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Abstract: Herein, a peripherally clamped stretched square monolayer graphene sheet with a side
length of 10 nm was demonstrated as a resonator for atomic-scale mass sensing via molecular
dynamics (MD) simulation. Then, a novel method of mass determination using the first three resonant
modes (mode11, mode21 and mode22) was developed to avoid the disturbance of stress fluctuation
in graphene. MD simulation results indicate that improving the prestress in stretched graphene
increases the sensitivity significantly. Unfortunately, it is difficult to determine the mass accurately by
the stress-reliant fundamental frequency shift. However, the absorbed mass in the middle of graphene
sheets decreases the resonant frequency of mode11 dramatically while having negligible effect on
that of mode21 and mode22, which implies that the latter two frequency modes are appropriate
for compensating the stress-induced frequency shift of mode11. Hence, the absorbed mass, with
a resolution of 3.3 × 10−22 g, is found using the frequency ratio of mode11 to mode21 or mode22,
despite the unstable prestress ranging from 32 GPa to 47 GPa. This stress insensitivity contributes to
the applicability of the graphene-based resonant mass sensor in real applications.

Keywords: stretched graphene resonator; mass sensor; resonant mode; frequency ratio; molecular
dynamics simulation

1. Introduction

As typical representatives in the burgeoning field of nanoelectromechanical systems (NEMS),
nanomechanical resonators [1–3] are expected to bring dramatical improvement to mass [4–7]
pressure [8], acceleration [9] measurement and chemical/biological detections [10–12] due to their
ultra-high sensitivity. Significantly, the mass sensitivity reached 10−22 gHz−1/2 by using a 205 nm
long carbon-nanotube (CNT) as a resonator [6]. In other words, the mass of a single gold atom can
be measured. The measure principle of a nanomechanical resonant mass sensor is generally based
on the frequency shift induced by particles absorbed in the resonant beam or a membrane made
from carbon nanotubes (CNT) or graphene [4–7,13,14]. In addition to their excellent mechanical
properties, such as extremely high intrinsic strength and Young’s modulus [15,16] and tunable electrical
performance [17–19], graphene sheets have a larger aspect ratio compared with CNTs, which means
that enough areas are available for incoming mass flux. Consequently, an increasing number of
theoretical studies have focused on graphene-based nanomechanical resonators with atomic-mass
resolution in recent years [4,20–28].

It should be noted that nonlocal elasticity theory [21,22], molecular structural mechanics
methods [20], and molecular dynamics (MD) simulation methods [25–28] have been studied to
calculate the frequency shift of graphene membrane in response to the absorbed mass. Among these
methods, MD simulation shows an extraordinary advantage in investigating the nanostructure’s
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properties by directly computing the state of every atom, which takes the scale effect into consideration.
In fact, using MD simulation, Arash et al. [25] studied the frequency shifts of graphene sheets with
four edges fixed and two edges fixed due to attached gas atoms, and the mass sensitivity of a square
single-layer graphene sheet with a side length of 10 nm was achieved to reach 10−21 gHz−1/2. Then
Kwon et al. [26] explained the gate voltage’s effect on the mass induced frequency shift, which was in
good agreement with the experimental results of Chen et al. [4]. Recently, Duan et al. [27] proposed a
new kind of resonator with a mass resolution of 10−24 g using pillared graphene structures. However,
these studies focused on either relaxed graphene sheets or graphene sheets with tension induced by
the electrostatic force between graphene and silicon oxide substrate, which was far below the intrinsic
strength (about 130 GPa) [16]. In fact, stretched graphene sheets with greater prestress, tended to
have higher resonant frequencies, and were expected to achieve higher mass sensitivity. Moreover, in
previous studies, the calculation of the absorbed mass was mainly based on fundamental frequency
shift, which is sensitive to stress in graphene. Nevertheless, it is not easy to control the stress in
stretched graphene accurately and steadily. For example, the temperature fluctuation, resulting from
the difference of the thermal expansion coefficient between graphene and silicon oxide substrate,
disturbs the stress in graphene significantly [1]. In addition, the variance of the gate voltage may
influence the stress as well [4].

