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Abstract

Biotic stresses in plants have a significant impact on agricultural productivity. In the present

study, in vivo experiments were conducted to determine the physiological responses of

tomato (Solanum lycopersicum L.) seedlings by inoculation with an endophytic actinobacter-

ium, Streptomyces thermocarboxydus isolate BPSAC147 under greenhouse conditions.

Further, photochemical quantum yield of photosystem II (PSII) (Fv/Fm), photochemical

quenching (qP) and non-photochemical (NPQ) were calculated in seedlings inoculated with

S. thermocarboxydus (T1) and were compared with control (T0) plants. Furthermore, the

electron transport rate (ETR) of PSII exhibited a significant increase in T1 plants, relative to

T0 plants. These results indicate that inoculation of tomato seedlings with S. thermocarbox-

ydus had a positive effect on the process of photosynthesis, resulting in enhanced chloro-

phyll fluorescence parameters due to increased ETR in the thylakoid membrane. GC-MS

analysis showed significant differences in the volatile compounds in the different treatments

performed under greenhouse conditions. The present study suggests that S. thermocarbox-

ydus can be used as new biocontrol agent to control Fusarium wilt in tomato crops and

enhance productivity by enhancing photosynthesis.
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Introduction

Biotic stresses in plants, such as infections by pathogenic bacteria and fungi, significantly

impact agricultural productivity. Fungi, in particular, are considered a major disease causative

agent in plants and are known to alter photosynthetic-related metabolisms [1]. Therefore, it is

critical to identify sustainable approaches to manage plant diseases and other plant biotic

stresses. Plant growth promoting microorganisms (PGPM) are considered to have advanta-

geous effects on plant health and nutrient uptake [1, 2]. PGPM influence plant growth and fit-

ness by both direct and indirect mechanisms. Direct mechanisms include N2 fixation, Fe

sequestration, phytohormone production, and phosphate solubilisation, while major indirect

mechanisms are antibiosis and production of lytic enzymes [3]. The beneficial effects on plant

growth mediated by rhizospheric bacteria and fungi have been well documented [4, 5]. The

effect of endophytic actinobacteria on photosynthetic efficiency and plant growth, however,

has not been widely studied [6, 7]. Endophytes are characterized by their ability to colonize the

intracellular spaces and xylem conducting elements in plants without causing any disease

symptoms [8, 9].

Studies have reported on the beneficial effect of PGPM, including endophytic bacteria, on

plant physiology by their ability to suppress biotic stresses such as pathogenic bacteria and

fungi, insects, and native plants [7]. Several questions regarding the association of endophytic

microorganisms with host plants, however, are still unanswered; including how long do they

reside in the host and do they have any impact on photosynthesis. Abd_Allah et al. [9] and

Hashem et al. [3] reported that the endophytic bacterium, Bacillus subtilis (BERA 71),

enhances the photosynthesis and growth of chickpea (Beta vulgaris L.) and mung bean via the

production of phytohormones. Zhang et al. [10] suggested that plant growth promoting rhizo-

bacteria may function as a plant growth stimulator through an auxin-dependent mechanism.

The ability of endophytic actinobacteria to modulate biotic and abiotic stresses has been docu-

mented [11,12], however, studies relating to their effect on photosynthetic parameters have

not been conducted. The effects of beneficial bacteria on plant photosynthesis have been exam-

ined for the first time as per Zhang et al. [13]. The parameters that have a significant effect on

the photosynthetic apparatus are minimum fluorescence (Fo), maximum photochemical quan-

tum yield of PSII (Fv/Fm), NPQ and ETR [1, 14]. Relative ETR values determines the stress

measurements among the treated and control plants under similar light absorption, similarly

NPQ is measured by the quenching of chlorophyll fluorescence and is considered as an impor-

tant photoprotective mechanism and higher qP indicate that more fluorescence is being

quenched by the photochemical process [15]. Endophytic actinobacteria as a significant,

potential source of secondary metabolites has been reported in the literature in recent years

[16,17,18]. Among bacteria, Streptomyces alone account for more than 70% of the microbial

natural products that have been documented and demonstrated to represent a potential source

for the development of novel approaches for managing both biotic and abiotic stresses [19, 20,

21]. Among the bacteria, Streptomyces species are well known to produce a plethora of volatile

organic compounds (VOCs) which may directly or indirectly influence the growth and gene

expression of microorganism or plants [22, 23]. They are considered and recognized as ideal

“infochemicals” as they can easily diffuse [24]. Researchers have documented them as potential

agents in management of several phytopathogenic fungal diseases as compared to conventional

fungicides [25, 26]. The present study was designed to understand the VPCs produced by the

endophytic strain BPSAC147 having plant growth promoting potential.

We have identified several endophytic actinobacteria associated with traditional medicinal

plants and documented their ability to produce phytohormones [27]. Endophytic actinobac-

teria have the potential to inhibit pathogens [7, 28], produce antimicrobial compounds [16]
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and synthesize metabolites of industrial importance [18, 29]. The current knowledge of endo-

phytic actinobacteria clearly indicates their potential value for ameliorating biotic and abiotic

stress in plants and improving plant productivity. The present study had a dual purpose, first

to determine the potential of a PGP isolate of Streptomyces spp. to ameliorate the biotic stress

in tomato seedlings caused by the fungal pathogen, Fusarium, under greenhouse conditions.

In addition, the photosynthetic metabolism of inoculated and non-inoculated tomato seed-

lings was also assessed. We hypothesized that the inoculation of tomato seedlings with an

endophytic actinobacterium, Streptomyces thermocarboxydus isolate BPSAC147, would have a

positive effect on plant growth promotion by controlling Fusarium wilt disease and enhancing

photosynthesis-related metabolism as evidenced by its impact on enhancing photosystem II

(PSII) (Fv/Fm), ETR, and NPQ; as well as qP, compared to non-inoculated control plants.

