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Abstract: The incorporation of permeation enhancers in topical preparations has been recognized as
a simple and valuable approach to improve the penetration of antifungal agents into toenails. In this
study, to improve the toenail delivery of efinaconazole (EFN), a triazole derivative for onychomycosis
treatment, topical solutions containing different penetration enhancers were designed, and the
permeation profiles were evaluated using bovine hoof models. In an in vitro permeation study in
a Franz diffusion cell, hydroalcoholic solutions (HSs) containing lipophilic enhancers, particularly
prepared with propylene glycol dicaprylocaprate (Labrafac PG), had 41% higher penetration than
the HS base. Moreover, the combination of hydroxypropyl-β-cyclodextrin with Labrafac PG further
facilitated the penetration of EFN across the hoof membrane. In addition, this novel topical solution
prepared with both lipophilic and hydrophilic enhancers was physicochemically stable, with no drug
degradation under ambient conditions (25 ◦C, for 10 months). Therefore, this HS system can be a
promising tool for enhancing the toenail permeability and therapeutic efficacy of EFN.

Keywords: efinaconazole; transungual drug delivery; hydroalcoholic solution; permeation enhancer;
bovine hoof; onychomycosis; propylene glycol dicaprylocaprate; hydroxypropyl-β-cyclodextrin

1. Introduction

Onychomycosis is one of the most chronic and prevalent nail disorders, caused by
fungal infection. Epidemiological studies suggest about 19% of the global population is
affected by onychomycosis caused by dermatophytes (Trichophyton rubrum and Trichophyton
mentagrophytes), non-dermatophyte molds, and yeasts (Candida albicans) [1,2]. Efinacona-
zole (EFN, Figure 1), the first topical triazole derivative, is prescribed for the treatment of
toenail onychomycosis. This antifungal agent has been demonstrated to be potent against
Trichophyton rubrum, Trichophyton mentagrophytes, and Candida albicans in toenail by obstruct-
ing ergosterol biosynthesis, presumably through sterol 14-demethylase inhibition [3,4].
Topical application of EFN solution (10% w/w) was markedly efficacious than other topical
treatments with amorolfine or ciclopirox against mild to moderate subungual onychomy-
cosis [5]. Currently, the marketed product of EFN is designed as a hydroalcoholic topical
solution (Jublia, Kaken Pharmaceutical Co., Ltd. (Tokyo, Japan)) [6]; ethanol is employed as
a volatile vehicle to dissolve the antifungal agent. In addition, to enhance the skin and/or
nail delivery of EFN, lipophilic enhancers, such as myristyl lactate and diisopropyl adipate,
are included, along with cyclomethicone as a wetting agent. Upon topical application, the
organic vehicle is rapidly vaporized, providing high drug concentration onto the nail plate.
Subsequently, EFN molecules diffuse through the nail plate with lipophilic permeation
enhancers.
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nail plate [12]. Although EFN has a relatively lower binding affinity to keratinized tissue 
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acid, hydroxypropyl-β-cyclodextrin (HP-β-CD) or sodium lauryl sulfate (SLS) has been 
shown to increase drug penetration across the nail plate by improving the hydration level 
of the nail plate, forming a porous microchannel, or by decreasing the contact angle 
between topical solution and the surface or nail plaque [17–20]. As the aforementioned 
chemical approach relies on the chemical structure and physicochemical nature of 
therapeutic agents, a case-specific formulation study is essential to find the finest 
composition. 
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In designing topical preparations of antifungal agents, especially for toenail treatment,
endowing satisfactory penetration into the relevant layer, including the nail plate, is
one of the pivotal factors influencing therapeutic efficacy [7–9]. The nail plate is a thin
(0.25–1.00 mm), hard, and convex-shaped structure, which is principally made of fibrous
proteins, approximately 80–90 layers of keratinized cells, and keratin filaments [10,11].
These components are tightly junctioned via a disulfide link which is responsible for the
toughness and barrier function of nails. Most antifungal agents are lipophilic and possess
high affinity for keratinized tissues, including the toenail, which can have a deleterious
effect on drug absorption, impeding drug penetration to deeper layers of the nail plate [12].
Although EFN has a relatively lower binding affinity to keratinized tissue compared
to several lipophilic antifungal agents [5], topical preparation possessing an enhanced
penetration profile is still required to improve the therapeutic efficacy of the triazole
derivative in patients with onychomycosis. Actually, the increased topical delivery of EFN
markedly accelerated the structural recovery of keratin layer in a guinea pig onychomycosis
model [13].