However, it is important to mention that higher resonant modes of graphene, which are common
in the vibration process [29,30], can be used to compensate for the fundamental frequency shift induced
by unstable stress. Therefore, in this paper, the applicability of a stretched graphene-based mass sensor
via the frequency ratio of the first three resonant modes was investigated by performing MD simulation.
A peripherally clamped square graphene sheet with a side length of 10 nm served as the resonator, and
the frequencies, as well as the mass-induced frequency shifts of the three resonant modes (mode11,
mode21, and mode22), were calculated. Considering the susceptibility of fundamental frequency to
unstable stress in a stretched graphene sheet, a novel method of mass determination based on the
frequency ratio of mode11 to mode21 or mode22 was proposed, where the frequencies of mode21 and
mode22 were used to compensate for the fundamental frequency shift caused by stress variation.

2. Modeling and MD Simulation

As shown in Figure 1a, the resonant mass sensor is mainly composed of the substrate and the
square graphene sheet. The substrate is a silicon wafer with a SiO2 layer on the top. A trench is etched
into the central SiO2. Then a gate electrode, a source electrode and a drain electrode are placed at the
bottom and on the two sides of the trench. Thus, the gate electrode sends an actuation force to the
graphene sheet, while the source and the drain electrodes are used to detect vibration [1,4,29–32]. In
this case, the graphene sheet is deposited on the trench. Note that the adhesion between the graphene
and the substrate is strong enough (up to 20.64 J/m2) to clamp the four edges of the graphene [33,34].
Moreover, when strong tension was exerted to the graphene in this study, as shown in Figure 1b,
enlargement of the area of graphene fixed prevents slippage between the graphene and the silicon
oxide substrate. When external pressure is applied to the silicon wafer, the deformation of the silicon
oxide substrate stretched the graphene, therefore adjusting the tensile stress in the graphene.
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Figure 1. Schematics of the stretched graphene-based mass sensor. (a) A monolayer graphene sheet 
suspended on a silicon oxide substrate. (b) A peripherally fixed stretched monolayer graphene sheet 
with gold atoms absorbed on the surface. 

To investigate the resonant frequency of the stretched graphene, the evolutionary process of 
vibrating the graphene was obtained by calculating every atom’s position and momentum directly [35], 
which was performed with the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 
package [36]. As shown in Figure 1b, the square monolayer graphene sheet contained 7782 atoms with 
3928 fixed atoms (boundary) and 3854 free atoms (middle, 10 nm × 10 nm). The four edges were fixed 
herein, thus preventing the “flipping” motion, which generally happens with free edges, and 
decreasing the resonator’s quality factor significantly [30,37–39]. Then, gold atoms were added to this 
system as absorbed mass. The adaptive intermolecular reactive empirical bond order (AIREBO) [40,41] 
and the potential and embedded-atom method (EAM) [42] potential were used to describe C–C and 
Au–Au interactions, respectively. The Lennard–Jones 12–6 equation, representing a cursory 
approximation of the interaction between C and Au [28,43–45], is defined by 
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where m and n refer to the resonant mode, x and y are the coordinates of every atom on the x–y plane, 
Lx and Ly are the side length of the vibrating square graphene sheet, which were both set to 10 nm. The 
initial velocity v0 is equal to 1 Å/ps. In this case, the corresponding amplitude was less than 1.5 Å, which 
is too small to cause violent nonlinear vibrations [38,44]. We made a convergence test, which 
demonstrates that 1 Å/ps is appropriate for harmonic vibration, and the corresponding results are 
shown in Section 3.1. After the graphene sheet started oscillating under the NVE ensemble (where the 

Figure 1. Schematics of the stretched graphene-based mass sensor. (a) A monolayer graphene sheet
suspended on a silicon oxide substrate. (b) A peripherally fixed stretched monolayer graphene sheet
with gold atoms absorbed on the surface.

