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Abstract: The fault diagnosis of power transformers is a challenging problem. The massive multi-
source fault is heterogeneous, the type of fault is undetermined sometimes, and one device has only
met a few kinds of faults in the past. We propose a fault diagnosis method based on deep neural
networks and a semi-supervised transfer learning framework called adaptive reinforcement (AR)
to solve the above limitations. The innovation of this framework consists of its enhancement of the
consistency regularization algorithm. The experiments were conducted on real-world 110 kV power
transformers’ three-phase fault grounding currents of the iron cores from various devices with four
types of faults: Phases A, B, C and ABC to ground. We trained the model on the source domain and
then transferred the model to the target domain, which included the unbalanced and undefined fault
datasets. The results show that our proposed model reaches over 95% accuracy in classifying the
type of fault and outperforms other popular networks. Our AR framework fits target devices’ fault
data with fewer dozen epochs than other novel semi-supervised techniques. Combining the deep
neural network and the AR framework helps diagnose the power transformers, which lack diagnosis
knowledge, with much less training time and reliable accuracy.

Keywords: semi-supervised transfer learning; fault type diagnosis of power transformers; three-
phase grounding current of the iron core; deep neural network

1. Introduction

This section illustrates the research’s motivation, target and framework, followed by a rel-
evant literature review of the recent research about the fault diagnosis of power transformers.
After that, we state the research gap, our contributions and this paper’s organisation.

1.1. Motivation, Target and Framework

Power transformers are important equipment in electrical power systems, and trans-
former failures will negatively impact whole systems. An early-stage diagnosis of trans-
former fault type can save the high cost of repairing and downtime. The three-phase
grounding currents of the iron core generated during the turning on of transformers are
important indexes to assess the states of power transformers. The value of the normal
grounding current of the iron core is quite small, while the abnormal grounding current
value will increase substantially. The warning threshold for the grounding current of the
iron core is 100 mA for the 110 kV power transformers and the faults are caused by Phases
A, B, C and ABC to ground fault. This research aims to construct a reliable model that
can analyse the fault type after 10 min from fault occurrence based on the abnormal three-
phase grounding current data of the iron core, and the model can be quickly transferred to
different devices with quick retraining to obtain good performance.

Benefiting from the evolution of machine learning, more and more supervised or
unsupervised models have been adopted to pinpoint the linear or nonlinear relationships
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between electrical features and fault types [1]. This paper proposes a new fault diagnosis
framework based on convolutional neural networks (CNN) [2–4], an attention mecha-
nism [5] and bidirectional long short-term memory networks (BiLSTM) [6,7].

Besides that, we compose a new framework of semi-supervised transfer learning called
adaptive reinforcement (AR). This technique aims to solve the problem of unbalanced and
undefined fault type data in the target power transformer, which negatively affects the
transferring process. The first step of AR is pretraining the source model’s classifier and
then giving pseudolabels to the unlabelled data by the trained model. After that, we
supplement the unbalanced fault data from the source domain based on the probability
distribution. To overcome the problem of overfitting the complemented data, we replay
the training experience of the main type of fault. Finally, we fine-tune the whole network’s
weights with few epochs to fit the target device.

The comprehensive framework of the methodology is shown in Figure 1. The source
domain’s data are the three-phase fault grounding current data of the iron core after the
fault happens from one 110 kV main power transformer with the corresponding four types
of faults: Faults A, B, C and ABC to ground. In addition, the fault classes are balanced.
We train the proposed deep neural network to classify the fault type and then transfer the
model to the target domain in the framework of AR. There are three 110 kV target power
transformers for the target task, and each of them contains undefined fault data. Moreover,
the fault types in the target power transformer are unbalanced. The blue color indicates
the fault type which mostly happened in that device, the red color indicates the fault type
which rarely happened and U indicates the undefined fault type.

Figure 1. Methodology of the whole framework.

