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Abstract: The scientific community is still looking for a bright, stable red fluorescent 

protein (FP) as functional as the current best derivatives of green fluorescent protein 

(GFP). The red FPs exploit the reduced background of cells imaged in the red region of the 

visible spectrum, but photophysical short comings have limited their use for some 

spectroscopic approaches. Introduced nearly a decade ago, mCherry remains the most often 

used red FP for fluorescence correlation spectroscopy (FCS) and other single molecule 

techniques, despite the advent of many newer red FPs. All red FPs suffer from complex 

photophysics involving reversible conversions to a dark state (flickering), a property that 

results in fairly low red FP quantum yields and potential interference with spectroscopic 

analyses including FCS. The current report describes assays developed to determine the 

best working conditions for, and to uncover the shortcoming of, four recently engineered 

red FPs for use in FCS and other diffusion and spectroscopic studies. All five red FPs 

assayed had potential shortcomings leading to the conclusion that the current best red FP 

for FCS is still mCherry. The assays developed here aim to enable the rapid evaluation  

of new red FPs and their smooth adaptation to live cell spectroscopic microscopy  

and nanoscopy. 
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1. Introduction 

Fluorescent proteins (FPs) are valuable tools for analyzing cellular processes in living cells. The 

cloning of FPs first from Aequoria victoria and then from diverse marine organisms has led to an 

expanded palette of colors for multicolor imaging [1]. Red FPs take advantage of the lower 

autofluorescent background and reduced phototoxicity associated with longer-wavelength excitation. 

The first of the commercially available red FPs was mined from the sea anemone Discosoma striata 

and is commonly known as DsRed [2]. mCherry, derived by directed evolution of DsRed and first 

introduced nearly a decade ago [3], has been the most widely used red FP for FCS and other single 

molecule applications. While newer red FPs displaying increased brightness, photostability, 

monomeric quality, and speed of maturation have been engineered from DsRed and other anthozoa, 

most have not yet been evaluated for FCS or other single molecule applications. The goal of the 

current study is to develop a methodology that enables a careful scrutiny of newly developed red FPs 

for spectroscopic approaches by utilizing criteria important for these applications, and to determine 

their ideal conditions for use in live cell FCS. 

All live cell assays require FPs that are nontoxic, do not interfere in cellular processes, and are truly 

monomeric [4]. However, there are additional or modified criteria that must be considered when 

selecting a red FP for single molecule applications. For example, low expression levels are a 

requirement for FCS, and ideal concentrations are in the nanomolar range. This is because the 

sensitivity becomes limited by increasing concentrations within the confocal volume. In the current 

study we evaluated red FPs using four criteria: photostability for FCS data collection; rate of diffusion 

of the FPs alone or when fused to other proteins and expressed in living cells; brightness as determined 

in live cells; and flickering, a process whereby red FPs undergo dark state conversions that can 

significantly affect FCS and other spectroscopic data collection [5]. The molecular brightness of the 

FPs in living cells was also used to assess their tendency to self-associate. 

All red FPs consist of a central chromophore containing a phenol ring and an imidazolinone  

ring linked by a conjugated carbon, with additional conjugated bonds extending beyond the 

imidazolinone [6,7]. This chromophore is surrounded and stabilized by a structured β barrel. The main 

differences among red FPs are the varying amino acid residues at specific locations where the 

chromophore interacts with the β barrel. The red FPs used in this study include FusionRed [8], 

mRuby2 [9,10], mApple [11], and TagRFP-T [11,12]. mApple, like mCherry, was engineered from 

mRFP1, a derivative of DsRed. mRuby2, FusionRed and TagRFP-T were developed initially from two 

proteins derived from the sea anemone Entacmaea quadricolor [6,7]. mRuby2, developed from 

eqFP611, is over 2.5 times as bright as mCherry. TagRFP-T, from eqFP578, has a published brightness 

3 times that of mCherry [13], while FusionRed (also from eqFP578) is equally bright as mCherry and 

has other advantages including low toxicity [8]. Here, we evaluated the photostability, flickering, 

molecular brightness, and diffusion characteristics of these red FPs using the purified FPs and the FPs 
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expressed in mouse GHFT1 cells. To further analyze whether these red FPs can accurately report 

diffusion, they were fused to the leucine zipper (BZip) domain of the rat CCAAT/enhancer-binding 

protein alpha (C/EBPα) [14], as described below. 

2. Results and Discussion 

2.1. Autocorrelation Curves of Dyes and Purified Proteins in Solution 

2.1.1. Autocorrelation Curves at a Range of Laser Powers 

FCS analyzes fluctuations in intensity within a small confocal volume measured at rapid (µs) 

intervals. The fluctuations in fluorescence intensity over time are fit to an autocorrelation curve that 

provides information about molecular diffusion. The simplest FCS curve-fitting uses a model that 

assumes that all intensity fluctuations within a confocal volume arise due to molecular movement, and 

is shown here as Equation (1) 
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where G(τ) represents the normalized variation in intensity from average intensity measured at t + τ  

for all values of t, N represents the number of molecules in the confocal volume, Q represents a  

shape-fitting parameter and τCHAR is the characteristic diffusion time for the species, assuming it is 

freely diffusing. 