To investigate the resonant frequency of the stretched graphene, the evolutionary process of
vibrating the graphene was obtained by calculating every atom’s position and momentum directly [35],
which was performed with the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
package [36]. As shown in Figure 1b, the square monolayer graphene sheet contained 7782 atoms with
3928 fixed atoms (boundary) and 3854 free atoms (middle, 10 nm × 10 nm). The four edges were fixed
herein, thus preventing the “flipping” motion, which generally happens with free edges, and decreasing
the resonator’s quality factor significantly [30,37–39]. Then, gold atoms were added to this system as
absorbed mass. The adaptive intermolecular reactive empirical bond order (AIREBO) [40,41] and the
potential and embedded-atom method (EAM) [42] potential were used to describe C–C and Au–Au
interactions, respectively. The Lennard–Jones 12–6 equation, representing a cursory approximation of
the interaction between C and Au [28,43–45], is defined by
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[(
σ
r

)12
−

(
σ
r

)6
]

(1)

where ε = 29 meV and σ = 3.0 Å. With these three potential functions, the Hamiltonian equation of the
system could be established. By solving the Hamiltonian equation, the corresponding evolutionary
process could be determined after obtaining every atom’s position and momentum.

The simulation process was divided into four parts: equilibration, deformation, actuation and
oscillation. Followed by further equilibration under the NPT ensemble (where the number of atoms,
pressure and temperature are kept constant) of 100 ps, the simulation system was first optimized to
obtain the relaxed structure with the minimum energy. Then, the axial deformation was imposed
on the graphene sheet to stretch it. The induced stress ranged from 12 GPa to 47 GPa in this study.
Afterwards, the edges were fixed, and then a velocity distribution vz was exerted on the free part,
described as

vz = v0 sin
(
n

x
Lx

π

)
sin
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m

y
Ly

π

)
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where m and n refer to the resonant mode, x and y are the coordinates of every atom on the x–y plane,
Lx and Ly are the side length of the vibrating square graphene sheet, which were both set to 10 nm. The
initial velocity v0 is equal to 1 Å/ps. In this case, the corresponding amplitude was less than 1.5 Å,
which is too small to cause violent nonlinear vibrations [38,44]. We made a convergence test, which
demonstrates that 1 Å/ps is appropriate for harmonic vibration, and the corresponding results are
shown in Section 3.1. After the graphene sheet started oscillating under the NVE ensemble (where the
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number of atoms, volume and energy are kept constant), the kinetic energy and potential energy of the
system were traced and recorded. Finally, the Fast Fourier Transform (FFT) method was utilized to
calculate the frequency of the energy change, which was twice the vibration frequency. The whole MD
simulation lasted for 600 ps with a time-step of 1 fs, and the simulation temperature was 10 K.

3. Results and Discussion

By performing the MD simulation, we calculated three corresponding resonant frequencies of
the peripherally clamped graphene sheet with different absorbed masses and prestress values. The
simulation results show that the position of the absorbed mass greatly affects the frequency shift.
Particularly, when gold atoms were placed at the center area of the graphene sheet, the frequency
of mode11 decreased significantly, whilst the frequencies of mode21 and mode22 remained steady.
Moreover, a linear relationship exists between the frequency and the square root of tension in a
graphene sheet, thus indicating an effective way to improve the mass-induced frequency shifts by
increasing the prestress. However, this phenomenon also means that stress fluctuation would disturb
the determination of the absorbed mass to a large extent. Consequently, a novel and effective method
for solving the absorbed mass is proposed based on the ratio between the fundamental frequency
f 11 and the higher frequencies f 21, and f 22, instead of the fundamental frequency shift susceptible to
stress variance.

3.1. Effect of Absorbed Mass Distribution

Since the bending rigidity of the monolayer graphene is as low as 2.31 × 10−19 Nm [46], the
stretched monolayer graphene sheet, as shown in Figure 1b, can be modeled as a flat square membrane
under tension [30], whose resonant frequencies can be written as

fnm =

√
n2 + m2

2L

√
σ
ρ0

(3)

