (Takara)
was used in PCR according to the recommended conditions.
The amplification reaction for aroE required the addition
of 5% DMSO (dimethyl sulfoxide). The PCR products were
purified with Gel Extraction Kit (OMEGA) and then underwent
bidirectional sequencing using the Applied Biosystems (ABI)
3730 DNA analyzer. Gene sequences were used to query the
PubMLST database to identify matches to known (numbered)
alleles. The seven allele numbers were combined to construct an
identifier for a ST. The types that could not match any known
types were deposited to obtain new STs. BioNumerics (version
7.6) was used to analyze the clonal relationships between the STs
and create a minimum spanning tree. A clonal complex (CC) was
defined to contain at least two STs sharing any six of the seven
alleles.

Antimicrobial Susceptibility Testing
Susceptibility to piperacillin, piperacillin/tazobactam,
ceftazidime, cefepime, sulbactam/cefoperazone, amikacin,
gentamicin, netilmicin, ciprofloxacin, and levofloxacin was tested
for all isolates using the K-B agar diffusion method (CLSI 2011–
2017, M100-S21-M100-S27). MICs of imipenem, meropenem,
and polymyxin B were determined by the microdilution method.
Susceptibility was categorized using the breakpoints defined by
the Clinical and Laboratory Standards Institute guidelines (CLSI
2011–2017, M100-S21-M100-S27) and European Committee
on Antimicrobial Susceptibility Testing (EUCAST, version 7.1,
http://www.eucast.org, for polymyxin B only).

1http://pubmlst.org/paeruginosa/
2https://pubmlst.org/paeruginosa/info/primers.shtml
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Gene Amplification and Sequencing
Multiplex PCR was used to detect acquired carbapenemase genes
in carbapenem-non-susceptible isolates as described previously
(Ellington et al., 2007; Poirel et al., 2011). Eleven genes were
divided into 3 groups as follows: group 1 blaIMP, blaVIM,
blaNDM, and blaGES, group 2 blaSPM, blaBIC, and blaKPC, group
3 blaAIM, blaGIM, blaSIM, and blaDIM. One microliter of DNA
(50 ng) was subjected to multiplex PCR in a 20 µL reaction
mixture with 10 µmol/L of each primer shown in Supplementary
Table S1 (Ellington et al., 2007; Poirel et al., 2011) and 10 µL
2 × Taq premix (Takara). When necessary, 5% DMSO was
added to the reaction. Amplified products detected by agarose gel
electrophoresis were sequenced.

The full-length oprD gene from each isolate was amplified
and sequenced using the primers in Supplementary Table
S1 (Rodriguez-Martinez et al., 2009). DNA sequences were
compared with the oprD sequence from the reference strain
PAO1 using MEGA7 (Kumar et al., 2016).

Quantitative Real-Time PCR
Expression of ampC, mexB, and oprD was measured using
quantitative real-time PCR. Total RNA was extracted using
TriPure RNA isolation reagent (Roche) and reverse transcribed
to cDNA with a first-strand cDNA synthesis kit (Thermo Fisher
Scientific). RT-qPCR was then performed in a CFX Connect Real-
Time PCR System (BIO-RAD) using SYBR green real-time PCR
master mix (TOYOBO). The rpsL gene was used as an internal
reference. Primers for all the genes in RT-qPCR are shown
in Supplementary Table S1 (Juan et al., 2006; Bubonja-Sonje
et al., 2015). Three independent experiments were performed
and the mean values of relative expression for each gene were
compared with their corresponding expression levels in PAO1.
The evaluation criteria which are used widely in many other
studies were as previously described (Oh et al., 2003; Cabot
et al., 2011; Vatcheva-Dobrevska et al., 2013; Bubonja-Sonje
et al., 2015). For ampC overexpression is defined as a level
at least 10-fold higher than the corresponding level in PAO1,
negative if less than 5-fold higher, and borderline if between
5- and 10-fold. For mexB, overexpression indicates a level at
least 3-fold higher, negative indicates the level is less than 2-
fold, and borderline indicates the level is between 2- and 3-fold
higher.