However, fluctuations in the emission intensity of a fluorophore occur for reasons other than 

diffusion. Intensity fluctuations that occur on different time scales than molecular movement, such as 

triplet conversions or fluorophore bleaching, can be accounted for by varying the rate of acquisition or 

total acquisition time. Alternatively, more sophisticated FCS models can be utilized to determine the 

triplet contribution. Intensity fluctuations that occur on the same time scale as τCHAR, however, interfere 

significantly with FCS analysis. One way to determine whether FCS measurements accurately reflect 

molecular diffusion is to test the model system using different laser excitation powers. Non-diffusion 

related intensity fluctuations, whether due to triplet formation, bleaching, or other molecular activities, 

will vary with laser intensity, whereas the rate of diffusion of the fluorophores will not. Figure 1a 

shows normalized FCS autocorrelation data for AlexaFluor568 at a range of laser intensities measured 

at the objective. The results demonstrate that this molecule does not undergo significant fluctuations 

with changes in laser intensity. The fitting data acquired over a 20-fold range of power densities  

(0.16 to 3.5 kW/cm2) using Equation (1) show characteristic diffusion times (τCHAR) of 378 ± 14 µs. 

These results also demonstrate that the one-component fit described by Equation (1) is adequate to 

model a freely diffusing dye at these laser intensities. 

The model was then tested for the measurements of the diffusion characteristics of the red FPs. 

Other studies have reported that some red FPs undergo a sub-millisecond fluctuation between  

a fluorescent state and a dark state, which is called flickering [5,13,15,16]. Figure 1b shows the 

autocorrelation curves for TagRFP-T in solution at a range of laser intensities from 0.22 to  

1.48 kW/cm2. The results indicate that this red FP does not undergo dramatic fluctuations (flickering) 

over this range in laser intensity. In stark contrast, mApple shows a clear variation in the shape of the 
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autocorrelation curves with changing excitation intensity. Figure 1c shows autocorrelation curves for 

mApple at a range of laser intensities from 0.16 to 3.5 kW/cm2 demonstrating that as the laser power 

increases, there are more fluctuations. These are especially evident in the range from τ = 0.2–2.0 ms, 

where the fluctuations interfere with the determination of τCHAR, which is the basis for calculating D 

(described in the Methods section). The source of red FP flickering is likely cis-trans isomerization of 

the bond between the phenol and the imidazoline rings, or rotations of the rings themselves in the red 

FP chromophore contained within the β barrel [5,17]. Different amino acid residues on the β barrel that 

interact with the chromophore significantly affect the flickering [13]. 

Figure 1. (a–c) Normalized autocorrelation curves for AlexaFluor 568, TagRFP-T and 

mApple in PBS over the indicated range of laser power densities. Since the rate of 

molecular diffusion is independent of laser intensity, the changes in the autocorrelation 

curves for mApple indicate other molecular activities, such as flickering, are interfering 

with the FCS measurement. 

 

2.1.2. The Effect of Flickering on Red FP Autocorrelation Curves 

We hypothesized that if flickering is a function of the excitation intensity, then it should be possible 

to control these fluctuations in intensity by limiting the excitation power. Therefore, we first 

determined the rate of diffusion of the red FPs at the lowest excitation intensities capable of providing 

adequate signal-to-noise ratios, and analyzed the autocorrelation functions using Equation (1). There 

are two reasons why the one-component FCS equation was used for this analysis. First, the studies at 

varying laser intensities showed that this equation was capable of determining τCHAR and therefore D 

with reasonable accuracy. Second, the use of a triplet-fitting algorithm could mistake flickering 
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fluctuations for triplet fluctuations and would therefore be a less suitable method for analyzing the FCS 

data for these species. When this method was applied to the FPs in this study, four of the five red FPs 

gave the same value for D, within experimental error. In contrast, the D for mApple was approximately 

25% higher than that for other FPs despite having the same hydrodynamic size. This shows that the 

flickering of mApple was interfering with analysis of the autocorrelation curve even at the lowest 

excitation intensities. This finding is likely related to the complex photo-switching behavior of mApple 

reported previously [11]. There, photo-switching (flickering) was manifested as a rapid decrease in 

total fluorescence that was reversible. The study by Shaner [11] is notable because unlike most 

reported studies of red FP flickering, it utilizes excitation intensities sufficiently low that the flickering 

can be investigated without the need to account for the effect of photolysis. The current study also 

indicates reversible photo-switching, determined by the evidence of the autocorrelation curves in 

Figure 1. 

We next varied excitation intensities for the other red FPs to further investigate their flickering 

characteristics. For each of the four remaining red FPs, we were able to find a threshold below which 

change in excitation intensity did not change D. When the excitation intensity was increased above this 

threshold, which we define as the flickering threshold, an artificially high D was measured. 