To enhance the ungual delivery of antifungal agents, different strategies have been
utilized, such as chemical modification of antifungal agents, employment of penetration
enhancers, nanocarrier-based delivery, and mechanical or physical approaches, including
iontophoresis, photodynamic therapy, and lasers [11,14,15]. The incorporation of perme-
ation enhancers in topical preparations, such as lacquer, cream, or hydrogel, have been
widely explored to increase drug penetration into the toenail, as a simple and effective tech-
nique [8,13]. Saner et al. (2014) reported that topical treatment with lipophilic excipients
principally altered the microstructure of the nail plate through physical interaction with
the lipid components of the plate, promoting drug penetration [16]. On the other hand,
hydrophilic enhancers, such as polyethylene glycols, pantothenic acid, hydroxypropyl-β-
cyclodextrin (HP-β-CD) or sodium lauryl sulfate (SLS) has been shown to increase drug
penetration across the nail plate by improving the hydration level of the nail plate, forming
a porous microchannel, or by decreasing the contact angle between topical solution and
the surface or nail plaque [17–20]. As the aforementioned chemical approach relies on
the chemical structure and physicochemical nature of therapeutic agents, a case-specific
formulation study is essential to find the finest composition.

The objective of the present study was to design a topical preparation for EFN with
high ungual permeation profile. Different hydroalcoholic solutions (HSs) containing
several lipophilic enhancers (L-HSs, Table 1) were formulated, and their physicochemical
properties and permeation profile through the bovine hooves were evaluated. After
selecting a lipophilic enhancer, HSs containing both lipophilic and hydrophilic permeation
enhancers (LH-HSs, Table 2) were further designed, and their permeation profiles were
evaluated with L-HSs including formula similar to the marketed product (L-HS1), or
several oil solutions (OSs, Table 3). The physicochemical stability of the optimized topical
formula was assessed under stress and ambient conditions.
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Table 1. Compositions and physicochemical characteristics of efinaconazole (EFN)-loaded hydroalcoholic solutions (HSs) with different lipophilic permeation enhancers.

HS base L-HS1 L-HS2 L-HS3 L-HS4 L-HS5 L-HS6

Compositions
EFN (g) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Myristyl lactate (g) - 1.0 - - - - -
Diisopropyl adipate (g) - 1.2 - - - - -
Lauroglycol 90 (g) (1) - - 2.2 - - - -
Labrafac PG (g) (2) - - - 2.2 - - -
Medium-chain triglyceride (g) - - - - 2.2 - -
Isopropyl myristate (g) - - - - - 2.2 -
Isopropyl palmitate (g) - - - - - - 2.2
Cyclomethicone (g) 1.3 1.3 1.3 1.3 1.3 1.3 1.3
EDTA (g) (3) 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025
Distilled water (g) 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Citric acid (g) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
BHT (g) (4) 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Ethanol (g) 6.82 5.38 5.38 5.38 5.38 5.38 5.38
Total (g) 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Physicochemical characteristics
Appearance Transparent Transparent Transparent Transparent Transparent Transparent Transparent
pH (5) 5.1 ± 0.0 4.8 ± 0.1 5.5 ± 0.1 5.2 ± 0.2 5.1 ± 0.00 4.9 ± 0.0 5.2 ± 0.0
Absorption/evaporation time (5) 13.7 ± 0.5 60.0 ± 4.1 75.0 ± 12.2 70.0 ± 4.1 118.3 ± 8.5 93.3 ± 2.4 45.0 ± 2.4

(1) Propylene glycol monolaurate; (2) Propylene glycol dicaprylocaprate; (3) Ethylenediaminetetraacetic acid; (4) Butylated hydroxytoluene; (5) Data represent mean ± standard deviation (n = 3).
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Table 2. Compositions and physicochemical characteristics of efinaconazole (EFN)-loaded hydroalcoholic solutions (HSs)
with different hydrophilic permeation enhancers, along with Labrafac PG (1) as a lipophilic enhancer.