Statistical Analysis
Data were analyzed using the GraphPad Prism analysis package.
The antimicrobial susceptibility of the isolates in different groups
was compared using Pearson’s chi-square test. P < 0.05 was
considered statistically significant.

RESULTS

Molecular Typing of the P. aeruginosa
Clinical Isolates
A total of 196 isolates from different sources (Bl = 73, WN = 80,
WB = 43) were analyzed by MLST to investigate their clonal

relationships. The results revealed high clonal diversity, with
42 known STs identified among 171 isolates, and 16 new STs
among 25 isolates (Supplementary Table S2). ST316, ST111,
ST360, ST244, and ST1158 were the dominant STs with at least
15 isolates in each type, and accounted for 51.53% of the total
isolates. Six CCs were identified, in which CC111, CC360, and
CC244 were considered as large CCs (Figure 1A). The top 5
STs accounted for 68.49 or 72.09% of the isolates collected from
the Bl or wound surface of patients WB, respectively. However,
among strains isolated from wound samples of patients WN,
only 25 percent belonged to these 5 STs (Figure 1B). This result
indicates that P. aeruginosa isolated from WN were more diverse
than those isolated from Bl or WB. Among isolates from Bl,
the main STs varied depending on the year of collection. In
2011 and 2012, ST316 and ST360 were the dominant types.
Beginning in 2013, ST111 emerged and became the primary type
in 2014 along with ST2483. In 2015, both lost their position
to ST244 and ST1158 (Figure 1C). As there was only one
isolate from Bl in 2016 which belonged to ST270, it was not
presented in Figure 1C. In June and July 2014, 6 strains of ST111
caused an outbreak of Bl infections in our center (Supplementary
Table S3).

Notably, in the 43 patients WB accompanied by wound
infections, only 23 patients were infected with identical STs in
their Bl and wound surface, while the other 20 patients were
infected with two different STs simultaneously (Table 1).

Antimicrobial Susceptibility Profiles
The susceptibility test (raw data are shown in Supplementary
File 1) revealed that 107 (54.59%) of the isolates exhibited an
MDR phenotype. 42 (21.42%) strains were XDR and sensitive
only to polymyxin B, which is rarely used in China. More
seriously, these isolates showed high resistance to carbapenems,
with only 70 (35.71%) of them susceptible to imipenem and 63
(32.14%) to meropenem. Since carbapenems are currently the
most important therapeutic option to treat infections caused
by MDR P. aeruginosa, the 141 carbapenem-non-susceptible
isolates (either non-susceptible to imipenem or meropenem)
were selected for further study to investigate their resistance
mechanisms.

Compared with isolates collected from WN, the samples
from Bl and WB showed higher resistance rate to the vast
majority of the antibiotics tested including piperacillin (PIP),
sulbactam/cefoperazone (CSL), piperacillin/tazobactam (TZP),
ceftazidime (CAZ), cefepime (FEP), imipenem (IPM), amikacin
(AMK), gentamicin (GEN), netilmicin (NET), ciprofloxacin
(CIP), and levofloxacin (LVX) (Figures 2A–C). This suggests
that P. aeruginosa isolated from the patients WB is more
resistant than that isolated from patients with only wound
infections.

In the top 5 STs, although no ST was associated with any
specific resistance profile, ST360 and ST1158 showed higher
resistance rate to most of the commonly used antibiotics in
burn centers such as sulbactam/cefoperazone (90.91 and 93.33%),
piperacillin/tazobactam (81.28 and 93.33%), ceftazidime (77.27
and 86.67%), cefepime (100 and 100%), imipenem (81.82 and
93.33%), and meropenem (81.82 and 93.33%) (Figure 2D).
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FIGURE 1 | Relationships and population analysis of sequence types (STs). (A) Minimum spanning tree of STs created by BioNumerics. Each solid circle denotes
one ST, and the area of the circle is proportional to the number of isolates. A solid or dashed line between circles indicates that the two linked STs share six or five
identical alleles. STs enclosed by shaded areas constitute a CC. The main STs and CCs are shown on the right. (B) Composition of STs isolated from different
sources. Bl, bloodstream; WN, wound samples from patients without bacteremia; WB, wound samples from patients accompanied by bacteremia. (C) Composition
of STs among strains isolated from the bloodstream at different times.