1.2. Literature Review

Research on fault diagnosis and the detection of power transformers focuses on dif-
ferent aspects and methodologies, separately. The frequency response analysis (FRA)
technique is one main method to detect transformer tap changer faults. The experiment
in [8] was conducted on a three-phase 50 Hz, 11/0.415 kV, 500 kVA distribution transformer
with a de-energized tap changer and simulated the tap changer fault to use FRA measure-
ments to identify various contact faults such as coking and pitting. The work in [9] was
conducted on a three-phase 11/0.433 kV, 500 kVA distribution transformer and calculated
the correlation coefficient of the deviation from the fingerprint signature to identify the fault
type. The work in [10] used the correlation between physical circuit parameters and various
faults and quantified the impact of each fault with respect to the healthy signatures at differ-
ent frequency regions. The work in [11] proposed a deep-learning-based framework named
SigdetNet, which takes the power spectrum as the network’s input to localize the spectral
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locations of the signals. The research in [12] proposed an intrinsic time-scale decomposition
(ITD)-based method for power transformer fault diagnosis based on dissolved gas analysis
(DGA) parameters and used an XGBoost classifier to classify the optimal PRC feature
set. The work in [13] proposed an artificial neural network (ANN) to establish the power
transformer fault classification based on DGA. The work in [14] proposed a Hilbert–Huang
transform (HHT)-based algorithm to effectively detect malfunctioning by revealing the
instantaneous amplitude and frequency of nonlinear and nonstationary signals. The work
in [15] employed the algorithm using principal component analysis (PCA) to easily find
the feature of the fast Fourier transform (FFT) signal and utilize Hotelling′sT2 as an index
for fault detection. The work in [16] adopts the nonstationary signal processing techniques:
wavelet transform (WT) to the application of industrial equipment and rotating machinery
fault diagnosis (RMFD).

A well-trained model being adapted to similar tasks has become a popular technique
with the advantages of saving time and having better model performance in the engineering
area. Paper [17] split the transfer learning work fault diagnosis into four categories: feature,
GAN (generative adversarial network), example and parameters. The GAN-based transfer
method generates fake samples, which is not suitable for our task, so we reviewed the other
three types’ work here. Transfer learning for time series classification [18] adopted a fully
convolutional neural network model to pretrain UCR archive datasets. It then transferred
the learned features (the networks’ weights) to a second network to be fine-tuned on a
target dataset. In this paper, fine-tuning is still the main method while transferring the
model. Domain adaption adjusts the weights of the pretrained model by the decision
boundary between the source and target domains. Online and Offline Domain Adaptation
for Reducing BCI Calibration Effort [19] proposes an algorithm that originates from the
work in [20] that adapts the weights offline and online for unlabelled target data tasks.
Adaptive Consistency Regularization for Semi-Supervised Transfer Learning [21] proposes
adaptive consistency regularization. It adapts the model weights based on the consistency
between the source model and data with the target model and data. Transfer Learning
Based Fault Diagnosis with Missing Data Due to Multi-Rate Sampling [22] transfers the
pretrained model from the missing sensors’ domain to complete data by completing the
corresponding missing weights with random initial values. The work in [23] imposed a
Lautum-information-based regularization that relates the network weights to the target
data. The work in [24] offered a free-distribution-, kernel- and graph-Laplacian-based
approach which optimizes empirical risk in the appropriate reproducing kernel Hilbert
space. The work in [25] proposed an expectation-maximization algorithm to solve the
transferred model iteratively.

1.3. Research Gap

The literature review explored several novel works on fault diagnosis and transfer
learning. FPA-based methods mostly focus on transformer tap changer faults by calculating
the correlation coefficients. Deep-learning-based and machine-learning-based frameworks
mostly utilize dissolved gas analysis (DGA) to establish fault classification. Transforming
methods, including the Hilbert transform, fast Fourier transform and wavelet transform,
study the information contained in the frequency to predict the occurrence of the fault.
For transfer learning, fine-tuning is still the most popular method. For semi-supervised
transfer learning, the novel proposed techniques are mostly based on the ideas of target
domain adaption and consistency regularization.