Representative autocorrelation curves and a table showing values for D at different excitation 

intensities for the four red FPs at ranges of laser intensity are in the Supplementary Material. These 

data were used to determine the flickering thresholds for mCherry, TagRFP-T, FusionRed and 

mRuby2 (Figure 2 and Table 1). FusionRed was most susceptible to flickering (variations in D noted 

above 0.11 kW/cm2), followed by mRuby2 and mCherry, while TagRFP-T displayed very little 

flickering. Table 1 gives the D values for the purified proteins determined by averaging all the  

readings below the flickering thresholds, except for mApple, where the D value was determined at  

0.075 kW/cm2. There was little evidence of photobleaching while acquiring these measurements. 

Photobleaching is a separate characteristic of the FPs and is not necessarily correlated to flickering [5]. 

This distinguishes these results from other studies performed at higher illuminations where flickering 

and photolysis (and triplet effects) occur simultaneously, and are separated using different analytical 

techniques [5,13,15]. 

Figure 2. The flickering threshold for four of the five red FPs tested. mApple was 

excluded because it flickers at all laser powers tested. 

 



Int. J. Mol. Sci. 2013, 14 20345 

 

Table 1. Summary of results of FCS studies on five red FPs and mCerulean3. 

 
Flickering 
threshold 
(kW/cm2) 

Optimal 
power 

(kW/cm2) 

D in soln 
(μm2/s) 

D in live 
cells (μm2/s)

D FP-BZip in 
cytosol (μm2/s) 

D FP-BZip in 
nucleus 
(μm2/s) 

Brightness 
published  
(a.u.) [ref] 

Mb (FPs in 
live cells) 

Mb (FP-BZip 
live cells) 

mCherry 0.39 0.11 96.6 ± 8.1 30.0 ± 3.1 21.1 ± 8.5 8.6 ± 2.2 2.62 [6] 2.0 ± 0.2 1.65  
mApple -- 0.075 122.2 ± 7.5 37.8 ± 8.5 27.4 ± 7.3 14.2 ± 4.0 6.06 [11] 5.6 ± 1.6 a n.d. 

TagRFP-T 0.91 0.10–0.13 89.9 ± 8.0 26.6 ± 3.9 23.9 ± 4.6 7.9 ± 1.8 8.02 [13] 13.4 ± 2.5 9.8 ± 1.9 
mRuby2 0.41 0.17 96.2 ± 5.6 19.1 ± 3.6 24.6 ± 4.4 9.7 ± 2.7 7.04 [9] 6.8 ± 1.6 7.0 ± 0.9 

FusionRed 0.11 0.11 93.0 ± 13.7 33.2 ± 6.8 n.d. n.d. 2.95 [8] 2.7 ± 0.6 n.d. 
mCerulean3 n.d. n.d. 92.5 ± 8.5 29.3 ± 4.4 22.6 ± 5.8 7.3 ± 2.6 n.d. n.d. n.d. 
a Autocorrelation fitting for mApple did not provide an accurate value for D using a one-component fit; Therefore, data were fit using a diffusion model in which N was 

determined by including a flickering component and setting D equal to DmCherry (see Section 3.2 and Equation (4)). 
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2.2. Optimization of Excitation Intensity in Live Cells 

FCS was then performed in live cells expressing the different red FPs to determine the optimal 

excitation intensity for each protein. The cells were selected for analysis by epi-fluorescence imaging 

(using a Texas Red excitation filter on a mercury arc lamp attenuated with a 75% neutral density 

filter). The autocorrelation curves were then acquired over a range of laser powers. The maximum 

counts per second (cps) collected for the FCS measurements were limited to minimize detector 

afterpulsing, which can introduce artifacts into an autocorrelation curve [18]. Because of the molecular 

brightness of TagRFP-T, this limited the optimal excitation power that could be used. The flickering 

thresholds determined for the purified proteins (described above) were found to be applicable to the 

measurements in the live cells: for red FPs other than mApple, the optimal excitation intensity was 

found below the flickering threshold (Figure 2). Values for optimal excitation intensity are shown in 

Table 1. The important methodological point is to identify the laser powers below the flickering 

threshold, below excitation intensities that induce bleaching, with total count rates below those that 

induce afterpulsing according to the manufacturer’s recommendations, yet high enough that the 

background signal does not contribute significantly to the autocorrelation curve. 

2.3. FP Diffusion Studies 

Table 1 and Figure 3 show values for D found in solution and in live cells for the five different red 

FPs. For comparison purposes, D was also determined for mCerulean3, a cyan FP that is quite 

photostable and is not excited by the 561 nm laser line [19]. Because its maximum emission is below 

520 nm, and these red FPs do not emit below 520 nm when excited with a 561 nm laser, it is possible 

to select appropriate filters to use mCerulean3 sequentially with red FPs with no overlap of fluorescent 

signal, thus enabling dual color FCS studies [14]. Each of the purified red FPs, with the exception of 

mApple, had the same value for D as mCerulean3 (Table 1 and Figure 3a). In contrast, measurements 

of diffusion of the red FPs expressed in the cytoplasm of living cells demonstrated differences in the 

diffusion rate both slower and faster than that measured for mCerulean3 (Figure 3b) Data acquired in 

the nucleus gave similar diffusion values to data acquired in the cytoplasm (data not shown). mRuby2 

diffused at a much slower rate in the cytoplasm of live cells (19.1 ± 3.6 μm2/s), whereas mApple gave 

a much larger D (37.8 ± 8.5 μm2/s). The larger D for mApple is likely due to the same flickering 

processes that caused the incorrect determination of D for mApple in solution. The much lower value 

of D for mRuby2 requires further analysis. 