Presence of Carbapenemase Genes
Of the 141 carbapenem-non-susceptible P. aeruginosa, 11
(7.80%) isolates were positive for blaIMP and 9 (6.38%)
isolates harbored blaVIM. Sequence analysis showed that
these two genes encode IMP-9 and VIM-2, respectively
(Table 2). No other carbapenemase genes were detected by
PCR screening. Among these carbapenemase-positive isolates,
ST499 (6 isolates) and ST111 (5 isolates) were the main types.
One ST499 strain was positive for both blaIMP and blaVIM.
Among the strains producing IMP-9, apart from 6 strains of
ST499 and 2 strains of ST111, there was only 1 strain of
ST244, ST316, and ST1028, respectively. While, in the strains
harboring VIM-2, there were 3 strains of ST111 and ST260,
respectively, 2 of ST1158, and only 1 of ST499. None of
these STs that producing IMP-9 or VIM-2 belonged to the
same CC.

Expression of ampC and mexB
Expression levels for ampC β-lactamase gene and the mexB
multidrug efflux gene among carbapenem-non-susceptible or
meropenem-non-susceptible isolates are shown in Table 2.
AmpC hyperproduction is most common in these isolates.
Ninety-six (68.09%) isolates were found to meet criteria for
overexpression, and 12 (8.51%) isolates showed a borderline
increase. The efflux pump gene mexB was overexpressed in
12.78% of the meropenem-non-susceptible isolates.

Mutational Inactivation and Expression
of OprD Porin
Mutational inactivation of the oprD gene is the major reason for
OprD loss in P. aeruginosa (Rodriguez-Martinez et al., 2009; Fang
et al., 2014). The oprD gene sequence was therefore determined
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TABLE 1 | STs of isolates collected from the bloodstream and wound surface of patients with bacteremia accompanied by wound infection.

Patient Bl WB Patient Bl WB Patient Bl WB

1a ST360 ST316 2 ST316 ST360 3 ST360 ST360

4 ST111 ST316 5 ST623 ST360 6 ST360 ST360

7 ST360 ST360 8 ST360 ST316 9 ST316 ST316

10 ST316 ST111 11 ST316 ST360 12 ST2483 ST2483

13 ST2494 ST360 14 ST316 ST111 15 ST360 ST365

16 ST316 ST316 17 ST316 ST111 18 ST111 ST111

19 ST111 ST316 20 ST2483 ST111 21 ST2483 ST2483

22 ST111 ST111 23 ST782 ST2492 24 ST2488 ST2488

25 ST499 ST499 26 ST499 ST499 27 ST244 ST244

28 ST244 ST244 29 ST385 ST385 30 ST1158 ST1158

31 ST1158 ST1158 32 ST385 ST1158 33 ST1158 ST244

34 ST244 ST1158 35 ST244 ST244 36 ST260 ST260

37 ST1158 ST1158 38 ST244 ST244 39 ST1158 ST245

40 ST244 ST244 41 ST244 ST260 42 ST1158 ST1158

43 ST2481 ST2493

Bl, samples from bloodstream; WB, wound samples from patients accompanied by bacteremia. aNumbers in boldface indicate patients who were infected simultaneously
by two different STs of P. aeruginosa in the bloodstream and wound.

in all 141 carbapenem-non-susceptible isolates (Table 3). 125
(88.65%) isolates were found to have various inactivating
mutations, potentially resulting in truncated or aberrant proteins.
95 strains contained frameshift mutations due to deletions or
insertions of 1 or several base pairs. Premature stop codons
caused by point mutations were detected in 12 isolates. In
addition, two insertion sequence (IS) elements were found to
have interrupted oprD. In 13 ST1158 isolates, IS1411 inserted
into the coding sequence of oprD, while in 5 ST499 isolates,
IS1394 inserted upstream of the start codon in a location that
could influence transcription initiation or translation. In the 16
isolates without inactivating mutations, 8 contained amino acid
substitutions and no mutations were identified in 6 strains. In
the 8 strains containing amino acid substitutions, 5 of them
were resistant to imipenem, and the other 3 were sensitive.
While in meropenem susceptibility assay, 5 were resistant, 2
were intermediate, and 1 was sensitive. This result suggests that
there is no necessary connection between these substitutions
and carbapenem resistance. Two isolates were negative by PCR
detection. We speculate that these may have suffered more
serious changes affecting the oprD gene, such as large deletions
(Fang et al., 2014). We further measured oprD expression in
these 14 isolates without inactivating mutations, and all of them
showed reduced oprD expression (Supplementary Table S4).