LH-HS1 LH-HS2 LH-HS3 LH-HS4

Compositions
EFN (g) 1.0 1.0 1.0 1.0

Labrafac PG (g) 1.5 1.5 1.5 1.5
SLS (g) 0.3 - - -

DEPC (g) (2) - 0.3 - -
HP-β-CD (g) - - 0.3 0.6

EDTA (g) 0.000025 0.000025 0.000025 0.000025
Distilled water (g) 1.2 1.2 1.2 1.2

Citric acid (g) 0.01 0.01 0.01 0.01
BHT (g) 0.01 0.01 0.01 0.01

Ethanol (g) 5.78 5.78 5.78 5.48
Total (g) 10.0 10.0 10.0 10.0

Physicochemical characteristics
Appearance Transparent Transparent Transparent Transparent

pH (3) 6.7 ± 0.0 5.2 ± 0.0 5.2 ± 0.1 5.2 ± 0.1
Absorption/evaporation time (3) 46.0 ± 2.9 54.0 ± 2.9 75.0 ± 4.1 70.0 ± 4.1

(1) Propylene glycol monolaurate; (2) 1,2-dielaidoyl-sn-glycero-3-phosphocholine; (3) Data represent mean ± standard deviation (n = 3).

Table 3. Compositions and physicochemical characteristics of efinaconazole (EFN)-loaded oil solu-
tions (OSs) prepared with different oily vehicles.

OS1 OS2 OS3

Compositions
EFN (g) 1.0 1.0 1.0

Labrafac PG (g) 8.0 - -
Peppermint oil (g) - 8.0 -

Almond oil (g) - - 8.0
Distilled water (g) 0.01 0.01 0.01

Ethanol (g) 0.89 0.89 0.89
Total (g) 10.0 10.0 10.0

Physicochemicalcharacteristics
Appearance Transparent Transparent Transparent

pH (1) 9.0 ± 0.0 6.0 ± 0.0 6.2 ± 0.0
Absorption/evaporation time (1) 71.0 ± 2.9 27.3 ± 2.1 176.7 ± 4.7

(1) Data represent mean ± standard deviation (n = 3).

2. Results
2.1. Effect of Lipophilic Penetration Enhancer on Transungual EFN Delivery

In the present study, topical preparations containing different penetration enhancers
were formulated to facilitate toenail delivery of EFN, and permeation profiles through
the bovine hoof slice were evaluated in a Franz diffusion cell model. First, ethanol-based
HS formulations containing different L-HSs were assessed for EFN delivery (Table 1).
Volatile vehicles account for more than 50% of the total weight of preparations, not only
to provide high drug loading (10% w/w) with excellent solubilizing capacity but also to
promote drug diffusion and/or penetration into nail plate by increasing concentration
gradient after vaporization. As lipophilic absorption enhancers, several water-immiscible
oily excipients, such as Lauroglycol 90, Labrafac PG, medium-chain triglyceride, isopropyl
myristate, and isopropyl palmitate, were employed. Saner et al. (2014) reported that
these lipophilic ingredients altered the microstructure of the nail plate by interacting with
its lipid components, promoting drug penetration and increasing the efficacy of topical
therapies [16]. Cyclomethicone, an oily ingredient, was commonly included in all L-HSs to
ameliorate wetting and spreading of each formula onto the toenail. This oily ingredient has
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proven to effectively improve the spreading efficiency of topical preparations, primarily by
lowering the surface tension between the nail plate and HS [12,13]. To prevent color changes
in EFN-loaded topical preparations by oxidation reaction [13], antioxidants, including BHT
and EDTA, were included in all preparations.