where L is the side length of the square membrane, σ is the stress of graphene, and ρ0 is the density.
The parameters n and m refer to the different resonant modes as defined in Figure 2. Considering
that Equation (3) is applicable to harmonic vibration, a convergence test was made beforehand to
ensure that the nonlinearity was neglectable in our simulation. A set of amplitudes, ranging from 0.2
to 10 Å/ps of initial velocity, were applied successively, and the corresponding frequencies of mode11,
mode21 and mode22 were then obtained by the MD simulation, as shown in Figure 3. In this study,
the stretched graphene sheets with a prestress ranging from 12 to 47 GPa serve as resonators. Since a
strong prestress in the graphene can decrease the out-of-plane deflection dramatically and weaken
the nonlinearity, the value of 12 GPa was chosen in this convergence test to render the simulation
results effective. Figure 3 shows that when the initial velocity amplitude was lower than 2 Å/ps, the
error between the MD simulation results and the theoretical results obtained in Equation (3), based
on the harmonic vibration hypothesis, was within 5%. The small variance of resonant frequencies
demonstrates the convergence of the MD simulation results, thus indicating that the nonlinearity
effect was weak in this case. Consequently, the initial velocity amplitude was set to 1 Å/ps and the
corresponding vibration can be regarded as harmonic.
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value of Snm (x, y) corresponding to each position, we divided the graphene sheet into 100 small square 
areas, and two gold atoms were placed on each of them in turn. The resulting frequency shift was 
then calculated by the MD simulation. After the traversing of all 100 areas, the results are illustrated 
in Figure 4. For this part, the prestress was set to 47 GPa, so the stress caused by oscillation (about 0.2 
GPa) can be neglected. The frequencies of mode11, mode21 and mode22 were 323.2 GPa, 515.4 GPa, 
and 647.4 GPa respectively, which agrees well with the theoretical values of f11 = 326.8 GPa, f21 = 516.8 
GPa, and f22 = 462.2 GPa. When two gold atoms were placed on the graphene surface, the 
corresponding frequency shifts Δfnm were obtained using the MD simulation. As for the right side of 
Equation (5), the vibrating part of the graphene contained 3854 carbon atoms with a molar mass of 
12, and the molar mass of the two absorbed gold atoms was 197, therefore calculating Δm/m0 as 0.0085. 
In this way, the value of Snm (x, y) can be confirmed by Equation (5), as illustrated in Figure 4. 

Figure 2. Three typical mode shapes of the square membrane peripherally clamped. (a) Mode11: n = 1,
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Figure 3. Frequencies calculated by the molecular dynamics (MD) simulation at different initial velocity
amplitudes. (a) mode11, (b) mode21, (c) mode22.

When the gold atoms were put on the surface, the equivalent density of graphene changed slightly
and the corresponding frequency shift can be described as

∆ fnm

fnm
= −

1
2

∆m
m0

(4)

The volume of the graphene sheet is considered unchanged, so the change of density can be regarded as
the change of mass. Note that this equation is suitable for evenly distributed golden atoms. Otherwise,
a correction factor Snm (x, y) should be added in Equation (4) [47]. The correctional formula is expressed
as

∆ fnm

fnm
= −

1
2

∆m
m0

Snm(x, y) (5)

The factor Snm (x, y) represents the effect of the absorbed mass distribution. In order to obtain the
value of Snm (x, y) corresponding to each position, we divided the graphene sheet into 100 small square
areas, and two gold atoms were placed on each of them in turn. The resulting frequency shift was
then calculated by the MD simulation. After the traversing of all 100 areas, the results are illustrated
in Figure 4. For this part, the prestress was set to 47 GPa, so the stress caused by oscillation (about
0.2 GPa) can be neglected. The frequencies of mode11, mode21 and mode22 were 323.2 GPa, 515.4
GPa, and 647.4 GPa respectively, which agrees well with the theoretical values of f 11 = 326.8 GPa, f 21

= 516.8 GPa, and f 22 = 462.2 GPa. When two gold atoms were placed on the graphene surface, the
corresponding frequency shifts ∆fnm were obtained using the MD simulation. As for the right side of
Equation (5), the vibrating part of the graphene contained 3854 carbon atoms with a molar mass of 12,
and the molar mass of the two absorbed gold atoms was 197, therefore calculating ∆m/m0 as 0.0085. In
this way, the value of Snm (x, y) can be confirmed by Equation (5), as illustrated in Figure 4.
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Figure 4. The values of Snm (x, y) obtained by MD simulation for (a) mode11, (b) mode21, and
(c) mode22.