Materials and methods

Sample collection and isolation of endophytic Streptomyces isolates

Healthy Rhynchotoechum ellipticum L. was collected based on traditional and ethnobotanical

properties from Murlen National Park (23˚360N 93˚160E) in Mizoram, India. Permission for

the collection of medicinal plants was obtained from Mr. Liandawla, Chief wildlife warden,

Environment and forest department, Government of Mizoram, India. Sterilization of leaf sur-

faces was performed after plants were brought back to the laboratory as described by Passari

et al. [30]. The disinfected leaf tissues were placed on actinomycetes isolation agar (AIA)

media amended with cycloheximide (60 μg/ml) and nalidixic acid (80 μg/ml) to inhibit fungal

growth, and to suppress the growth of fast-growing bacteria. Actinobacteria colonies were

recultured several times until pure cultures were obtained. All four isolates of were deposited

in Suez Canal University Fungarium (SCUF- (http://www.wfcc.info/ccinfo/index.php/

collection/by_id/1180/) under the accession numbers SCUF 1520 to 1523.

Tomato seed germination assay

Four endophytic Streptomyces isolates identified in a previous PGPR study [16] were evaluated

in the seed germination assay. Tomato seeds were surface sterilized with 2.0% NaOCl for 2

min and subsequently rinsed three times with sterile distilled water. The tomato seeds were

mixed with a suspension culture (10−3 cells/ml) of each Streptomyces isolate. After 2 h of soak-

ing, 10 seeds were transferred into sterile petri dishes containing sterile moistened filter papers

(Whatman filter paper). The petri dishes were kept at room temperature and assayed for ger-

mination. Controls seeds were surface sterilized and used as control without inoculation of

bacterial suspension. All of the petri dishes were sprayed daily with sterilized distilled water.

Germination rate, as measured by seedling emergence, was determined as previously described

by Ranganathan and Thavaranjit [31] using the following formula:

% germination = number of seeds that germinated/total number of seeds ×100

Identification and phylogenetic analysis of isolate BPSAC147

Sequencing of a fragment of the 16S-rRNA gene was performed as described by Passari et al.

[30]. The evolutionary model was selected based on the lowest BIC (4464.838) and AIC

(4276.621) using the MEGA 6.0 phylogenetic tree construction software. A neighbor-joining

tree [32] was constructed using Kimura 2-parameter model (K2) with MEGA 6.0 [33] taking

Bacillus amyloliquefaciens strain DSM7 as an outlier.
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In vivo plant growth promotion assay

Pot experiments were conducted to determine the effect of isolate BPSAC147 on plant growth

and its biocontrol of Fusarium oxysporum on tomato (Solanum lycopersicum) seedlings under

greenhouse conditions. Tomato (Solanum lycopersicum) seeds (PUSA-120) were acquired

from Indian Agricultural Research Institute (IARI), New Delhi, India and surface sterilized in

70% ethanol for 5 min followed by 2% NaOCl for 3 minutes and then rinsed with sterile dis-

tilled water three times. Surface sterilized seeds were placed in plastic bags for germination

prior to growing plants in the greenhouse. After 20 days, the germinated tomato seedlings

were planted separately in individual plastic bags (30×15×20 cm) containing sterilized soil. A

suspension of isolate BPSAC147 (10−6 CFUmL-1) was applied to the tomato seedlings growing

in the greenhouse. The experiment consisted of four treatments. T0: control, 12 tomato seed-

lings without addition of the BPSAC147 isolate; T1: tomato seedlings inoculated with isolate

BPSAC147; T2: tomato seedlings + isolate BPSAC147 + Fusarium oxysporum (10−3 CFUmL-

1), and; T3: Tomato seedlings + Fusarium oxysporum (10−3 CFUmL-1). The first two treat-

ments were used to evaluate the PGP properties of BPSAC147 and the other two treatments

were conducted to evaluate the biocontrol capacity of BPSAC147 against F. oxysporum. Plants

were grown at 25–32 0C, re-inoculated each week, and watered on a daily basis until plants

were harvested. After a period of 60 days, six plants from each treatment were uprooted and

measurements were taken of shoot and root, length, fresh weight, and dry weight. Dry weights

were measured as described by Barnawal et al. [4]. All plants were maintained in the green-

house for 60 days. The percent disease index was calculated according to Shanmugam and

Kanoujia [34] as follows: Disease index = [R (rating × number of plants rated)/Total number

of plants × highest rating] × 100. Data were statistically analysed using a one-way ANOVA and

LSD tests at p< 0.05. All of the experiments were conducted four times with twelve replicates

for each treatment in each experiment.

Estimation of chlorophyll

For chlorophyll extraction, 0.5 g of fresh leaves were obtained from plants in each treatment

and ground in 10–20 ml of 80% acetone. The obtained solution from each sample was trans-

ferred in a 15 ml centrifuge tube and centrifuged at 6000 rpm for 10 min. The supernatant was

transferred to another centrifuge tube and the chlorophyll extraction procedure was repeated

until the residue was colourless. Absorbance of the final supernatant was measured at 645 nm

and 663 nm using a Multiscan GO (ThermoScientific) spectrophotometer. The acetone solvent

was used as a blank. The concentrations of chlorophyll a, b and total chlorophyll were calcu-

lated using the following formula as per Ni et al. [35].:

Total Chlorophyll: 20.2(A645) + 8.02(A663)

Chlorophyll a: 12.7(A663)– 2.69(A645)

Chlorophyll b: 22.9(A645)– 4.68(A663)