All L-HS preparations were transparent or pale yellow, with no drug precipitation.
The drug content in all L-HS preparations was determined to be between 98% and 105%,
with no degradation during the preparation procedure (data not shown). After topical
application of a drop of HS base onto the hoof slice, it was rapidly evaporated and/or
absorbed into the nail within 14 min (Table 1). On the other hand, the incorporation of
oily absorption enhancers markedly lengthened the complete absorption/evaporation
time of L-HSs, displaying an absorption/evaporation time ranging from 45.0 to 118.3 min.
Despite the rapid vanishing of the organic solvent, non-volatile ingredients, including oily
absorption enhancers, remained onto the hoof membrane and were slowly absorbed.

The in vitro permeation profile of EFN through bovine hoof slices after topical appli-
cation of L-HSs is presented in Figure 2. To guarantee sink conditions during the in vitro
permeation study, minimal amount of SLS, an anionic surfactant, was added to the receptor
medium (0.2% w/v). Although sink condition may not occur in vivo, due to the low inter-
stitial fluid volume and to its low renovation rate of nail plate, it was required to compare
permeation-enhancing capacity of each formulation more distinctly. In our preliminary
test, SLS was effective in increasing the solubility of the sparingly soluble antifungal agent
by forming micellar structures in aqueous media above the critical micellar concentration.
The solubility of EFN in 0.2% SLS-containing PBS solution was 2.1 mg/mL, whereas the
drug solubility in PBS was approximately 0.02 mg/mL (data not shown). After topical
application of HS base or L-HSs, drug molecules penetrated the hoof slice, with no marked
lag time. Subsequently, the extent of EFN permeated steadily increased for 20 h in all HSs
under sink conditions.

Figure 2. In vitro permeation profile of efinaconazole through the bovine hoof from L-hydroalcoholic
solutions (HSs) with different lipophilic enhancers in the Franz diffusion cell model. Data represent
mean ± standard deviation (n = 4).

The overall amount of EFN permeated was higher in L-HS formulations, including L-HS3
(Labrafac PG, flux value of 138.1 µg·cm−2·h−1), L-HS2 (Lauroglycol 90, 129.9 µg·cm−2·h−1),
L-HS4 (medium-chain triglyceride, 120.8 µg·cm−2·h−1), and L-HS1 (marketed formula,
112.0 µg·cm−2·h−1), compared to HS base (97.6 µg·cm−2·h−1); the amount of EFN perme-
ation after topical application of L-HSs was over 41% (L-HS3), 33% (L-HS2), 24% (L-HS4),
and 13% (L-HS5) higher than that of the HS base after 20 h, respectively (Table 4). In
particular, L-HS3 containing Labrafac PG as a lipophilic enhancer exhibited the highest
permeability profile over the experimental period, showing 36% higher permeation than
the commercialized composition (L-HS1) after 20 h. Labrafac PG is an oily ingredient
with hydrophilic-lipophilic balance (HLB) value of 2.0, which has been employed as an
oil vehicle in topical formulations as an effective solubilizer. In fact, the oily ingredient
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showed high solubility for EFN (over 200 mg/mL, data not shown). This high solubiliz-
ing capacity enabled EFN to maintain the dissolved state even after ethanol evaporation,
providing an opportunity for continuous drug penetration. Haque et al. (2017) reported
that considerable quantities of Labrafac PG were upheld in the skin tissue after topical
application, which was helpful in maintaining water-insoluble drug in dissolved state in
the relevant layer [21]. Salimi et al. (2016) revealed that Labrafac PG drastically diminished
the skin resistance to drug penetration by obstructing lipid packing in the layer [22]. Taken
together, Labrafac PG was included in HS formula as lipophilic enhancer.

Table 4. Flux and accumulated amount of efinaconazole (EFN) permeated through the bovine hoof
for 20 h after the topical application of hydroalcoholic solutions (HSs) or oil solutions (OSs) in Franz
diffusion cell model.