Referring to Figure 4a, the mass in the central area reduced the fundamental frequency dramatically
with the correction factor S11(0, 0) of about 4, while the mass at the edge had little influence on the
frequency. Note that the areas with larger vibration amplitudes tended to have a larger factor Snm(x,
y), which was similar to the deflection eigenmode. Hence, Snm(x, y) could be written as Snm(x, y) =

4[1-cos(2nπx/Lx)][1-cos(2mπy/Ly)] [48]. This expression conforms well with the simulation results,
which had a coefficient (R2) of determination of up to 0.98 for the mode11. This conclusion can also be
applied to higher modes (mode21 and mode22), as shown in Figure 4b,c. However, the fitting results
are not very accurate because they are only a coarse approximation of the deflection eigenmode of
mode21 (n = 2, m = 1) and mode22 (n = 2, m = 2). Compared with the one in mode11, the areas with
large Snm (x, y) values in mode21 and mode22 are much smaller and more scattered, which produces
an adverse effect on the detection of the absorbed mass. Therefore, the frequency shifts of mode21 and
mode22 are not available for direct mass determination. In contrast, the frequencies of these higher
modes can be used to compensate for the effects of stress instability in mass determination using the
fundamental frequency shift. It should be mentioned that the prestress of stretched graphene cannot
remain entirely unchanged. Although the stress fluctuation affects the frequencies of all the modes, the
absorbed mass in the center only reduces the fundamental frequency. As a result, the frequencies of
mode11, mode21 and mode22 were employed together to determine the absorbed mass accurately in
spite of the unstable stress in the graphene.

3.2. Effect of Prestress Variation

It is well known that enhancing the stress in graphene sheets contributes to an increase of rensonant
frequencies and frequency shifts. Hence, the square graphene sheet was stretched axially to generate a
series of tensile stress at a range of 12–47 GPa. To achieve higher sensitivity, absorbed gold atoms were
constrained to a circular area with a radius of 10 Å in the middle of the graphene sheet. Then, the
resulting different frequency responses to the absorbed mass were observed, as depicted in Figure 5.
Under tensile stresses of 12, 23, 32, 40 and 47 GPa, the fundamental natural frequency of the graphene
sheet was calculated as 169.5, 227.3, 268.0, 298.8 and 323.2 GPa, respectively, as shown in Figure 5a.
The fundamental frequency is proportional to the square root of the tensile stress, as indicated in
Equation (3). Moreover, Figure 5a presents the frequency shift of mode11 when 1–10 gold atoms with
masses of 3.3–33 × 10−22 g were placed in the middle of the monolayer of the graphene sheet. The
fundamental frequency shift was −0.480, −0.643, −0.772, −0.864 and −0.943 GHz/(10−22 g), respectively,
thus showing a linear relashionship with the square root of the tensile stress. By contrast, Figure 5b,c
show the insensitivities of mode21 and mode22 to central mass. The frequency shifts of mode21
and mode22 were less than 0.01 and 0.05 GHz/(10−22 g), respectively, and much lower than that of
mode11. It can also be seen from Figure 5b,c that the frequencies of mode21 and mode22 increased
simultaneously with the increasing stress in the graphene, obeying Equation (3), as the fundamental
frequency did. In Figure 5d, the frequency-shift ratio ∆fnm/fnm under different tensions exhibited
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almost an identical relationship with the absorbed mass. The average frequency shift ratio of mode11
induced by the central absorbed mass of 10−22 g is 0.287%, similar to the theoretical result of 0.266% and
in accordance with Equation (5) where S11(0, 0), is assumed to be 4. On the contrary, the frequencies
of mode21 and mode22 showed negligible variations in response to the absorbed mass. In this way,
the insensitivity to the central absorbed mass can be made use of to compensate for the influence of
stress fluctuation.
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3.3. Mass Determination by Frequency Ratio

In previous studies [6,7,9–11,22–24], the determination of the absorbed mass was simply based on
the fundamental frequency shift or the fundamental frequency shift ratio. For the use of the former, the
change of the tension in the graphene would induce a significant interference with the calculation of
the absorbed mass. For the use of the latter, the natural frequency f 0 is generally obtained in advance,
but other factors, such as temperature, are likely to change during the measurement of the resonant
frequency f after mass absorption. The frequency shift ratio (f − f 0)/f 0 results from the absorbed mass
and the circumstance change. There is no essential difference between these two methods. As a result,
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these methods of mass determination are inapplicable to the stretched graphene-based resonator,
whose stress cannot be controlled precisely and steadily.