This paper proposes a deep neural network to figure out the fault types of power
transformers. The architecture is formed by the FCNN, attention mechanism and BiLSTM.
For the semi-supervised transfer learning task, AR enhances the domain adaption step
by mixing the dynamic time wrapping algorithm. In addition, the experience replay step
reinforces the experience of training the major fault.
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1.4. Contribution

Our main contributions can be summarized below:

1. To the best of our knowledge, we are the first to combine the semi-supervised transfer
learning method with the experience replay idea and utilize this method to solve
electrical system problems.

2. We combine fully convolutional neural networks (FCNN) with an attention mecha-
nism followed by bidirectional long short-term memory (BiLSTM) networks as the
diagnosis model’s architecture to classify the fault type accurately.

3. Considering the unbalanced and undefined fault data in the target task, we propose
an enhancement on the pseudolabel method based on cross-entropy and dynamic
time wrapping algorithms.

1.5. Organization

The rest of the paper is organized as follows: Section 2 introduces the data and
experiment’s setup, and Section 3 details the architecture of the deep neural network.
Section 4 presents the framework of semi-supervised transfer learning. The evaluations of
the experiments are carried out in Section 5. Section 6 discusses the results. The conclusion
is drawn in Section 7.

2. Materials and Methods

This section specifies the characteristics of the datasets, exploration methods and
preprocessing steps as the setup for the experiments.

2.1. Dataset and Exploration

The datasets we employed for this research were the 3-phase fault grounding currents
of the iron core data created by the main 110 kV power transformers owned by State Grid
Shanghai Municipal Electric Power Company. We recorded the fault current after it reached
the warning threshold, which was 100 mA. The source domain samples were the fault
grounding current data of the iron core by one 110 kV main power transformer produced
last year with four types of faults: Phase A to ground, Phase B to ground, Phase C to ground
and Phase ABC to ground. The target domain samples were three different 110 kV power
transformers’ fault data which contained labelled and unlabelled fault types. The value of
the normal grounding current of the iron core was below 10 mA, and the abnormal current
value increased substantially to about 150 mA. After the fault happened, as the abnormal
current value appeared, we waited until the fault data had enough length and then input it
into the model to classify the fault type.

2.1.1. Source Domain

The source data were collected from one main power transformer. Three detection
devices monitored Phases A, B and C’s grounding currents of the iron cores individually.
The detection devices recorded the corresponding grounding current data of the iron core
simultaneously every twenty seconds. The maintenance worker found out the fault’s
reason and recorded it each time.

We selected the fault data Ds = {X1,2...n}, where the number of time-steps n = 30
with their corresponding fault types as the source dataset samples. We found that the
whole-time length from the beginning of the fault happening until fixing was always more
than one hour. In order to have enough training data for a deep neural network, we chose
the abnormal phase grounding current data of the iron core from the beginning of faults
every 10 min.

Figure 2 shows an example of the 3-phase grounding current data of the iron core. The
fault type is Phase A to ground. The blue, orange and green lines indicate Phase A, Phase B
and Phase C’s grounding currents of the iron cores individually.
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Figure 2. One sample of the 3-phase grounding current of iron core data with the fault of Phase
A to ground.

The source domain collected four fault types’ data which are labelled. The next sample
was one time-step shift from the last sample until the faults were fixed, where the time
interval was twenty seconds. For example, the first sample was D1 = {X1,2,3...30} and the
next sample was D2 = {X2,3,4...31}. Figure 3 shows the distribution of all fault types in
the source domain. The number 1 refers to Phase A to ground fault, 2 refers to Phase B to
ground fault, 3 refers to Phase C to ground fault, and 4 refers to Phase ABC to ground fault.
There were 1926 Type 1 fault data, 1516 Type 2 fault data, 1813 Type 3 fault data and 1867
Type 4 fault data.

Figure 3. Distribution of the fault types in source domain.
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2.1.2. Target Domain

The target domain’s 3-phase fault grounding currents of the iron core data were
collected from three 110 kV diverse power transformers. The detecting conditions, the
time-steps and the data shape were the same as those of the source domain. The values of
the fault data were similar to the source domain’s data.