The ratio of the diffusion coefficient for the purified FPs in solution (Dpur) and the diffusion 

coefficient in the cytoplasm of cells (Dcytoplasm) is a useful metric that should accurately reflect the 

change in viscosity and temperature between the two media. The Stokes-Einstein equation states that  

D = κT/6πηr, where κ is the Boltzmann constant, T is the absolute temperature, r is the hydrodynamic 

radius of the diffusing particle, and η is the viscosity of the solution. This equation predicts that for any 

diffusing particle, Dcytoplasm:Dpur should be a constant provided that there is no interaction of the FP 

with cellular components. The results show that the measured ratios Dcytoplasm:Dpur for mApple, 

TagRFP-T, mCherry and mCerulean3 were statistically the same (mCerulean3, 32% ± 6%; mCherry, 

31% ± 4%; mApple, 31% ± 7%; TagRFP-T, 30% ± 5%). In contrast, the measured ratio Dcytoplasm:Dpur 
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for mRuby2 was much smaller (20% ± 4%). Both by measured D in live cells, and by comparing the 

change in D between solution and in live cells, it is evident that mRuby2 diffuses more slowly than 

other FPs in the cytoplasm of living cells. Similar results were also obtained with mRuby (not shown), 

the precursor to mRuby2. This is unfortunate because mRuby2 has been extensively engineered for 

brightness, and is among the brightest of current monomeric red FPs [9]. The decrease in the rate of 

diffusion could be caused by mRuby2 aggregation or interactions with other proteins in the cytosol, 

and is considered more fully in Section 2.4. 

Figure 3. Diffusion coefficient (D) determined by FCS at optimal excitation intensities 

(see Table 1). (a) Ds for purified FPs in solution are all statistically the same, except for 

mApple, which has no flickering threshold and shows an apparent D 30% > than D for 

other FPs; (b) D for FPs determined in cytosol at optimal excitation intensities. The 

apparent D for mApple-BZip is significantly (*) higher than the other FP-fusion proteins. 

D for mRuby2 is significantly (#) lower than the other FPs; (c) D for FP-BZip fusion 

proteins determined in the cytosol. The apparent D for mApple-BZip is significantly (#) 

higher than the other FP-BZip fusion proteins; (d) D for FP-BZip fusion proteins in the 

nucleus (away from heterochromatin) is much slower than in the cytosol due to BZip 

interactions with DNA. Apparent D for mApple=BZip is significantly (*) higher. 

Significance determined by comparing each red FP against values found for mCerulean3 in 

solution and in live cells for multiple T tests using the Holm-Sidak method (* p < 0.001,  

# p < 0.0001). 
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Next, the ability of the different red FPs to report D values for fusion proteins was probed using  

the previously characterized BZip transcription factors [14], and the combined results are shown in 

Figure 3c,d and Table 1. BZip transcription factors homo or heterodimerize by forming a parallel 

coiled coil (a “leucine zipper”), and bind to specific DNA elements using a region rich in basic amino 

acids [20]. The BZip domain diffuses at three different rates in live cells: in the cytosol its diffusion is 

essentially unhindered; in the nucleus away from heterochromatin it diffuses more slowly than in the 

cytoplasm; and in regions of heterochromatin, it binds as an obligate dimer for a significant time and 

diffusion is very slow. For the current studies, FCS diffusion data were collected in the cytoplasm and 

in the nucleus away from heterochromatin to determine how well the red FPs could report diffusion of 

the fusion proteins. The results for the red FP-BZip fusion proteins were compared with the results 

from mCerulean3-BZip fusion protein, which was used earlier to characterize the mobility of the BZip 

proteins [14]. Due to its low intrinsic brightness and low flickering threshold, FusionRed was not 

utilized in these diffusion tests. Figure 4 demonstrates that each of the four red FPs fused to the  

BZip domain showed the appropriate localization to heterochromatin that is expected for BZip fusion 

proteins [14]. Because the diffusion of the BZip fusion protein in the cytosol is unhindered by DNA 

binding events, the expected D for FP-BZip proteins is governed only by hydrodynamic radius. Due to 

the small size of the BZip domain (13 kDa) it is expected that D for FP-BZip will only be slightly 

slower than D of the FP alone. In contrast, BZip diffusion in the nucleus will be slower than in the 

cytosol due to transient interactions with DNA and possibly nuclear crowding [21]. The results in 

Figure 3 show that mApple-BZip had significantly higher D than the rest of the FP-BZips both in the 

cytosol and in the nucleus. In the cytosol, each of the other red FP-BZip fusion proteins gave the same 

rate of diffusion as mCerulean3-BZip, indicating all were capable of reporting a correct D for the 

fusion protein. In the nucleus away from heterochromatin, each of the red FP-BZip proteins (other than 

mApple) diffused at about the same rate as mCerulean3-BZip. 