Photosynthesis measurements

Leaves from replicate plants in each of the treatments were taken and placed in the dark for 30

min. Subsequently, chlorophyll (Chl) fluorescence parameters were estimated with the use of a

portable pulse amplitude modulation dual pam fluorometer (Model No: Dual Pam100.Walz;

Company: Germany). The maximum photosynthetic quantum efficiency of photosystem II

(Fv/Fm) was determined using chlorophyll fluorescence where Fv is maximum variable fluo-

rescence (Fm–Fo), Fo is minimum Chl fluorescence yield in the dark-adapted state and Fm is

maximum Chl fluorescence yield in the dark-adapted state. The leaves were kept in the holder

of the fluorometer and then minimal fluorescence (Fo) was calculated. Fm was evaluated after
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exposing leaves to a 0.6 s saturating pulse of light, while a saturating pulse of white light was

supplied at 10 min intervals for 800 ms at about 6000 μmol photons m-2s-1 to calculate the

greatest (Fm’) and lowest (Fo’) fluorescence intensity; as well as the steady state fluorescence

intensity in the light-adapted state (Fs) as per Calatayud et al. [36]. Estimates of ETR = FPSII

×PAR×0.5× leaf absorptivity coefficient) and PSII efficiency (FPSII = (Fm’-Fs’)/Fm’) were

determined by increasing PAR up to eleven saturation pulses from 0 to 849 μmol photons

m-2s-1. Moreover, the efficiency of qP = [(Fm’- Fs)/ (Fm’- Fo’)], NPQ = [(Fm- Fm’)/ Fm’]), and

the coefficient of photochemical [qL = qP × (Fo/Fs0)] fluorescence quenching was determined

according to Ribeiro et al. [37] and Samaniego-Gamez et al. [1].

Determination of volatile compounds by GC-MS analysis

Isolate BPSAC147 was inoculated into ISP1 broth and cultured at 28˚C for seven days to detect

volatile compounds. Headspace samples of ISP1 broth were used as negative controls. Volatile

compounds present in the headspace samples were determined using GC/MS and a Thermal

Desorber Turbomatrix 150 (Perkin Elmer, USA). The GC-MS conditions are as follows: 10:1

split, 20 psi carrier as Helium gas, 50 to 250˚C at 10˚C per min for oven temperature, electron

impact spectra at 70 eV and positive ion mode whereas, the analysis was performed using 30

m × 250 μm capillary column with 5% phenyl-methyl siloxane. The VOC were identified by

comparing the obtained mass spectra with NIST (National Institute of Standards and Technol-

ogy) 14 Mass Spectral Library (NIST/EPA/NIH). VOC detection and analysis were carried out

as described by Lee et al. [38]. Volatile compounds that exhibited more than >90% similarity

with mass spectra in the NIST library were placed on a “positive list” of tentative compounds.

Volatiles from tomato leaves collected from each treatment were determined by grinding

them in a mixer/grinder. The resulting mixture was placed in methanol for 24 h and the extract

was subsequently filtered through Whatman no. 1 filter paper. The filtered solvent was dried at

45˚C using a rotary evaporator system (BUCHI, Switzerland) to acquire a crude extract. The

crude extract from each treatment was used to identify volatile compounds using GC-MS anal-

ysis. The spectra of the obtained volatile compounds were matched against spectra in the

GC-MS NIST (2014).

Statistical analysis

All the treatment plants consisted of four replicates with 12 plants per replicate and the results

are presented as mean ± standard error (SE). Data were statically analysed using a one way

ANOVA and least significant difference (LSD) tests at p�0.05 and p�0.01. Similarly, the chlo-

rophyll data were calculated using three biological replicates and the results are presented as a

mean ± standard error (SE) with least significant difference (LSD) tests conducted at p�0.05

and p�0.01. Statistical analysis was performed to check difference in metabolites of tomato

plant extract using METABOANALYST 4.0.

Results

Seed germination assay

Four isolates (BPSAC77, BPSAC101, BPSAC121, and BPSAC147) were selected for further

evaluation in the seed germination assay based on a previous PGPR study [16]. Ten tomato

seeds inoculated with the four individual Streptomyces isolates exhibited increased seedling

growth compared to non-inoculated control plants. Relative to control seedlings (n = 9; 90%),

the most significant effect on tomato seedling growth was observed in seedlings inoculated

with BPSAC147 (n = 10; 100%), followed by BPSAC77 (n = 5; 50%), BPSAC101 (n = 4; 40%)

Enhancement of disease resistance in Solanum lycopersicum by inoculation with Streptomyces thermocarboxydus

PLOS ONE | https://doi.org/10.1371/journal.pone.0219014 July 3, 2019 5 / 20

https://doi.org/10.1371/journal.pone.0219014


and BPSAC121 (n = 3; 30%) (Fig 1). There was also a significant effect of the bacterial isolates

on the germination rate of tomato seeds, relative to non-inoculated seeds. Seeds treated with

BPSAC147 exhibited maximum germination relative to the controls and other isolates. Thus,

isolate BPSAC147 was selected for further study.

Amplification of 16S-rRNA gene and phylogenetic analysis

A fragment of the 16S-rRNA gene of BPSAC147, which exhibited significant PGPR activity,

was sequenced. Based on the obtained sequence, BPSAC147 was identified as Streptomyces
thermocarboxydus and the sequences were deposited in NCBI GenBank (Accession number

KJ584878). The 16S sequence of BPSAC147 exhibited 99.75% similarity to Streptomyces ther-
mocarboxydus isolate DSM 44293 in the EZtaxon database; whereas, BPSAC147 exhibited

99.5% similarity with Streptomyces cellulosae strain NBRC 13027, 98.88% similarity to Strepto-
myces minutiscleroticus strain NBRC 13000, 99.13% similarity to Streptomyces capillispiralis
strain NBRC14222 and 99.12% similarity to Streptomyces matensis strain NBRC12889. The

sequence of BPSAC147 and 12 reference isolates recovered from the EzTaxon database were

used to construct a phylogenetic tree. The tree was made based on a Kimura-2 parameter

model using the neighbour joining method. The resulting phylogenetic tree indicated that iso-

late BPSAC147 was closely similar to Streptomyces thermocarboxydus isolate DSM 44293 with

a 72% bootstrap supported value (Fig 2).