Formulas Flux (µg·cm−2·h−1) Permeated (%)

HL base 97.6 ± 27.5 18.2 ± 5.1
L-HS1 112.0 ± 45.0 20.9 ± 8.4
L-HS2 129.9 ± 18.6 24.3 ± 3.5
L-HS3 138.1 ± 35.0 25.8 ± 6.5
L-HS4 120.8 ± 22.8 22.6± 4.2
L-HS5 110.5 ± 38.9 20.6 ± 7.3
L-HS6 83.9 ± 47.6 15.7± 8.9

LH-HS1 115.0 ± 5.8 21.4 ± 2.2
LH-HS2 81.8 ± 6.67 15.3 ± 1.8
LH-HS3 161.0 ± 8.6 *, ** 30.3 ± 2.6 *, **
LH-HS4 200.2 ± 8.9 *, ** 37.4 ± 3.5 *, **

OS1 93.0 ± 1.5 17.4 ± 0.3
OS2 79.5 ± 38.5 14.8 ± 7.2
OS3 71.0 ± 39.0 13.3± 7.3

Data represent mean ± standard deviation (n = 3–4). * p < 0.05 versus HS-base; ** p < 0.05 versus marketed
composition (L-HS1).

2.2. Combination of Hydrophilic Enhancer with Lipophilic Enhancer for Transungual EFN Delivery

LH-HS formulas containing hydrophilic enhancers (SLS, DEPC, and HP-β-CD), along
with Labrafac PG as a lipophilic enhancer, were further established, and their physico-
chemical properties and transungual permeation profiles were evaluated (Table 4). As
hydrophilic absorption enhancers, several organic and/or inorganic substances have been
attempted, such as SLS, HP-β-CD, phosphatidyl choline, urea, pantothenic acid, ascor-
bic acid, polyethylene glycol 300, potassium phosphate, and N-acetylcysteine [20,23,24].
Among them, pantothenic acid and ascorbic acid were excluded, as they were insoluble or
rapidly degraded in HS preparations, respectively. Thiols, including N-acetylcysteine, were
not employed, as they might cause irreversible damage to nail plates. In designing LH-HSs,
the proportion of distilled water in topical solutions was increased to 5% (w/v) to solubilize
water-soluble enhancers. The increased water content in HS might be beneficial for ungual
delivery, as the content of water in the nail plate is 10–30% and as the supplement of
aqueous vehicle is important for swelling, elasticity, and flexibility of the nail structure [25].
In contrast, cyclomethicone, the wetting agent, was excluded from the LH-HSs, as this oily
ingredient was phase-separated, as the content of hydrophilic substances was increased in
preparations. All LH-HS formulations listed in Table 2 (LH-HS1∼LH-HS4) were transpar-
ent or pale yellow, with no drug precipitation. The drug content in each formulation was
set to 10%, respectively. The time required for absorption and/or evaporation after topical
application of LH-HSs (LH-HS1-LH-HS4) was determined to be between 46 and 75 min
(Table 3), which is comparable to that of L-HS containing only Labrafac PG as a lipophilic
enhancer (L-HS3).

The in vitro permeation profile of the antifungal agent through the hoof slice after
topical application of LH-HSs is depicted in Figure 3. The permeation pattern of LH-HSs
was analogous with that of L-HSs, exhibiting prompt penetration upon topical application,
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followed by a gradual increase for 20 h. Among LH-HSs with different absorption en-
hancers, LH-HS3 containing HP-β-CD (3% w/v) in combination with Labrafac PG showed
higher flux values than LH-HS1 (SLS, 3% w/v) or LH-HS2 (DEPC, 3% w/v); the flux values
of EFN penetrated for 20 h after the application of LH-HS1, LH-HS2, and LH-HS3 were
estimated to be 115.0, 81.8, and 161.0 µg·cm−2·h−1, respectively (Table 4). The perme-
ation of EFN through the hoof slice was further increased as the proportion of HP-β-CD
increased (6% w/v, LH-HS4), providing a flux value of 200.2 µg·cm−2·h−1. The extent of
EFN permeation after treatment with LH-HS4 (HP-β-CD, 3% w/v) was even higher than
that with L-HS1 (patented formula) or L-HS3 (Labrafac PG), exhibiting over 78% or 45%
higher drug permeation across the hoof membrane, respectively (Table 4). The absorption
improvement by HP-β-CD was consistent with the previous report where cyclodextrin
derivatives markedly improved the hydration of nail plates and increased the solubility
of terbinafine, facilitating drug permeation through the water-filled porous structure of
hydrated nail plates [20]. From these findings, we concluded that the combined use of
Labrafac PG and HP-β-CD is advantageous in improving the absorption of EFN, with
different permeation-facilitating mechanisms.