Figure 4. Epifluorescent images of GHFT1 cells expressing FP-BZip fusion proteins.  

All four red FP-BZip fusion proteins had the expected localization to regions of 

heterochromatin. FCS data for Figure 3c,d were obtained in the cytosol and in the  

nucleus away from the heterochromatin bundles. (a) mCherry-BZip; (b) mApple-BZip;  

(c) TagRFP-T-BZip; and (d) mRuby2-BZip. Scale bar = 10 µm. 
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2.4. Brightness Analysis in Live Cells 

We next used the FCS autocorrelation curves to estimate the average N within the confocal volume, 

and thus used them to determine molecular brightness (Mb), which is defined as follows: 

*b
o

CPS
M

N P
  (2) 

where CPS is the average total intensity and Po is the power at the objective. For example, for one 

measurement of mRuby2, CPS was 11,084, N was 1.4, and Po was 0.0012 mW. Mb determined by FCS 

should be directly correlated, using a scale factor (described below), to the intrinsic brightness of the 

FPs, which is found by multiplying quantum yield (QY) and extinction coefficient (EC). Here, the 

values for Mb are compared with the published values of intrinsic brightness based on QY and EC 

(Figure 5 and Table 1). (Because mApple gave an incorrect D with a one-component diffusion model, 

the data were fit using a diffusion model in which N was determined by including a flickering 

component and setting D for the main component equal to DmCherry (see Section 3.2 and Equation (4)). 

The scale factor relating Mb to intrinsic brightness was set by equating Mb of AlexaFluor 568 in 

solution (determined by FCS) with its published intrinsic brightness (Invitrogen, division of Life 

Technologies). There are two published values for the intrinsic brightness of TagRFP-T that differ 

significantly in both EC and QY [11,13]. Figure 5 and Table 1 utilize the larger value for brightness 

reported by Dean et al. [13]. The Mb and published values correspond reasonably well for four of the 

five FPs. The fifth FP, TagRFP-T was found to be far brighter per molecule in live cells than either  

of its published brightness values, and was in fact brighter, per molecule, than AlexaFluor 568 dye  

in solution. 

Figure 5. Experimentally determined molecular brightness, Mb, of red FPs in live cells 

compared with published intrinsic brightness values normalized by a scalar factor  

(see text). Mb values for all FPs except mApple were found using one-component 

autocorrelation curves to determine concentration, (see text for discussion of determination 

of Mb for mApple). 
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It is also possible to determine brightness of the BZip-FPs by the same method. The BZip proteins 

form obligate dimers when bound to DNA, and our earlier FRET analysis showed conclusively that 

these BZip proteins do interact when bound to heterochromatin [14,22]. However, when diffusing with 

the cytosol, the BZip proteins are unable to form leucine zippers and are expected to be monomeric. To 

test this, Mb for the mCherry-, mRuby2- and TagRFP-T-BZip proteins in the cytosol were determined 

using Equation (2). The results are included in Table 1, and indicate that mRuby2 and mCherry display 

nearly equivalent brightness values when expressed alone and as FP-BZip fusion proteins. In contrast, 

TagRFP-T is only 73% as bright when expressed as a BZip fusion protein as when expressed alone. 

The significance of this observation is discussed in Section 2.4.1. The mCherry and mRuby2 results 

verify the conclusion that BZip proteins do not form dimers while in the cytosol. 

2.4.1. Using Brightness to Determine Oligomeric State 

The fact that mRuby2 diffuses at the same rate as the other red FPs in solution, but moves at a 

slower rate in live cells, might be due to homo-aggregation or interactions with cellular proteins. 

Brightness analysis can identify molecular aggregation of FPs. The Mb value determined for mRuby2 

in live cells is similar to its published intrinsic brightness. This is evidence that mRuby2 is monomeric 

in live cells. In further support, the Mb value for mRuby2 was equal to the Mb value for the  

fusion protein mRuby2-BZip. Based on the brightness studies, it seems likely that mRuby2 does not  

homo-aggregate. Therefore, the best explanation for the mRuby2 rate of diffusion is that it appears  

to be undergoing transient interactions with cellular proteins that slow it down. This could diminish  

its utility as a fluorophore in binding or diffusion studies. 

