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Diabetes mellitus (DM), a metabolic disorder characterized by hyperglycemia, is caused by insufficient insulin production due
to excessive loss of pancreatic f cells (type I diabetes) or impaired insulin signaling due to peripheral insulin resistance (type II
diabetes). Pancreatic 8 cell is the only insulin-secreting cell type that has highly developed endoplasmic reticulum (ER) to cope with
high demands of insulin synthesis and secretion. Therefore, ER homeostasis is crucial to the proper function of insulin signaling.
Accumulating evidence suggests that deleterious ER stress and excessive intracellular lipids in nonadipose tissues, such as myocyte,
cardiomyocyte, and hepatocyte, cause pancreatic f-cell dysfunction and peripheral insulin resistance, leading to type II diabetes.
The excessive deposition of lipid droplets (LDs) in specialized cell types, such as adipocytes, hepatocytes, and macrophages,
has been found as a hallmark in ER stress-associated metabolic diseases, including obesity, diabetes, fatty liver disease, and
atherosclerosis. However, much work remains to be done in understanding the mechanism by which ER stress response regulates
LD formation and the pathophysiologic role of ER stress-associated LD in metabolic disease. This paper briefly summarizes the
recent advances in ER stress-associated LD formation and its involvement in type II diabetes.

1. Introduction to ER Stress sively reviewed [2, 3]. The UPR signaling, mediated through
ER stress sensors, modulates transcriptional and translation
programs in cells under ER stress. As a double-edged sword,
the UPR provides survival signals at the initial phase of stress
response, leading to cell adaption to ER stress [1, 2, 4].
When ER stress gets prolonged, the UPR can induce cell
death programs to kill the stressed cells. In recent years, the
scope and consequence of ER stress and UPR have been
significantly expanded. Many pathophysiologic stimuli, such
as oxidative stress, proinflammatory stimuli, fatty acids, and
energy fluctuations, can directly or indirectly cause ER stress

ER is an intracellular organelle where dynamic protein fold-
ing and assembly, storing cellular calcium, and lipid biosyn-
thesis occur. A variety of biochemical or pathophysiological
stimuli can interrupt protein folding process in the ER by
disrupting protein glycosylation, disulfide bond formation,
or ER calcium pool. These disruptions can cause the accum-
ulation of unfolded or misfolded proteins in the ER lumen,
a condition termed as “ER stress” [1, 2]. To protect cells
from proteotoxicity caused by ER stress, the unfolded protein
response (UPR) is activated through attenuating general pro-

tein translation, increasing in protein folding capacity, and
expediting degradation of misfolded proteins. Three major
ER stress sensors or transducers have been found: inositol-
requiring la (IREl«), double-stranded RNA-dependent pro-
tein kinase- (PKR-) like ER kinase (PERK), and activating
transcription factor 6 (ATF6), which have been comprehen-

and the UPR activation in specialized cell types, such as
macrophages, hepatocytes, and pancreatic f3 cells [2, 5]. The
UPR signaling is fundamental to the initiation and progress
of a variety of diseases, including metabolic disease, cancer,
cardiovascular disease, and neurodegenerative disease [2, 6,
7].
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2. LD Formation