Figure 3. In vitro permeation profile of efinaconazole through the bovine hoof from LH-HS prepara-
tions prepared with different hydrophilic enhancers, along with Labrafac PG as a lipophilic enhancer
in the Franz diffusion cell model. Data represent mean ± standard deviation (n = 4).

2.3. Effect of Oil Solution for Transungual EFN Delivery

Different EFN-loaded OSs based on Labrafac PG (OS1), peppermint oil (OS2), and
almond oil (OS3) were constructed and their physicochemical properties and in vitro
permeation profile were further assessed (Table 4). Labrafac PG was confirmed to improve
transungual delivery of EFN when included in ethanol-based L-HS2 formula. Essential oils,
including peppermint oil or almond oil, are commonly employed in topical preparations
for curing toenail fungus, as tocopherol included in essential oils possess antioxidant, anti-
inflammatory, and immune-boosting activities [26–28]. Moreover, oily vehicles consisting
of benzyl alcohol, peppermint oil, turpentine, and mineral oil, effectively promoted the
transungual delivery of ciclopirox [29]. Along with oily vehicles, ethanol and distilled
water were included to improve the spreadability of the oily solution onto the nail plate.
All OS preparations (OL1–OL3) were transparent or pale yellow, with a drug concentration
of 10% w/v. After topical application of OS2, volatile peppermint oil-based solution was
completely absorbed and/or evaporated within 30 min. On the other hand, it took about 70
or 176 min after the application of non-volatile oil-based OS1 or OS2, respectively (Table 4).

The in vitro permeation profile of EFN after topical application of OS formulations
(OS1–OS3) is shown in Figure 4. OS formulations showed an overall lower permeation
profile over the experimental period compared with L-HSs or LH-HSs, with no marked
difference depending on the oily vehicle. The flux values of OS1, OS2, and OS3 were
93.0, 79.5, and 71.0 µg·cm−2·h−1, respectively (Table 4). The relatively poor wettability
and/or spreadability of OSs might hinder the penetration of EFN-loaded oily vehicles
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into the hoof slice, showing a lower flux value than HSs, including LH-HS4 or even HS
base. LH-HS4 containing both Labrafac PG and HP-β-CD as lipophilic and hydrophilic
permeation enhancers, respectively, was chosen as the optimal preparation for the ungual
delivery of EFN.

Figure 4. In vitro permeation profile of efinaconazole through the bovine hoof from oil solutions
(OSs) prepared with different oily vehicles in the Franz diffusion cell model. Data represent mean ±
standard deviation (n = 3).

2.4. Physicochemical Stability of Optimized EFN-Loaded LH-HS Preparation

The physicochemical stability of the HL-HS4 formula was further evaluated under
stress (60 ◦C for six days) or ambient (25 ◦C for 10 months) storage conditions (Table 5).
The hydroalcoholic preparation of the antifungal agent has been reported to change from
transparent to yellowish by oxidation reaction [12]. However, under both stress and
ambient conditions, no changes in color and/or drug precipitation were observed in
the HL-HS4 formulation. After 10 months storage at 25 ◦C, drug content in HL-HS4 was
determined to 94.8%, with no pH change in liquid preparation. Drug content in HL-HS4 has
decreased by 2.5% for 10 months, compared to the initial drug content. Thus, the HL-HS4
formulation containing Labrafac PG and HP-β-CD was assumed to be physicochemically
stable, providing over 90% drug content over 24 months under ambient condition.