In contrast to mRuby2, the Mb value determined for TagRFP-T expressed alone in live cells is  

much larger than its published intrinsic brightness, and is larger than the Mb value determined for  

the fusion protein TagRFP-T-BZip. One explanation is some fraction of TagRFP-T may dimerize 

when expressed in living cells, which would increase its average brightness. An FP isolated from the 

same coral as TagRFP-T, eqFP611, was shown to dimerize, but could be disassociated with SDS 

treatment [23]. To test whether TagRFP-T forms dimers or higher order aggregates in cells, lysates of 

GHFT1 cells containing TagRFP-T were prepared and diluted in an immunoprecipitation (IP) buffer 

containing the detergent NP-40, and the lysates were analyzed by FCS. Next, SDS was added to the IP 

buffer to 0.1% w/v and the brightness of TagRFP-T was again determined. For comparison purposes, 

lysates of cells expressing mCherry and AlexaFluor 568 prepared in the same buffers were similarly 

analyzed. The results are shown in Figure 6, which also includes Mb of TagRFP-T and mCherry 

expressed alone and as FP-BZip fusion proteins. These results show that TagRFP-T expressed alone in 

live cells was about 30% brighter than TagRFP-T in lysates with detergent or when conjugated  

to BZip. There was no similar diminution in brightness shown by mCherry or AlexaFluor568  

under similar conditions. These results strongly suggest that a fraction of TagRFP-T self-associates in  

live cells, but that this can be disrupted by the addition of detergent. Since the TagRFP-T-BZip  

fusion proteins were about as bright as the TagRFP-T lysates in buffer, the BZip protein may be  

acting to prevent the weak self-association of TagRFP-T. Curiously, the TagRFP-T lysates and 

TagRFP-T-BZip fusion proteins are still brighter than the published values for the intrinsic brightness 

of TagRFP-T [11,13]. 
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Figure 6. Molecular brightness (Mb) of different fluorophores determined by FCS in 

different conditions. AlexaFluor 568 and mCherry brightness are unchanged in all conditions. 

TagRFP-T is ~30% brighter when measured in live cells compared with brightness of 

lysates in IP buffer, SDS buffer, or when expressed in live cells as TagRFP-T-BZip. 

 

Brightness analysis therefore strongly suggests that a fraction of TagRFP-T self-associates in live 

cells. Diffusion analysis, by contrast, cannot easily detect a fraction of molecules diffusing as dimers. 

Because diffusion varies as the hydrodynamic radius, and generally speaking the hydrodynamic radius 

varies as the cube root of molecular weight (monomer is 27 kDa), if all the molecules were dimers  

(54 kDa) they would diffuse just 21% slower than monomers. If only a fraction self-associate, decrease 

in diffusion is correspondingly less. If approximately 30% of the TagRFP-T proteins are dimers, as 

suggested by the brightness analysis, this would cause the average D for the whole population of 

TagRFP-T to decrease only about 6%, which is close to experimental error. In summary, the brightness 

of TagRFP-T expressed in live cells compared with its brightness in other conditions strongly suggests 

a fraction of TagRFP-T self-associates in live cells, which is not evident from analysis of TagRFP-T 

diffusion alone. The literature lends some support for a finding that TagRFP-T may form dimers. 

Despite the initial reports that TagRFP and TagRFP-T were monomers [11,12], subsequent studies 

showed that TagRFP (which differs in one amino acid residue from TagRFP-T) had a mixed 

population of monomers and dimers in a semi-native polyacrylamide gel [24]. 

2.5. Relationship of Intrinsic Brightness to Flickering Threshold 

Determination of the flickering threshold was pursued a priori as a requirement for obtaining 

accurate FCS results from the red FPs, but it also uncovers an interesting relationship. There is a 

possible trend relating the flickering threshold and molecular brightness, and the flickering threshold 

and measured quantum yield, of the three red FPs from Entacmaea quadricolor (labeled in red in 

Figure 7) (here, the Mb used for TagRFP-T is the brightness found in lysate with detergent). The 

flickering threshold can be considered the excitation intensity at which the chromophore starts to 

dissipate a significant fraction of its excited state by a nonradiative process, likely by cis-trans 

isomerization or rotation of the phenol or imidazolinone ring. The non-radiative processes are affected 

by the specific amino acid residues on the FP β barrel [13]. Thus, determination of changes in the 

flickering threshold may help quantify the effect of specific amino acid residues on chromophore 
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stabilization within the β barrel. The mCherry flickering has been investigated by at least three 

different groups [5,13,17], analyzing different aspects of the phenomenon. In the current study, the 

characteristic property of interest is the ratio of flickering threshold to brightness. Unlike the three FPs 

from E. quadricolor, mCherry has a higher ratio of flickering threshold to brightness (that is, it is fairly 

resistant to flickering even though it is not very bright). This suggests that further optimization of 

mCherry to increase the flickering threshold may also increase brightness. 

Figure 7. Comparison of photophysical parameters of red FPs from two marine organisms 

showing the correlation between flickering threshold and both Mb (a); and quantum yield 

(b) for the red FPs derived from Entacmea quadricolor. 
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3. Experimental Section  

3.1. Protein Expression 

For expression in mouse GHFT1 cells, all sequences encoding the FPs were in the Clontech N1 

vector. For fusion proteins mApple-BZip, mRuby2-BZip, TagRFP-T-BZip, mCherry-BZip, and 

mCerulean3-BZip, the indicated FPs were linked in reading frame to the rat C/EBPα BZip domain, 

starting at position 237 of the full length C/EBPα protein. For purification of the FPs, the coding 
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sequences were inserted in the constitutive expression vector pNCS (Addgene), which encodes an  

N-terminal 6xHis tag and linker, and subsequently expressed and purified as described previously [25]. 