DISCUSSION

Pseudomonas aeruginosa is a major pathogen that often causes
nosocomial infections in burn patients (Revathi et al., 1998;
Singh et al., 2003; Yali et al., 2014; Sousa et al., 2017). The rapid
increase of multidrug resistance and even carbapenem resistance
exhibited by this bacterium makes it a serious problem in burn
centers (Dou et al., 2017; Sousa et al., 2017). Our previous study
showed that P. aeruginosa is consistently one of the top three
microorganisms isolated in our center (Yali et al., 2014).

A high clonal diversity of P. aeruginosa was identified in our
center during a 6 year period. ST316, ST111, ST360, ST244, and
ST1158 were the major STs or CCs. Among the STs, ST316,
and ST244 are in the top 10 major types in China (Ji et al.,
2013). ST360 is also a major ST in a burn center in Iran (Fazeli
et al., 2014) and showed a high rate of resistance in the present
study. ST111, one of the clones that pose a high international
risk, usually produces carbapenemases (Oliver et al., 2015). We
observed that it caused an outbreak of Bl infections in our
center in June and July 2014 (Supplementary Table S3). Most
of these isolates were XDR and sensitive only to Polymyxin B.
ST111 isolates were also found to have a high prevalence to
produce IMP-9 and VIM-2, thus may be responsible for the
spread of carbapenem resistance in our center. Although ST1158
was not widespread, a majority of these isolates (13/15) harbored
IS1411 in the oprD gene, which may explain its higher resistance
to carbapenems and some other commonly used antibiotics in
the clinic. In consideration of its current prevalence and high
antimicrobial resistance, it emphatically needs to be monitored
in the future.

The constitution of the major STs and their antimicrobial
susceptibility profiles also vary according to sample source.
Although strains isolated from wound samples of patients (WN
were more diverse and complex than those collected from
patients with bacteremia (Bl and WB), they were less resistant
to most of the antibiotics tested. This suggests that clinicians
treating wound infections should differentiate between WN and
WB because of the different drug resistance spectra offered by the
infecting strains.

It was at one time assumed that if a particular bacterial species
were obtained from different sources in the same patient, the
isolates would be identical strains. In order to avoid duplicates
from the same isolates, the first strain isolated from a patient
was usually selected and studied. However, in 43 patients WB
accompanied by wound infections, 46.51% of the patients were
found to be infected by different STs in the Bl and wound surface.
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FIGURE 2 | Antimicrobial susceptibility of differently sourced isolates. PIP, Piperacillin; CSL, sulbactam/cefoperazone; TZP, piperacillin/tazobactam; CAZ,
ceftazidime; FEP, cefepime; IPM, imipenem; MEM, meropenem; AMK, amikacin; GEN, gentamicin; NET, netilmicin; CIP, ciprofloxacin; LVX, levofloxacin; POL,
polymyxin B. (A) Isolates from bloodstream; (B) WN, isolates from wound samples of patients without bacteremia; (C) WB, isolates from wound samples of patients
accompanied by bacteremia. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 indicate differences are significant between Bl and WN; #P < 0.05, ##P < 0.01, and
###P < 0.001 indicate differences are significant between WB and WN. (D) ∗P < 0.05, ∗∗P < 0.01 compared with that of the total isolates.

TABLE 2 | Prevalence of acquired carbapenemase-encoding genes and ampC or
efflux pump mexB overexpression in carbapenem-non-susceptible isolates.