Table 5. Physicochemical stability of the optimized topical solution (LH-HS4) under stress (60 ◦C for
six days) and ambient condition (25 ◦C for 10 months).

After Preparation Under Stress Conditions Under Ambient Conditions

Appearance Transparent Transparent Transparent
pH (1) 5.2 ± 0.1 5.2 ± 0.0 5.3 ± 0.01

Drug content (%) (1) 97.3 ± 1.8 94.0 ± 1.1 94.8 ± 0.0
(1) Data represent mean ± standard deviation (n = 3).

3. Materials and Methods
3.1. Materials

EFN powder (purity > 99.9%) was obtained from Cipla Limited (Mumbai, India).
Myristyl lactate, diisopropyl adipate, HP-β-CD, SLS, peppermint oil, almond oil, BHT,
ethanol, EDTA, sodium azide, phosphate-buffered saline (PBS) tablets, and citric acid
were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Labrafac PG,
Lauroglycol 90, medium-chain triglyceride (MCT, Labrafac Lipophile WL1349), isopropyl
myristate, and isopropyl palmitate were obtained from Gattefosse (Saint-Priest, France).
Cyclomethicone and DEPC were acquired from Dow silicone Co. (Midland, MI, USA) and
Lipoid (Newark, NJ, USA), respectively.
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3.2. Preparation of EFN-Loaded Topical Solutions

Different HS preparations containing EFN (10% w/w) were prepared using a con-
ventional procedure as described previously [23]. The compositions of the HS base and
L-HS, and LH-HS prepared in our study are listed in Tables 1 and 2, respectively. First,
EFN (1 g) was added to ethanol (5.3–6.8 g) and stirred for 30 min to obtain a transparent
solution. Then, lipophilic permeation enhancers (myristyl lactate, diisopropyl adipate,
Labrafac PG, MCT, Lauroglycol 90, isopropyl myristate, and isopropyl palmitate, 1.5–2.2 g),
cyclomethicone (0–1.3 g), and BHT (0.01 g) were added to the ethanol solution. Then,
aqueous solution (0.1–1.2 g) containing hydrophilic enhancers (HP-β-CD, DEPC, and SLS),
EDTA, citric acid, and BHT were added to the drug solution. The mixture was stirred for
10 min using a stirrer. The final weight of the topical solution was adjusted to 10 g by
dropwise addition of ethanol.

EFN-loaded OSs with different oily vehicles were further prepared using a conven-
tional procedure, as described previously (Table 3). EFN (1 g) was dissolved in 8 g of oily
vehicle (Labrafac PG, almond oil, and peppermint oil) by vigorous vortexing for 30 min. To
reduce the viscosity of the drug-loaded oil solution, 0.89 g of ethanol and 0.01 g of distilled
water were added to the solution and stirred for 30 min. The prepared formulations were
kept in glass vials at room temperature.

3.3. Physicochemical Characteristics of EFN-Loaded Topical Preparations

The physicochemical properties of EFN-loaded topical solutions were characterized
by appearance, drug content, pH, and absorption/evaporation time into the bovine hoof
membrane. After placing the sample in a glass vial, the transparency and the presence of
drug precipitates and/or aggregates were visually observed. The acidity of each sample
was determined using a pH meter (Mettler Toledo, Greifensee, Switzerland).

The drug content in each formula was determined using HPLC analysis previously
reported, with slight modifications [30]. Each sample (100 µL) was 1,000-fold diluted with
acetonitrile (ACN) and injected into a Shimadzu HPLC system (Shimadzu, Kyoto, Japan)
equipped with a pump (LC-20AD XR), autosampler (SIL-20AC XR), UV–VIS detector
SPD-M20A), and system controller (CBM-20A). Chromatographic separation of EFN was
achieved isocratically using a reverse-phase C18 column (4.6 mm I.D. × 250 mm, 5 µm,
Shiseido, Japan) with a mixture of ACN and distilled water (8:2 v/v) as the mobile phase.
The flow rate of the mobile phase was set to 1.0 mL/min. The temperature of the column
oven (CTO-20A) was set to 30 ◦C. The eluent was monitored at 210 nm with a retention
time of about 5 min. The calibration curve for EFN was linear in the concentration range
of 1–100 µg/mL (y = 36319x + 21103, r2 = 1.0, where x and y are the drug concentration
(µg/mL) and peak area, respectively). The limit of detection (LOD) and the limit of
quantitation (LOQ) values were calculated to 0.1 and 0.5 µg/mL, respectively.