The purified 6xHis TagRFP-T was kindly provided by Dr. John Murray (University of Indiana, 

Bloomington, IN, USA). 

3.2. Tissue Culture and Transfection 

Mouse pituitary GHFT1 cells were maintained in monolayer culture and harvested at 80% 

confluence. For transfection by electroporation the cells were washed with PBS and briefly treated  

with trypsin, and then recovered by centrifugation in culture medium containing serum. The cell  

pellet was washed two times by centrifugation in Dulbecco’s calcium-magnesium free PBS and 

resuspended in Dulbecco’s calcium-magnesium free PBS with 0.1% glucose and 0.1 ng/mL BioBrene 

Plus (Applied Biosystems, Inc., Division of Life Technologies, Carlsbad, CA, USA) at a final 

concentration of approximately 1 × 107 cells/mL. Next, 400 µL of cell suspension was transferred to 

each 0.2 cm gap electroporation curvette containing 0.5–2 µg of plasmid DNA(s), and after gentle 

mixing, the cuvettes were pulsed with 200 V at a capacitance of 1200 µF in a BTZ ECM 830 

electroporator (Harvard Apparatus, Holliston, MA, USA), yielding pulse durations of about 10 ms. 

The cells were recovered from the cuvette and diluted in phenol red-free tissue culture medium 

containing serum and transferred to sterile 2 well chambered coverglasses (Lab-Tek II, Thermo Fisher 

Scientific, Waltham, MA, USA). Cells were imaged 20–28 h after transfection. 

For analyzing diffusion of FPs in lysates, the transfected cells were placed on ice for 20 min, and 

then rinsed 2× with ice cold PBS. 200–400 µL of immunoprecipitation (IP) buffer (50 mM Tris, pH8,  

150 mM NaCl, 1 mM EDTA, 10% glycerol, 1× Protease Inhibitors (Sigma-Aldrich, St. Louis,MO, 

USA), 43 µM NP-40 (Boston Bioproducts, Ashland, MA, USA) was added and cells were manually 

scraped and collected into microcentrifuge tubes. The lysates were frozen at −80 °C and thawed and 

spun at 13,200 RPM for 10 min at 4 °C, and the supernatant was collected. The supernatant was 

diluted with more IP buffer or IP buffer with sodium dodecyl sulfate (SDS) to a concentration of 0.1%. 

Lysates of non-transfected cells were analyzed: the background autofluorescence signal did not 

contribute significantly to the autocorrelation curves generated by the fluorescent proteins. 

3.3. FCS Measurements and Image Acquisition 

The FCS measurements were made as described previously [14]. In brief, the ISS Alba FastFLIM 

system (ISS Inc., Champagne, IL, USA) was coupled to an Olympus IX71 microscope with a 60 ×/1.2 NA 

water-immersion objective with a Pathology Devices stage-top environmental control system to 

maintain temperature at 36 °C and CO2 at 5%. For epifluorescent image acquisition, a Hg lamp with a 

75% ND filter was used as the excitation source and images were acquired on a Hamamatsu Orca-R2 

C10600 digital CCD camera using Metamorph software. For FCS measurements, the system was 

equipped with a dual dichroic (445/561) beamsplitter. The laser beams (448 nm for mCerulean3 

measurements, 561 for red FPs were focused to a confocal spot with a small excitation geometry 

(typical ω0 = 0.45 µm). The laser power was determined at the specimen plane with a digital laser 

power and energy meter (Thorlabs PM100D, Newton, NJ, USA). For experiments depending on the 

power density at the objective, laser power readings were taken at the start of the session, periodically 
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during a session, and at the end of a session. Power density is determined by dividing the laser power 

(typically between 0.5–2 µW) by the confocal cross-section (π × ω0
2). The fluorescence signals emitted 

from the focal spot are routed via the beam splitter to two band-pass emission filters (480/40 and 

609/54), and are then passed to two identical avalanche photodiodes with adjustable pinholes set at  

50 µm. Emission events per time were collected at 10 kHz (in solution) or 2 kHz (in live cells) and  

used to generate autocorrelation and cross-correlation curves from the intensity traces (I(t)) and  

the fluctuations in the intensity (I(t) = I(t) − I(t)). The curves were best fits for the general  

correlation function: 

( ) ( )
( )

x y

xy

x y

I t I t
G

I I

  



  (3) 

when x = y, this returns the autocorrelation function, and when x  y this measures the  

cross-correlation of signals between two different channels. Standard dyes were used to determine  

the geometry of the confocal spot from the parameters τCHAR and Q via the Equation (1). The beam 

waist (ω0) was calculated using the relationship τCHAR = ω0
2/4D and beam length (z0) from the 

relationship Q = z0/ω0. N is the concentration corrected by a geometric factor that is commonly used to 

take into account the uncertainty of the actual size of the confocal volume. The calibration standards 

are 2 nM Coumarin 6 (in HPLC grade EtOH (448 nm laser line, D = 396 μm2s−1) and 10 nM 

AlexaFluor 568 in PBS (561 laser line, D = 363 μm2s−1). These parameters are not dependent on laser 

power at the power levels utilized, but do vary from session to session, and so were calculated at each 

session. For the 561 line, typical values for ω0 and Q are 0.45 µm and 6.0, and for the 448 line, ω0 is 

generally smaller, around 0.39 µm. The purified FPs were diluted in PBS with 0.2% BSA to 

approximately 1 nM concentration. 