In-vivo plant growth promotion assay

The effect of Streptomyces thermocarboxydus isolate BPSAC147 on growth promotion and its

biocontrol activity against F. oxysporum was evaluated in tomato plants under greenhouse

conditions. At 60 days after treatment, shoot length was significantly longer in tomato plants

that were inoculated with isolate BPSAC147 (T1 = 117.6 cm), compared to non-inoculated

Fig 1. Seed germination rate in tomato inoculated with four different isolates (BPSAC77; BPSAC101; BPSAC121

and BPSAC147) compared with the control.

https://doi.org/10.1371/journal.pone.0219014.g001
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control plants (T0 = 110.85 cm). Similarly, greater root length was observed in tomato plants

inoculated with isolate BPSAC147 (T1 = 37.16 cm) than in control plants (T0 = 25.9 cm).

Additionally, higher shoot and root dry weights were attained in T1 (4.44 gm and 1.5 gm,

respectively) plants than in control, T0 (3.49 gm and 1.03 gm) plants (S1 Table and S1 Fig).

The biocontrol activity of isolate BPSAC147 against F. oxysporum was very high. Observa-

tions of wilting were made 60 days after inoculation of BPSAC147 and the pathogen. The T2

treatment (PGP isolate BPSAC147 + F. oxysporum) exhibited greater shoot and root length

(97.1 cm and 21.45 cm, respectively) than the T3 treatment (F. oxysporum alone). Treatment

with the pathogen alone (T3) decreased shoot length, root length, and fresh weight of the plant

while the T2 treatment inhibited infection by F. oxysporum and tomato plants appeared

healthy. There were no significant difference in tomato shoot length, root length, shoot and

root weight between the T2 with control T0 treatments after 60 days (Fig 3 and Table 1).

Fig 2. Neighbour joining phylogenetic tree using Tamura 3-parameter model based on 16S rRNA gene sequence

of Streptomyces thermocarboxydus isolate BPSAC147 was constructed to compare with closest type strains

retrieved from EzTaxon database. Numbers at branches indicate bootstrap values in 1,000 replicates.

https://doi.org/10.1371/journal.pone.0219014.g002

Fig 3. Effect of potential endophytic isolate Streptomyces thermocarboxydus isolate BPSAC147 on shoot length, root length, plant weight and biocontrol effect of

tomato seedlings after 60 days. (A) Shoot and Root height in cm after 60 days; (B) Here, Shoot and Root Fresh weight in gm after 60 days and (C) Shoot and Root dry

height in gm after 60 days. Here T0. Tomato plants grown in greenhouse as control; T1. Tomato plants grown in greenhouse by isolate BPSAC147 (PGPR effect); T2.

Tomato plants grown in greenhouse by isolate BPSAC147 with fungal pathogen Fusarium oxysporum (Biocontrol effect); T3. Tomato plants grown in greenhouse fungal

pathogen Fusarium oxysporum. The graphs were presented as a mean ± standard error (SE). Star (�) indicates statistically significant differences in treatment T1 as

compare to other treatments.

https://doi.org/10.1371/journal.pone.0219014.g003
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After 60 days, decrease in disease incidence was indicated in the tested T2 treatment as

compare to treatment T3. We have found that treatment T2 (strain BPSAC147+ Fusarium oxy-
sporum) showed highest decrease in diseases index (42.3%) as compared to treatment T3 (only

Fusarium oxysporum) (54.9%).

Chlorophyll content

An estimation of chlorophyll content was determined in plants from the four different treat-

ments after 60 days. The analysis was conducted on fresh tomato leaf samples extracted with

acetone solvent. Absorbance of the resulting extracts was recorded at 645 nm and 663 nm.

Results indicated that the concentration of chlorophyll a & b after 60 days of growth was high-

est in T1 (18.545 μg/ml & 16.104 μg/ml, respectively) plants followed by T0 (8.455 μg/ml &

7.246 μg/ml, respectively) plants, T2 (6.607 μg/ml & 6.022 μg/ml, respectively) plants, and T3

(4.206 μg/ml & 5.044 μg/ml, respectively) plants. Similarly, maximum total chlorophyll content

(a + b) was found in T1 (34.649 μg/ml) plants, T0 (15.701 μg/ml), T2 (12.629 μg/ml), and T3

(9.25 μg/ml) plants (Tables 2 and S2).

Fluorescence parameters and photosynthesis

Measurements of photosynthesis and fluorescence parameters were taken on leaves of

plants from each of the previously described treatments. Plants in the greenhouse were

grown under a regime of 10 h light and 25–28˚C temperature. Results indicated that the

ETR of PSII at 849 μmol photons m-2s-1was highest in leaves obtained from T1 (25.2) plants,

followed by leaves from T0 (21.8), T2 (14.73), and T3 (13.56) plants. Leaves of plants inocu-

lated with BPSAC147 (T1 treatment) reached maximum ETR (26.33) at 363 μmol photons

m-2s-1 whereas leaves from T0 (control) and T2 (inoculated with BPSAC147 and F. oxy-
sporum) plants reached a maximum ETR (T0 = 24.16 & T2 = 18.1) at 240 μmol photons m-

2s-1. Moreover, at 150 and 240 μmol photons m-2s-1, leaves obtained from T3 plants

Table 1. In-Vivo plant growth promotion assay in tomato plant after 60 days transplantation.