3.4. Absorption/Evaporation Time of EFN-Loaded Topical Preparations

To compare the absorption and/or evaporation rate of each formula, the absorp-
tion/evaporation time of each sample into bovine hoof slices was further evaluated. Before
the experiment, bovine hoof tissues were carefully washed and hydrated in distilled water
for 24 h. The softened tissues were cut into thin slices using a microtome (RM2245 Semi-
Automated Rotary Microtome, Leica, Germany). The thickness of the slices was measured
using a micrometer (Mitutuyo, Guipúzcoa, Spain), and slices with similar thickness and
no visible faults or fissures were chosen for the study. The thickness of the hoof slices was
ranged from 0.20 to 0.25 mm. A drop of sample (approximately 30 µL) was loaded onto
a bovine hoof slice using a pipette, and the time required for complete absorption was
determined by dry-to-touch in a shaking incubator maintained at 32 ◦C.

3.5. In Vitro Permeation Study of EFN-Loaded Topical Preparations

The in vitro drug permeation profile through bovine hoof slices after topical ap-
plication of EFN-loaded preparations was evaluated in the vertical Franz diffusion cell
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model [23,31,32]. On the day of the permeation experiment, the hoof slices immersed in
PBS for 1 h were clamped between two Teflon cylindrical adapters (silicone, Vollmond,
Seoul, Korea), providing an effective diffusional area of 0.28 cm2. Adapters with sam-
ples were clamped between the donor and receptor chambers of vertical Franz diffusion
cells. The receptor compartment was filled with 12 mL of 10 mM PBS (pH 7.4) containing
0.01% (w/v) sodium azide as a microbial growth inhibitor and 0.2% (w/v) SLS as solubility
enhancer. Afterward, each formulation containing an equivalent amount of EFN (3 mg)
was applied on the donor compartment. During the experiment, the receptor medium
was stirred at 450 rpm using a magnetic stirrer, and the temperature was kept at 32 ◦C.
At a predetermined time, 0.2 mL of receptor media was withdrawn using a syringe, and
prewarmed fresh media were refurnished in the receptor compartment. The withdrawn
samples were diluted with methanol and analyzed using HPLC. Flux value of each for-
mulation was calculated by dividing the accumulative amount of EFN permeated at 20 h
(mg/cm2) by the time (20 h). The permeation data were statistically analyzed by Student’s
t-test using SPSS software 17.0.

3.6. Physicochemical Stability of EFN-Loaded Topical Preparation

For selected topical preparation, the physicochemical stability was evaluated under
stress (60 ◦C) and ambient conditions (25 ◦C). LH-HS4 kept in glass vials was stored at
60 ◦C for 6 days or at 25 ◦C for 10 months. The withdrawn sample was evaluated by aspect
of appearance (phase separation or drug precipitation), acidity, and drug content.

4. Conclusions

In this study, EFN-loaded HS preparations containing different lipophilic and/or
hydrophilic absorption enhancers were formulated, and their permeation profiles were
successfully evaluated using bovine hoof slices. The optimized HS formula combining
lipophilic (Labrafac PG) with hydrophilic penetration enhancer (HP-β-CD) offered favor-
able permeation profile, providing over two-fold increased flux value compared with the
HS base with no permeation enhancer. Moreover, the novel formula was physicochemically
stable, with no changes in appearance, acidity, and drug content under stress or ambient
conditions. Therefore, this novel HS can be a promising tool for the delivery of EFN in the
treatment of toenail onychomycosis.
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