The following equation enables the fitting of an autocorrelation curve including a triplet or 

flickering term: 
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 (4) 

where Atriplet = Ftriplet/(1 − Ftriplet), and F is the fraction of molecules residing in the dark state at any  

time [5]. Triplet effects involve excited photons relaxing to a forbidden triplet state. The flickering 

exhibited by red FPs is likely not triplet effects, but the same fitting equation can be used [5]. 

Determination of the maximum laser power density that can be utilized without flickering in the 

autocorrelation curve was carried out by determining D at increasing excitation intensities until the rate 

of diffusion fit by the autocorrelation curve became statistically significantly higher with the increase 

in laser power. Care was taken between readings (by using sufficient total volume of media and 

including waiting a short time between taking measurements) to ensure that the medium containing the 

sample was not heated by the laser, as that will also lead to higher reported D. 

The diffusion of a molecule is related to its size by the Stokes-Einstein equation (D = kT/6πηr). The 

hydrodynamic radius can be estimated by 

3
3 /

4
Am N

r


  (5) 
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where m is the molecular weight, NA is Avogadro’s number, and ρ is the density of molecules. The 

hydrodynamic radius is not the exact radius of a molecule, but rather the perceived size of the 

molecule as it diffuses through a solution, assuming it obeys the Stokes-Einstein equation. Estimates of 

the density of proteins vary depending on amino acid composition, but proteins of very similar 

molecular shape and molecular weight, such as mCherry, mApple and mRuby2, would be expected to 

have very similar radii and similar D in solution. 

The relative viscosities of two media can be determined by finding the ratio of D for the same 

molecule in the different media, for example ηlivecell/ηsoln = Dsoln/Dlivecell. Equation (5) also demonstrates 

that if the molecular weight of a protein is doubled, as in the formation of a dimer, D should decrease 

by a factor of 21/3, or 1.26. Dimer formation, however, causes a change in configuration that may cause 

the change in hydrodynamic radius to be smaller than calculated using Equation (5), so this value is no 

more than a rough approximation and the decrease in diffusion might be even less than a factor of 

1.26. The expected value for the ratio Dsoln/Dlivecell if a protein is a monomer in solution and a dimer in 

live cells is therefore ηlivecell/ηsoln = 1.26, but it could be less. 

4. Conclusions  

Red FPs are becoming increasingly important for techniques beyond multi-color analyses of  

protein subcellular localization. However, many of the quantitative spectroscopic techniques such  

as FCS require optimal biophysical behavior. Here, we combined several assays to evaluate the  

strengths and weaknesses of the current brightest red FPs for FCS and other single molecule and  

spectroscopic applications. These tests included determination of the flickering threshold of the red 

FPs, which varied significantly from mApple, which flickered at even the lowest excitation intensities, 

to TagRFP-T, which was most resistant to flickering. The flickering threshold is a good proxy for 

determining the energy barrier a chromophore must overcome to undergo non-radiative (flickering) 

processes. With the exception of mApple, flickering thresholds correlated well with molecular 

brightness and quantum yield of the FPs. In addition to determining flickering thresholds and optimal 

power density for FCS data collection, the comparison of FCS measurements in solution and inside 

living cells showed how well each of the red FPs performed, while also highlighting some of their 

shortcomings. For example, mApple underwent flickering at all excitation intensities, making it wholly 

unsuitable for FCS studies. FusionRed was shown to have a low flickering threshold, which combined 

with its relatively poor intrinsic brightness makes it a poor candidate for FCS studies as well. mRuby2 

was very bright and had an acceptable flickering threshold, but when expressed in cells showed a  

rate of diffusion significantly slower than all of the other FPs. This indicates mRuby2 would be a  

poor choice of FP to study protein diffusion. Finally, the brightness analyses strongly suggest that  

TagRFP-T is not entirely monomeric when expressed in live cells, although TagRFP-T did appear  

to diffuse as a monomer when fused to the BZip protein, and others have utilized it to study 

spatiotemporal colocalization [26]. Based on the shortcomings determined here, we believe the current 

best red FP for FCS studies may still be mCherry. However, even mCherry has been shown to be 

problematic for some specific applications [27]. In such situations, mRuby2 or TagRFP-T might prove 

acceptable provided sufficient controls are utilized to determine the FP is diffusing appropriately and is 

monomeric within the context of the fusion protein construct. The current studies demonstrate that 
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significant progress has already been achieved in engineering monomeric red FPs, bright red FPs, and 

red FPs with high flickering thresholds. Combining all of these qualities into a single red FP will 

enable increased utilization of these remarkable proteins for single molecule and other spectroscopic 

studies of protein interactions. 
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