Treatments Label Shoot length

(cm)

Root length

(cm)

Shoot: Root

(length ratio)

Shoot Weight Root Weight Total dry weight

(gm)

Shoot: Root

(dry ratio)Fresh (gm) Dry (gm) Fresh (gm) Dry (gm)

60 days after transplantation

T0 (PGPR -) 100.85±4.61 25.90±2.63 3.89:1 22.17±1.22 3.49±0.25 3.91±0.27 1.03±0.12 2.26±0.31 3.38:1

T1 (PGPR +) 117.6±4.47 37.16±4.09 3.16:1 26.91±1.83 4.44±0.27 5.73±0.62 1.5±0.32 2.97±0.39 2.96:1

T2 (PGPR/Disease +) 97.10±2.87 21.45±1.63 4.52:1 20.41±1.42 3.35±0.22 2.86±0.21 0.77±0.09 2.06±0.31 4.35:1

T3 (Disease -) 83.3±3.69 16.70±0.83 4.98:1 17.42±1.24 2.74±0.20 2.27±0.27 0.62±0.09 1.68±0.26 4.41:1

LSD @ 5% 9.44 6.17 - 3.45 0.572 0.912 0.441 0.505 -

LSD @ 1% 13.56 8.87 - 4.95 0.823 1.31 0.633 0.724 -

https://doi.org/10.1371/journal.pone.0219014.t001

Table 2. Chlorophyll content in treatment tomato plant.

Treatment Label Chlorophyll a

(μg/ml)

Chlorophyll b

(μg/ml)

Total Chlorophyll (a+b)

(μg/ml)

T0 (PGPR -) 8.455 7.246 15.701

T1 (PGPR +) 18.545 16.104 34.649

T2 (PGPR/Disease +) 6.607 6.022 12.629

T3 (Disease -) 4.206 5.044 9.25

5% LSD level 11.818

https://doi.org/10.1371/journal.pone.0219014.t002
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exhibited the highest ETR value (16.33). The maximum yield of PSII at 849 μmol photons

m-2s-1was observed in leaves of T1 (0.0707) plants followed by leaves from T0 (0.061), T2

(0.041), and T3 (0.038) plants. Fig 4 illustrates changes in qP in response to increasing irra-

diance. The presence of isolate BPSC147 (T1) in tomato plants resulted in changes in the

quenching coefficients. Leaves of plants from the T1 treatment exhibited higher qP (0.7307)

at 46 μmol photons m-2s-1 compared to leaves from T0 (0.7) plants. Notably, leaves of plants

inoculated with BPSAC147 and the pathogen (T2 treatment) exhibited a higher qP (0.6043)

at 37 μmol photons m-2s-1 than leaves of plants inoculated with just the pathogen (0.595)

(T3 treatment). Similarly, leaves of T1 plants exhibited a higher NPQ (1.43) at 849 μmol

photons m-2s-1 than leaves from T0 (1.37), T2 (1.19), and T3 (1.01) plants. Interestingly,

NPQ began to gradually decrease in leaves of T3 plants (0.4503) at (119 μmol photons m-2s-

1) compared to leaves of T2 plants (0.466). The qN at 849 μmol photons m-2s-1 was highest

(0.6853) in leaves of T1 plants, followed by leaves from T0 (0.6697), T2 (0.6253) and T3

(0.582) plants. Results indicated a rapid increase in qN in T1 plants, while a slow increase in

qN values was observed in T3 plants inoculated with just the pathogen. A significantly (5%

of LSD level) higher Fv/Fm (0.812) value was observed in T1 plants inoculated with

BPSAC147 than in T0 (0.790) non-inoculated, control plants. The value of ETR and chloro-

phyll content was also higher in T1 plants. Notably, T2 plants, inoculated with BPSAC147

and the pathogen, exhibited a significantly (5% LSD level) higher an Fv/Fm (0.781) value

than T3 (0.706) plants which were inoculated with just the pathogen (S3 Table).

Fig 4. Effect of PGPR treatments on photosynthesis parameters; A) Electron transport rate (ETR); B) Non-

photochemical fluorescence quenching (NPQ); C) Non-photochemical quenching (qN); D) Photochemical quenching

(qP) of healthy and infected tomato leaf.

https://doi.org/10.1371/journal.pone.0219014.g004
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GC-MS analysis

Detection of volatile compounds produced by isolates BPSAC147. A total of 35 volatile

compounds were identified to be emitted by BPSAC147 using GC-MS analysis (S4 Table).

The highest percentage of peak area (17.959) was observed for 2, 6, 10-Dodecatrien-1-ol, 3, 7,

11-trimethyl with a retention time 16.895, whereas the lowest percentage of peak area (0.894)

was absorbed for credence with a retention-time of 15.244. Most of the detected compounds

have been reported to possess antimicrobial and antioxidant activity.

Among the volatile organic compounds detected, 17 possess (48.5%) antimicrobial proper-

ties, 2 were potent antioxidants (5.71%), whereas 14.5% exhibited both properties. In addition,

3 compounds (8.56%) pronounced insecticidal properties and acts as a serum protease inhibi-

tor (Fig 5). The signature VOCs of Streptomyces thermocarboxydus BPSAC147 are 1H-pyra-

zole, 1,3 benzothiazole, 7-epi-transsesquisabinene, cedrene, azulene derivatives and

piperoidene. The compounds identified in the TD spectrum didn’t show any match with pub-

chem and KEGG compounds in metaboanalyst analysis.