Herein, the absorbed mass can be determined using the frequency ratio of mode11 to mode21
or mode22, which are measured simultaneously, while suppressing the disturbance induced by the
variance of tension. To achieve higher sensitivity, absorbed gold atoms were constrained to the middle
of the graphene sheet, as demonstrated in Section 3.2. In this way, the parameter S11(0, 0) was up to 4,
while S21(0, 0) and S22(0, 0) were equal to 0. From Equations (3) and (5), the absorbed mass can be
calculated as

∆m =
m0

2
(1−

√
10
2

f11

f21
), (6)

or

∆m =
m0

2
(1− 2

f11

f22
) (7)

As shown in Equations (6) and (7), since the absorbed mass is linearly dependent on the frequency
ratio of mode11 to mode21 (or mode22), a linear function is employed to fit the MD simulation results
as given in Figure 6, which demonstrates a high correlation coefficient of 0.999. It should be noted that
the parameters changed slightly when the prestress was not strong enough, especially when it was
comparable to the effective stress due to the nonlinear oscillations (about 0.2 GPa). As a consequence,
only the frequencies under stresses of 32, 40 and 47 GPa are depicted in Figure 6. Furthermore,
theoretically, only the mass of the graphene sheet in Equations 6 and 7 were undetermined. In other
words, the stretched graphene-based resonant mass sensor can reach an atomic scale resolution via
the frequency ratio of mode11 to mode21 or mode22, which is advantageously insusceptible to stress
fluctuation.
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In addition, the absorption of the gold atoms on the surface of the graphene sheet needs to be
mentioned. In this study, lateral movements of gold atoms were constrained, in accordance with the
assumption that gold atoms are fixed tightly at the simulation temperature of 10 K. However, the
diffusion of gold atoms could not be neglected with the increase in temperature. The mass-sensing
capability was inclined to worsen particularly when the temperature reached up to 300 K due to the
diffusion of gold atoms [45]. Moreover, increasing temperature leads to a decrease in the quality
factor [1,4], which reduces the resolution of frequency shifts. Consequently, the conclusions obtained
at low temperatures cannot be generalized to high temperatures without any modifications. Future
research on restraining the diffusion and maintaining the mass sensing capability effectively under
high temperature is needed.
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4. Conclusions

In this paper, the applicability of a stretched graphene-based mass sensor via a frequency ratio was
investigated by performing an MD simulation. With regard to the square graphene sheet peripherally
clamped, the frequencies and the mass-induced frequency shifts of mode11, mode21, mode22 were
analyzed. The simulation results show that, on the one hand, absorbed mass in areas with a larger
vibration amplitude decreased resonant frequencies more dramatically. The frequency shift of mode11,
induced by the central absorbed mass was four times larger than that induced by evenly distributed
mass, while the frequencies of mode21 and mode22 were totally insensitive to the central absorbed mass.
On the other hand, a strong linear relationship between the frequencies and the square root of stress in
graphene was found; thus, the stretched graphene sheet tended to have higher resonant frequencies
and higher sensitivities. The fundamental frequency of a 10 nm long square monolayer graphene sheet
with a prestress of about 47 GPa was up to 323.2 GHz, which exhibited an ultra-high mass sensitivity of
0.943 GHz/(10−22 g). Compared with the inapplicable traditional method of mass determination based
on the fundamental frequency shift due to the unstable stress in stretched graphene, the proposed
method of mass determination via the frequency ratio of mode11 to mode21 or mode22 can achieve a
mass resolution of 3.30 × 10−22 g, with an unstable stress ranging from 32 GPa to 47 GPa. The resulting
mass sensitivity was about 0.183 %/(10−22 g) for f 11/f 21 and 0.142 %/(10−22 g) for f 11/f 22. The benefit of
stress immunity indicates the great robustness of the proposed sensor against external disturbances in
real conditions.
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