Resistance
genes

No. (%) of isolates

Overexpressiona Borderline No overexpression

ampC 96 (68.09) 12 (8.51) 33 (23.40)

mexBb 17 (12.78) 20 (15.04) 96 (72.18)

IMP-9 11 (7.80)

VIM-2 9 (6.38)

aThe mRNA levels of the indicated genes in PAO1 were used as controls.
Evaluation criteria are as follows: for ampC overexpression indicates expression
at least 10-fold higher than in PAO1, negative indicates expression is lower than
5-fold, and borderline indicates expression is between 5- and 10-fold higher.
For mexB, overexpression indicates expression at least 3-fold higher, negative
indicates expression is less than 2-fold higher, and borderline indicates expression
is between 2- and 3-fold higher. bTranscription of mexB was determined in 133
meropenem-non-susceptible isolates.

This suggests that the bacteria in the Bl of burn patients not only
originate from infected burn wounds, but may also come from
sources such as intestinal flora, or be the result of nosocomial
infections (Church et al., 2006). Moreover, different strains might
have different antimicrobial susceptibility profiles. This should

also be taken into consideration in the treatment of burn patients,
especially in the choice of antibiotics.

Carbapenems are usually the first choice for the treatment
of MDR P. aeruginosa infections in burn centers. Resistance
to these drugs severely hampers their efficacy. Carbapenem
resistance mechanisms are multifactorial. In the present study,
the presence of carbapenemase genes seems less common
in carbapenem-non-susceptible isolates than is the case in
some countries (Wolter et al., 2009; Liakopoulos et al., 2013;
Castanheira et al., 2014). The main resistance mechanism
was mutational inactivation of OprD porin, accompanied by
hyperproduction of AmpC, representing 68.09% isolates. Such
high rate of AmpC hyperproduction is inconsistent with another
study reported in China which found only 5.4% (14/258) of
the carbapenem-resistant isolates to overexpress ampC (Wang
et al., 2010). The upregulation of MexAB-OprM efflux system
may increase the resistance to meropenem (Kohler et al.,
1999; Chalhoub et al., 2016). However, only 12.78% of the
meropenem-non-susceptible isolates showed an overexpression
of mexB. Thus, our data demonstrate that mutations in oprD,
accompanied by overexpression of AmpC, are even more
often combined to produce resistance. Compared with the
high prevalence of carbapenemase genes in some European
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nations, these intrinsic resistance mechanisms in a highly
genetically diverse population of carbapenem-non-susceptible
P. aeruginosa are probably a matter of greater concern in
China.

Mutational inactivation of OprD is primarily responsible
for the resistance to imipenem, and is reported to be the
most common mechanism in China and Korea (Fang et al.,
2014; Kim et al., 2016). Frameshifts, caused by deletions or
insertions of 1 or more base pairs, are the most frequent type
of mutation (Rodriguez-Martinez et al., 2009; Yan et al., 2014).
The insertion of two different IS elements was also common
(18 isolates). IS1394 was previously reported as an insertion
in the coding sequence of oprD or 1-bp upstream of the start
codon (Wolter et al., 2009; Wolkowicz et al., 2016). We also
found it located 11 bp upstream of the coding sequence in
one isolate. However, to our knowledge, ours is the first report
that IS1411 is found in P. aeruginosa and is responsible for a
mutation in oprD. It was first identified in Pseudomonas putida,
where it is associated with the transcriptional activation of
phenol degradation genes (Kallastu et al., 1998). IS1411 resembles
ISPpu21, another P. putida IS that also occurs in P. aeruginosa
(Sun and Dennis, 2009; Rojo-Bezares et al., 2014). IS1411 may
contribute to the increasing drug resistance in P. aeruginosa
through horizontal gene transfer.