Detection of volatile compounds in tomato leaf extracts obtained from the different

treatment groups. Extracts from leaves obtained from the four different treatment groups

were analyzed. A total of 28, 30, 29 and 28 volatile organic compounds (VOCs) were identified

in leaf extracts obtained from T0, T1, T2, and T3 plants, respectively. The greatest percentage

of peak area (5.473) in T0 extracts was observed for dodecyl acrylate with a retention time of

15.804, while the lowest percentage of peak area (0.314) was observed for 3-Desoxo-3, 16-dihy-

droxy-12-desoxyphorbol 3, 13, 16, 20-tetraacetate with a retention time of 33.886. Similarly,

the greatest percentage of peak area (6.905) in T1 extracts was observes for dodecyl acrylate

with a retention time of 15.828, while the lowest percentage of peak area (0.433) was observed

for 17-(1, 5-Dimethylhexyl)-10, 13-dimethyl-3-styryl hexadecahydro cyclopenta [a] phenanth-

ren-2-one with a retention time of 31.009. The greatest percentage of peak area (3.161%) in

extracts of T2 plants was observed for [2, 4, 6-Decatrienoic acid, 1a, 2, 5, 5a, 6, 9, 10, 10aoctahy-

dro-5, 5a-dihydroxy-4-(hydroxyl methyl) 1, 7, 9-trimethyl-1-[(2-methyl-1-oxo-2-butenyl)oxy]

methyl]-11-oxo-1H 2,8 amethanocyclopenta[a] cyclopropa [e]cyclodecen-6-yl ester] with a

retention time of 30.034, while the smallest percentage of peak area (0.598%) was observed for

strychane, 1-acetyl-20à-hydroxy-16-methylene- with a retention time of 29.639. Lastly, the

Fig 5. Functional classes of mVOCs produced by BPSAC 147, as analyzed in GC-MS-TD.

https://doi.org/10.1371/journal.pone.0219014.g005
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greatest percentage peak area (8.013%) in extracts of T3 plants was observed for dodecyl acry-

late with a retention time of 15.828, while the lowest percentage peak area (0.239%) was

observed for 2-Nonadecanone 2, 4-dinitrophenylhydrazine with a retention time of 21.601.

The GC-MS analysis indicated that two volatile compounds (Benzene, 1, 3-bis (1,

1-dimethylethyl) and Dodecyl acrylate) were found in extracts obtained from the T0, T1, and

T3 plants. Interestingly, only two compounds (1-Dodecanol and 9, 19-Cyclolanostan-3-ol, 24,

24-epoxymethano-, acetate) that could potentially promote plant growth were detected in

extracts of both T0 and T1 plants (https://www3.epa.gov/pesticides/chem_search/reg_actions/

reregistration/fs_G-5_1-Jun-07.pdf). Four compounds (2, 4-Di-tert-butylphenol; Hexadeca-

noic acid, methyl ester; Heptadecanoic acid, 16-methyl-, methyl ester and 3, 8, 12-Tri-O-acet-

oxy-7-desoxyingol-7-one) were detected in extracts of both T0 and T3 plants that may be

defense-related compounds protecting the plants against the fungal pathogen (S5 Table and

S2–S5 Figs).

GC-MS analysis of metabolites in tomato leaf extracts obtained from the different treat-

ment groups. To further reveal the difference between the metabolite footprint of 60 d

among the various treatments, statistical analysis was performed in METABOANALYST 4.0

and observed that the relative abundance of metabolites exhibited no statistical differences

between the control and treatments. The metabolite identified in tomato leaves treated with

Streptomyces thermocarboxydus BPSAC147 registered unique compounds when compared

with its interaction with F. oxysporum and F. oxysporum alone. The metabolite detected in the

interaction of Streptomyces thermocarboxydus BPSAC147 and F. oxysporum is a tetracycline

compound that exhibits antimicrobial property whereas betulin has anticancer property. The

hierarchical clustering of metabolites on 60 d showed three major clusters with T1, T3 and

Control (T0) vs T2 (Fig 6). The PCA analysis also revealed thee clusters with PC1, PC2 and

PC3contributing 55.4%, 30.7% and 14% variance respectively as depicted in 3-D score plot

(Fig 7 and S6 Table).

Fig 6. 3D score plot between the selected PCs. The explained variances are shown in brackets.

https://doi.org/10.1371/journal.pone.0219014.g006
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Discussion

The use of chemical fertilizers has become common place which has had a harmful impact on

the environment. Hence, it is essential to identify endophytic microorganisms that can be used

as a method for increasing plant host resistance to disease and the improvement of soil health

[4]. In this regard, a number of actinobacteria have been reported to stimulate plant growth,

function as biocontrol agents against diverse pathogenic fungi; and in general, increase abiotic

and biotic stress tolerance in plants. Takahashi et al. [39] reported that of the underlying mech-

anism of the beneficial microbe-plant interaction involves complex cross-talk between numer-

ous molecular pathways. Therefore, it has become evident that plant-microbe interactions can

be used to support plant health [7, 40].