The difference is that the fault types’ data of the target domain were combined with
unlabelled and labelled types’ data. The labelled data were heavily unbalanced as well. Table 1
shows the distribution of fault type in the target domain of the three 110 kV different power
transformers. Types 1, 2, 3 and 4 still refer to the same types as those of the source domain, and
a Type 5 fault refers to unlabelled fault data. None means this kind of fault did not happen
to this power transformer in the past year. The value means the sample size of each fault’s
current data.

Table 1. Fault distribution of the target domain.

Power
Transformer Type 1 Type 2 Type 3 Type 4 Type 5

No. 1 164 None 1107 57 512

No. 2 None 176 113 1319 413

No. 3 None 872 None 491 634

2.2. Preprocess

Data cleaning is the first step in data analysis. We pruned and checked the missing
data and outliers due to the error of the detection device in the samples.

Three-phase currents are typical time series data. A time series X = [x1,x2,...xT] is
an ordered set of real values. The length of X equals the number of real values T. A key
concept of time series prediction is that the data are expected to be stationary, which means
the mean and variance of the data will not be varied too much with the passing of time.
To improve the stationarity of the samples, we applied Lag2 differencing (1) to preprocess
the data.

d(t) = x(t)− x(t− n) (1)

3. Model

This section details the FCNN–Attention–BiLSTM model of transfer learning for
fault classification in power transformers. The architecture of the model can be split into
three parts: fully convolutional neural networks (FCNN), an attention mechanism and
bidirectional long short-term memory (BiLSTM). The whole framework is shown in Figure 4.
The input of the network is the three-phase grounding current of the iron core series data
in the length of time_steps, which is 28 after Lag2 differencing. The network’s output is a
probability distribution over the four possible fault classes.

3.1. Fully Convolutional Neural Networks (FCNN)

The first architecture is the one-dimensional fully convolutional neural network for
its robustness, as it gains good performance in multiple series tasks to extract the hidden
information. The input of the networks is the three-phase fault grounding current of the iron
core data in the shape of time_steps× 3 . The first, second and third layers are convolutional
layers with the rectified linear unit (Relu) [26] as an activation function for feature selection
and each layer is followed by a batch normalization operation and dropout of 0.3. The first
convolution is composed of 128 filters of length 1, the second convolution is composed of
64 filters of length 1 and the last convolutional layer is composed of 32 filters of length 1. The
strides of the three convolutional layers are all equal to 1. The output of each convolutional
layer is a multivariate time series in the shape of batch× time_steps× f ilter and will be
normalized in the batch normalization layer and regularized in the dropout layer.
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Figure 4. Model Architecture of FCNN–Attention–BiLSTM.

3.2. Attention Mechanism

The following is an attention mechanism [5]. The location of the attention is also
important, as the different location of the attention captures different essential messages.
The popular way is putting the attention layer after BiLSTM [7]. This paper adopts the
method of transformed attention and sets the location of attention before BiLSTM but after
FCNN to firstly extract feature importance.

so f tmax(zi) =
ezi

∑C
c=1ezc

(2)

αi = so f tmax(AiUw) (3)

ct = ∑N
i αi Ai (4)
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The first layer of attention is a dense layer with the activation functions of softmax (2).
The dense layer’s input multiplies the dense output to complete the distribution of the
weights. Because the input shape into the dense layer is (time_steps , input_dimension),
where input_dimension is the number of units of the last layer of convolution, we then
permute the shape into (input_dimension, time_steps), which is reasonable for computing
the weights of each feature.

The feature at one time point is multi_dimensional, and the multiple features change
with time, so the computed weight vector is multi_dimensional. This paper averages the
weight vector to compute the attention score α after softmax is activated (3), where A is a
matrix consisting of output vectors [A1, A2, ..., AN ] such that the FCNN layer is produced
and N is the input_dimension.

The last step is repermuting the weight vector-matrix back into a (time_steps, in-
put_dimension) shape and then multiplying the input (4). We add a dropout layer of 0.3
as well.

3.3. Bidirectional Long Short-Term Memory (BiLSTM)

The next layer is bidirectional long short-term memory (BiLSTM) [6], which is com-
posed of two LSTM networks and can capture the information of the series from back to
front. The LSTM neural network is formed by the input data Xt, cell state Ct, temporary
cell state C̃t, hidden state ht, forget gate ft, memory gate it and output gate ot at time T.
The computation process transfers the useful information from the cell state, drops the
useless information and outputs the hidden state at each timestamp. The drop, memory
and output are controlled by the last timestamp’s hidden state ht−1, with the current forget
gate, memory gate and output gate computed by the current input information Xt.