LD, also known as adiposome or fat body, has been found
ubiquitously present in lipid-overloaded cells from yeast to
mammals [8, 9]. For a long time, LD was thought simply as
an inert lipid storage reservoir since its earliest description
in 19th century. The discovery of perilipin, an LD-associated
protein that coats LD in adipocytes, makes researchers to
challenge the understanding of LD as lipid storage [10].
LD is now recognized as a dynamic organelle composed
of a monolayer phospholipid, embedded with numerous
proteins without transmembrane spanning domains, and a
hydrophobic core that contains triacylglycerols (TGs) and
sterol esters [11, 12]. TGs are the key neutral lipid required
for LDs formation in adipocytes. Deletion of genes encoding
enzymes responsible for neutral lipid synthesis eliminated
LDs formation [13]. Evidence showed that, without DGAT
enzymes, LDs cannot form in adipocytes. Therefore, by
segregation of extra TG or hydrophobic molecules into LDs,
cells are protected from lipotoxicity. These features make LD
a regulatory organelle in lipid homeostasis. The biogenesis
and assembly of LD are still largely unknown. It has been
suggested that ER is the site where LD is synthesized and
assembled. Over ninety percent of LDs were found in close
apposition to the ER [14]. ER budding model, Bicelle model,
and vesicular budding model have been suggested to explain
how LD is formed in ER [15]. Perhaps, the most accepted
model is ER budding model in which LD originated between
the two leaflets of ER bilayer buds into the cytosol. Newly
formed LD can increase its size (0.2 ym—20 ym in diameter)
by homotypic fusion that depends on microtubule system,
most likely motor protein dynein. Under this mechanism, the
growth of LD may proceed without ongoing biosynthesis of
TGs and sterol esters [16, 17].

3. ER Stress and LD Formation

LD formation has been proposed as an exit model in
the removal of unfolded or misfolded proteins or some
ubiquitinated proteins from the ER [18, 19]. LD may serve
as a transient depot to sequester unfolded or misfolded as
well as excessive proteins to alleviate ER stress (Figure 1).
Diverse groups of LD-associated proteins were found in yeast
S. cerevisiae, Drosophila embryos, and human hepatocyte cell
line Huh7 [20-22]. Some of the LD-associated proteins, such
as Acl-CoA synthetases, lanosterol synthetase, and GAPDH,
are conserved from yeast to human. The proteins detected in
LD seem to be specific, since the organelle-specific proteins,
including lactate dehydrogenase (LDH) (cytosolic marker),
integrin (plasma membrane marker), calnexin (ER marker),
and GS28 (Golgi marker), were hardly detected in LD
fractions [22]. Interestingly, a number of proteins which
were thought to be organelle-specific, including histones
(nucleus), caveolins (plasma membrane), HSP70 (cytosol),
ApoB (ER), and Nir2 (Golgi), were detected in LD fraction
[23]. Furthermore, LD dynamically interacts with ER, per-
oxisomes, mitochondria, and plasma membrane [15]. LD
can be transported along microtubules, following the same
way that the ER, Golgi, and mitochondria were positioned
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and delivered [24]. It was proposed that the dynamical
interactions between LD and the other compartments facil-
itate the exchange of proteins and lipids in cells. The LD
is functionally and structurally similar to the extracellular
counterpart of lipoprotein particles [15, 21]. This notion
was supported by the finding that LD provides a platform
for degradation of excessive ApoB protein by converging
ubiquitin-proteasomal and autophagy-lysosomal pathways,
thereby preventing cytotoxicity resulted from aggregation of
excessive proteins [25]. Previous studies have shown that
disruption of ER functions leads to the accumulation of
intracellular lipids [26-28]. Disrupted protein glycosylation
or ER-associated protein degradation by ER stress-inducing
reagents, such as tunicamycin and brefeldin, has been
demonstrated to increase LD accumulation in budding yeast
Saccharomyces cerevisiae or mammalian cells [28, 29]. Previ-
ously, it is known that intracellular LD formation is through
the lipogenic program activated by sterol regulatory element-
binding proteins (SREBPs). Recent study suggested that
more ER-localized, stress-responsive protein factors, such
as hepatocyte-specific cAMP responsive element-binding
protein (CREBH), can also regulate lipogenic programs
to promote LD formation under metabolic stress signals,
such as insulin and saturated fatty acids [30]. Moreover,
ER stress response may directly facilitate LD synthesis and
assembly as a mechanism to defend intracellular stress [29,
31] (Figure 1). This is consistent with the observations that
lipids can be recruited to the stressed cells to sequester
misfolded proteins in the ER at the early stage of ER stress
and that the ER is expanded significantly to alleviated ER
stress independent of the UPR [23, 32].