In the present study, four bacterial isolates (BPSAC77, BPSAC101, BPSAC121, and

BPSAC147) were demonstrated to enhance the germination of tomato seeds. Inoculation of

BPSAC147 increased the germination percentage to 100% compared to 90% in the untreated,

control seeds. This finding is consistent with the result obtained by Rae-Hyun and Song [41],

who reported that Rhodopseudomonas KL9 and Rhodopseudomonas BL6 increased the germi-

nation percentage of tomato seeds by 31.8% and 7.6%, relative to untreated, control seeds. Dif-

ferences in the improvement of germination percentage may depend on the level of bacterial

colonization in the seed, seed coat properties, and the amount of bacterial substances that can

penetrate into the seed [42]. This finding is consistent with Lasudee et al. [21] who state that

Streptomyces thermocarboxydus isolate S3 increased the germination percentage of mung bean

seeds (95–98%) which was statistically higher than the control. Other environmental factors

Fig 7. Hierarchical cluster analysis for the metabolites of tomato plant leaf extracts on 60 days result shown as

heat map.

https://doi.org/10.1371/journal.pone.0219014.g007

Enhancement of disease resistance in Solanum lycopersicum by inoculation with Streptomyces thermocarboxydus

PLOS ONE | https://doi.org/10.1371/journal.pone.0219014 July 3, 2019 12 / 20

https://doi.org/10.1371/journal.pone.0219014.g007
https://doi.org/10.1371/journal.pone.0219014


may also influence the growth-stimulating properties of some bacteria. For example,

BPSAC147 may produce some phosphorus, enzymes, or phytohormone that stimulates tomato

seeds to germinate.

In the present study, endophytic Streptomyces thermocarboxydus isolate BPSAC147 was

obtained from root tissues of Alstonia scholaris L. and identified based on its 16S rRNA gene

sequence. A phylogenetic tree indicated that isolate BPSAC147 was closely related to Strepto-
myces thermocarboxydus isolate DSM 44293 with a 72% bootstrap supported value, which is

similar to a report by Passari et al. [30].

Fusarium oxysporum is a soil-borne pathogen that infects several different crop plants. The

fungus enters the vascular system by infecting plant roots. Microorganisms can protect the

infection site used by pathogens by producing specific nutrients (N, P, and S) and other com-

pounds (antibiotics, lytic enzymes and phytohormone). Actinobacteria are known to be pres-

ent in the rhizosphere of plants [28], and Streptomyces sp. are known to be endophytic in root

tissues [43], where they can function as potential biocontrol agents and also modulate plant

development. In the present study, Streptomyces thermocarboxydus isolate BPSAC147 was

evaluated for its ability to promote plant growth and act as a biocontrol agent against F. oxy-
sporum in tomato plants grown under greenhouse conditions. Similar results were reported by

Goudjal et al. [44] who indicated that endophytic Streptomyces spp. isolate CA-2 and AA-2 sig-

nificantly increased the shoot length, root length, and dry weight of tomato plants, relative to

non-inoculated control plants. Isolate BPSAC147 also exhibited biocontrol activity against F.

oxysporum in tomato plants which may be due to its potential to have significant plant growth

promoting potential and secondary metabolites production as documented in our earlier

study by Passari et al. [16]. Similar findings were reported by Goudjal et al. [45] who indicated

that Streptomyces sp. isolate SNL2 could inhibit Fusarium oxysporum f. sp. radicis lycopersici
infection of tomato plants. Moreover, Dias et al. [28] also reported that Streptomyces sp. isolate

PM4 and PM5 significantly increased the shoot length (50.1 cm and 49.0 cm, respectively) and

root length (31.0 cm and 29.2 cm, respectively) of tomato plants, relative to control plants

(49.5 cm and 24.7 cm, respectively). Additionally, Streptomyces caeruleatus isolate ZL2 [46]

and Pseudomonas sp. isolate S85 [47] were reported to decrease the level of root rot disease in

tomato seedlings caused by Fusarium sp. Our study, however, is the first report on the ability

of endophytic Streptomyces thermocarboxydus isolate BPSAC147 to exhibit PGP and biocon-

trol activity in tomato plants.

Our results indicated that S. thermocarboxydus isolate BPSAC147 induced plant growth

promotion and exhibited biocontrol activity in tomato plants for up to 60 days. Results also

indicated that chlorophyll a & b levels were highest in T1 plants at 60 days after the different

treatments were initiated. This finding is somewhat similar to results reported by Dias et al.

[28] indicating that Streptomyces sp. isolate PM5 produced a greater amount of chlorophyll a

& b (0.14 μg/ml and 0.13 μg/ml, respectively) than control (0.11 μg/ml and 0.14 μg/ml, respec-

tively) plants. Moreover, a higher level of total chlorophyll content (a + b) was found in T1

(34.649 μg/ml) plants than in T0 (15.701 μg/ml) plants. This finding is consistent with Dias

et al. [28] who found that total chlorophyll content (1.66 μg/ml) in tomato plants inoculated

with Streptomyces sp. isolate PM5 was significantly higher than the level in control (1.36 μg/

ml) plants. Babu et al. [48] also reported that the rhizobacteria B. subtilis and Azotobacter
chroococcum induced higher levels of chlorophyll content in tomato plants, relative to control

plants. The inoculation of mung beans (Vigna radiata) with S. thermocarboxydus isolate S3

showed the significant increase in fresh weight, root length and total length in the presence of

IAA production as state by Lasudee et al. [21].

Maxwell and Johnson [49] suggested that the photosynthetic efficiency of photosystem II

(Fv/Fm) is a good indicator of stress levels in plants. In our study, photosynthetic parameters,
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including Fv/Fm, ETR, NPQ, qN, qP and yield rate were calculated in leaves obtained from

plants subjected to the different treatments (T0, non-inoculated control plants; T1, plants inoc-

ulated with BPSAC147; T2, plants inoculated with BPSAC 147 + F. oxysporum, and T3, plants

inoculated with F. oxysporum). T1 plants exhibited a significant increase in photosynthetic rel-

ative to T0 plants and in T2 plants relative to T3 plants. The Fv/Fm value represents the great-

est quantum efficiency of PSII. We observed the highest photochemical quantum yield of PSII

(Fv/Fm) in T1 plants, with a value of 0.812. This result is consistent with results reported by