Interestingly, the amino acid substitutions (T103S, K115T,
F170L, E185Q, P186G, V189T, R310E, A315G, and G425A)
detected in our study are also reported in other parts of China,
Korea, Spain and France (Rodriguez-Martinez et al., 2009; Wang
et al., 2010; Ocampo-Sosa et al., 2012; Rojo-Bezares et al., 2014;
Kim et al., 2016). A majority of these mutations are located
in the external loops of OprD that are responsible for the
binding of carbapenems, but the drug resistance profiles of these
isolates shows that there is no necessary connection between
these substitutions and carbapenem resistance. This result is
consistent with previous studies (Wang et al., 2010; Rojo-Bezares
et al., 2014). However, a recent study demonstrates that the
common polymorphism at codon 170 (F107L), is associated
with reduced oprD expression and the potential to develop
carbapenem resistance in PAO1 (Shu et al., 2017). This most
common mutation of F107L was also found in all of the 8 isolates
with amino acid substitutions in our study. And the expression
of oprD in these isolates was also decreased. These results
suggest that in clinical isolates, these frequent combined amino
acid substitutions in oprD may be associated with carbapenem
resistance, but will not inevitably lead to it. This discrepancy may
attribute to the difference between standard strain PAO1 and
clinical isolates. As it is more complicated in the clinical isolates,
there may be some other factors rather than OprD alteration that

TABLE 3 | Mutations inactivating oprD in carbapenem-non-susceptible isolates.

Type of mutation Mutational characteristicsa STs (no. of isolates)

Frameshift mutation 1-bp deletion (G) at nt 276 ST360 (19)

1-bp deletion (T) at nt 912 ST111 (22)

1-bp deletion (A) at nt 886 ST385 (1)

1-bp deletion (G) at nt 376 ST782 (1)

1-bp deletion (T) at nt 667 ST385 (3)

2-bp deletion (AT) at nt 1114-1115 ST316 (11), ST260 (4), ST2483 (4), ST485 (3), ST980 (2), ST274 (2),
ST170 (1), ST270 (1), ST365 (1), ST499 (1), ST633 (1), ST782 (1),
ST1028 (1), ST2420 (1), ST2492 (1), ST2493 (1), ST2494 (1)

2-bp deletion (TG) at nt 2-3 ST2479 (1)

10-bp deletion at nt 126-143 (CGACCTGCTGCTCCGCAA) ST385 (1)

10-bp deletion at nt 858-874 (TGCGCACACTTTCACCT) ST292 (1)

5-bp insertion (ATGGC) at nt 1054-1055 ST244 (4)

5-bp insertion (GGCCG) at nt 925-926 ST244 (3), ST595 (1)

7-bp insertion (CCTGTTC) at nt 469-470 ST244 (1)

Premature stop codon CAA→TAG at nt 199-201 ST316 (4)

GAA→TAA at nt 220-222 ST316 (3)

TGG→TAG at nt 16-18 ST639 (1)

TGG→TGA at nt 1015-1017 ST244 (2), ST385 (1)

CAG→TAG at nt 496-498 ST244 (1)

IS insertion IS1411 beginning at nt 788 ST1158 (13)

IS1394 beginning at nt -11 ST499 (4)

IS1394 beginning at nt -1 ST499 (1)

Amino acid substitution T103S, K115T, F170L ST277 (3), ST2488 (2), ST2478 (1)

T103S, K115T, F170L, E185Q, P186G, V189T, R310E,
A315G, G425A

ST245 (1), ST1648 (1)

No mutation None ST244 (2), ST554 (3), ST111 (1)

Negative by PCR Unknown change ST1158 (2)

IS, insertion sequence; nt, nucleotide. aSequences of oprD were compared to oprD in the reference strain PAO1. Bases in boldface indicate mutated nucleotides.
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lead to carbapenem resistance. But these factors and the effect of
each single amino acid substitution in these clinical isolates need
to be further studied.

CONCLUSION

In conclusion, molecular epidemiological investigation of
clinically isolated P. aeruginosa reveals that an outbreak of ST111,
a clone that poses a high international risk, occurred in our center
in 2014. The different genetic relatedness and antimicrobial
susceptibility between the isolates from Bl and wound surface
are noteworthy. Mutational inactivation of oprD, accompanied
by the overexpression of AmpC, is the main mechanisms of
carbapenem resistance. Additionally, IS1411 was found for the
first time in P. aeruginosa and was one of the many genetic events
responsible for the inactivation of oprD. These results may help
improve infection control measures and clinical treatment.
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