4. LD Formation and Type II Diabetes

Previous studies demonstrated that excessive accumulation
of lipids in peripheral tissues is closely associated with
insulin resistance in type II diabetes [33, 34]. Although ER
stress and UPR pathways in metabolic disease have been
extensively reviewed, ER stress-associated LD formation,
which is independent of UPR pathway, did not draw much
attention. The interaction between LD and mitochondrial
might affect the peripheral tissue insulin resistance [35, 36]
(Figure 1). Recent studies indicated that insulin resistance
is not simply associated with the amount of intracellular
lipids. Despite elevated lipids content in skeletal muscle of
the trained enduring athletes, the insulin-signal in these indi-
viduals is still markedly sensitive [36]. The combination of
weight loss and physical activity in obesity improves insulin
sensitivity and reduces the size of LD, but not the overall
intramyocellular lipid [37]. One possible explanation for
these phenomena is that increased mitochondrial oxidative
activity for lipid oxidation may decrease insulin resistance.
This is supported by the facts that lower oxidative capacity is
found in insulin resistant skeletal muscle and that exercise
can improve the capacity for lipid oxidation [36]. Several
mitochondrial proteins including prohibitin, a subunit of
ATP synthase, and pyruvate carboxylase were identified in
LD fractions by proteomic analysis [35]. In addition, numer-
ous lipid metabolic enzymes, such as hormone-sensitive
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FIGURE 1: Interactions between ER stress, oxidative stress, and lipid droplets in type II diabetes. LD, lipid droplet; UPR, unfolded protein

response.

lipase, lanosterol synthase, and acyl-CoA synthetase, were
also found to be associated with LD complex, and the overall
LD protein composition can be changed in response to
lipolysis stimulation [35, 38]. Despite these observations,
further study is required to explore how mitochondria
communicate and interact with LD in metabolic processes.
Fat-specific protein 27 (Fsp27) is a member of cell
death-inducing DNA fragmentation factor family proteins
that is localized to LD. Fsp27 plays an important role in
lipid storage and mitochondrial activity in adipocytes [39—
41]. Genetic depletion of Fsp27 in mice is characterized by
increased glucose uptake, improved insulin sensitivity, and
significantly increased mitochondrial metabolism [39, 40].
Small sizes of LDs and increased mitochondrial activity
were found in Fsp27-deficient white adipocytes, suggesting
that ectopic LD formation represents an imbalance between
lipid supply and lipid oxidation in peripheral tissue. Likely,
LD-associated proteins and the interactions between LD
and the other intracellular organelles may play direct roles
in the pathogenesis of diabetes [42]. Type II diabetes is
often correlated with increased serum levels of proinflamma-
tory cytokines secreted by ER stress-activated macrophage.
Previous research demonstrated that the proinflammatory
cytokine TNFa blunts the insulin signaling pathway therefore
causing insulin resistance by activating the JNK1/2 signaling
pathway which is involved in serine phosphorylation of
IRSI (insulin receptor substrate 1) [43, 44]. However, a new
study by Ranjit found that proinflammatory cytokines, such
as TNFa, IL1j3, and INFy, act on lipolysis by decreasing
the expression of FSP27 and the size of LD in adipocytes
[45]. Since decreased FSP27 is evidenced to improve insulin

resistance and LDs, it is likely that the proinflammatory
cytokines play double-edged roles in type II diabetes.

5. Conclusion

Accumulating evidence demonstrated a strong link between
ER stress, LD formation, and type II diabetes. It is important
to note that ER stress response is a fundamental stress
signaling underlying many life styles, such as air pollution,
chronic alcohol consumption, and smoking, which may be
associated with the development of metabolic disease [46—
48]. Therefore, for the future research, it is important to
delineate ER mechanisms in LD formation that is associated
with the development of type II diabetes. Key questions
include what is the mechanism by which ER stress regulates
LD formation? Is there any ER chaperones or UPR targets
present in the LD complex? Does ER stress-associated LD
formation provide survival or devastating pathways in the
progression of type II diabetes? Is it possible to modulate LD
formation by targeting ER stress signaling? Answering these
questions will benefit and direct the future understanding
and treatment of type II diabetes and the other types of
metabolic disease.
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