Samaniego-Gamez et al. [1] who indicated that Fv/Fm values were highest (3.6) in pepper

plants inoculated with Bacillus sp. isolate M9. Fv/Fm represents the greatest efficiency of pho-

tosystem (PSII) and can be used to decrease QA, and as also serve as an indicator of plant pho-

tosynthetic performance [50]. T1 plants reached a higher maximum ETR (25.2) at 849 μmol

photons m-2s-1, relative to T3 (13.56) plants. This finding is consistent with results reported by

Samaniego-Gamez et al. [1] who indicated that the ETR of PSII exhibited a maximum level at

1150 μmol photons m-2s-1 in pepper plants inoculated with Bacillus sp. isolate M9, with a value

of 45.4. Our results are also in agreement with the premise that the ETR of PSII is reduced by

stress [51]. A significant increase in the ETR value is induced by PGPR. Melis [52] suggested

that the quinone acceptor (Qa) is extremely oxidized and that its excitation energy is used in

electron transport due to the increasing electron transport rate of PSII to reduce photodamage.

Therefore, microbial inoculation of plants has the potential to enhance the rate of photosyn-

thesis, as well as plant growth. In our study, T1 plants had a higher qP value (0.7307) than T0

plants (0.7) at 46 μmol photons m-2s-1. This finding is in complete agreement with Samaniego-

Gamez et al. [1], who reported that pepper plants inoculated with Bacillus sp. isolate M9 and

Bacillus cereus isolate K46 exhibited a higher qP than control plants (27% vs. 24%, respec-

tively). qP represents the fraction of excitation captured by open traps and transferred to the

chemical energy in the PSII system [53]. Higher qP indicate that more fluorescence is being

quenched by the photochemical process [53]. Ranjan et al. [54] reported that immature fruits

of Jatropha curcas (L.) trees exhibit a higher qP (0.46) as compared to mature and ripe fruits at

1200 μmol photons m-2s-1. In our study, T1 tomato plants exhibited higher NPQ (1.43) than in

T0 control plants (1.37). Kumar et al. [55] indicated that PGPR can function in inducing

growth in crop plants and impact the overall physiology of the entire plant resulting in higher

yields in a variety of crops. It appears evident that microbes can augment abiotic and biotic

stress tolerance in plants through the PGPR process [56].

GC-MS is useful method to detect and identify volatile organic compounds (VOCs) [57, 58,

59]. VOCs comprising of alcohols, ketones, esters, acetic acid, aldehydes, benzene groups, car-

boxylic groups, amide groups, and their derivatives have been reported to be produced by

Actinobacteria [60], VOCs can also function as a signaling molecule. In the present study, 35

volatile compounds were detected by GC-MS analysis to be emitted from Streptomyces thermo-
carboxydus isolate BPSAC147. The relative abundance of 2, 6, 10-Dodecatrien-1-ol, 3, 7, 11-tri-

methyl was 17.959%, methylene diamine, N, N’-diacetyl- 6.043%), 1-Buten-3-yne, 2-methyl-

4.93%, and 4-(4’-hydroxyphenoxy) biphenyl 4.65%. Dodecane, 5,8-diethyl contains exhibited

the largest percentage of peak area (3.102%). This finding is consistent with report by Guo

et al. [61] who indicated that ether extracts of Scapania verrucosa Heeg and its endophytic fun-

gus Chaetomium fusiforme contained dodecane, 5, 8-diethyl volatile compounds which have

antifungal and antitumor activity. In addition, compounds such as methoxyacetic acid, 4-tetra-

decyl ester, and benzene also have antimicrobial properties against bacteria [62]. Oxirane, a

hexyl compound identified in the present study, has also been reported to possess antimicro-

bial activity [63]. In their study, Paracoccus pantotrophus isolate FMR19 exhibited antimicro-

bial and antioxidant activity against bacterial pathogens and [MDROs] via the production of

oxirane, hexyl compound.
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In the present study, methanolic extracts of tomato leaves taken from plants subjected to

each of the four treatments (T0, T1, T2, and T3) were collected to identify VOCs using GC-MS

analysis. A total of 115 VOCs was detected from the four treatments. Two compounds (2,

4-di-tert-butylphenol and diethyl phthalate), which have antioxidant, antifungal and cytotoxic

activity [64, 65, 66], were detected in T0 plants. Clonazepam and rhodopin compounds, which

exhibit antioxidant, anticonvulsant, and pesticide and heavy metal tolerance activity [67, 68],

were identified in T1 plants. The presence of these compounds in T1 plants suggests that they

may function in promoting the growth of tomato plants and also serve as defense-related com-

pounds against fungal pathogens. Methyl stearate, eicosapentaenoic acid, a TBDMS derivative,

and ethyl iso-allocholate, which has anti-inflammatory, anticancer and anti-inflammatory

activity [69, 70, 71], were identified in T2 plants. Lastly, 2, 4-di-tert-butylphenol, which has

antioxidant properties, and astaxanthin, which has inflammation properties, were identified in

T3 plants [64, 72].

The metabolite ethyl iso–allochaolate is highly unique upon the interaction of S. thermocar-
boxydus BPSAC147 with F. oxysporum, which is detected in the extract. Glp 1- Apelinendo-

genous peptide capable of binding the apelin receptor (APJ), which was originally described as

an orphan G-protein-coupled receptor widely expressed in the tissues of human organs [73].

The apelin is so far not reported in plant systems which need further investigation. Oncon-

trary, mannnitol a compatible solute to modulate stress response was identified in T3 with F.

oxysporum which might be due to the activation of Induced systemic resistance in tomato. In

general, carotenoids, benzenoids and flavanoids are more predominant in the extracts of

tomato leaves treated with S. thermocarboxydus BPSAC147 alone and combination of S. ther-
mocarboxydus BPSAC147 with F. oxysporum.
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