The joint of the forward LSTM outputs {hL0, hL1, ..., hLn−1} and backward LSTM
outputs {hR0, hR1, ..., hRn−1} is the hidden state vector of BiLSTM. We set 512 neurons in
this layer, which contains the information from front to back and from back to front. After
that, we add a dropout layer of 0.3 to connect the final dense layer, whose activation is the
softmax function (2).

The output of the model is a probability distribution of the four fault types generated
by the dense layer. The fault is classified according to the highest probability.

4. Semi-Supervised Transfer Learning

The whole framework of semi-supervised transfer learning, which we call adaptive
reinforcement (AR), is shown in Figure 5 below. The source domain and target domain
are detailed in Section 2. We split the architecture of the deep neural network into two
parts: a feature extractor function Fθ and a classifier function Gφ. Fθ is composed of the
architecture as illustrated in Section 3, and we denote its weights in the pretrained model
from the source domain as θs. Gφ is the fully connected layer with respect to the fault
types and we denote its weight in the pretrained model as φs. The target dataset comprises
labelled examples Dl

t =
{

x1,2...n
l

}
, where l indicates labelled and unlabelled examples

Du
t =

{
x1,2...m

u

}
, where u indicates unlabelled.
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Figure 5. The framework of adaptive reinforcement (AR).

4.1. Pretrain

The first step of semi-supervised training is pretraining the target model. The feature
extractor’s weights of the target model are initialized with θs, the same as in the source
domain’s model. We fine-tune their parameters in the later training process.

For the classifier’s weights of the target model, which we denote as φt, we initialize
them with random values for the weight columns and 0 for the bias column. Then, we fit
the target model on the labelled examples Dl

t with the Adam optimizer, whose learning
rate is 1× 10−7 , and categorical-cross-entropy loss. We average the parameters of the last
layer as the initial φt. For example, the No. 1 power transformer has 1328 labelled data over
1840 samples. We fit the model whose weights are composed of θs and randomly initialize
φt0 with labelled samples (80% training dataset, 20% test dataset). Therefore, we obtain
1062 φt1s and average the corresponding weight columns to obtain φt1 and recompose it
with θs as the target model.

4.2. Pseudolabel

Compared to other pseudolabelling methods [21,27], we design an algorithm to mark
the labels based on cross-entropy and dynamic time warping (DTW) [28]. Cross-entropy
is the distance between two probability distributions. If the distance is smaller, the two
probability distributions are more similar. The DTW algorithm measures the distance
between two series, and a smaller distance indicates higher similarity.

The source model’s output, composed of Fs
θ and Gs

φ, is a probability distribution
Ps = Gs

φ(Fs
θ (x)), where x is the sample current’s data. Ps is a one-dimensional vector

with a length equal to the fault type number. For the the unlabelled sample data in the
target domain, we compute each probability distribution Pu

s . Then, we calculate the cross-
entropy (5) between Pu

s with Pi,i∈1,2,3,4
j .

H(Pu
s , Pi

j ) = −
C

∑
i=1

Pu
s logPi

j (5)
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C is the classification number, which is 4 in our task. Pu
s is the source model’s proba-

bility distribution of each unlabelled sample data. Pi
j is the probability distribution of the

fault type, for example, (1,0,0,0) for the Type 1 fault. We compute the cross-entropy values
between each Pu

s with the four Pjs. The lowest cross-entropy value over four results assigns
the corresponding fault type to the unlabelled sample as the pseudolabel.

During the experiment, we found the cross-entropy values with different fault types
were very close for a few unlabelled samples. For example, one unlabelled sample’s cross-
entropy values with fault Type 2 and fault Type 3 are 0.34 and 0.35, separately. It would
be unscientific to assign this sample to one type directly. We set an ε, which equals 0.2 if
the difference between two cross-entropy values is less than ε (6), and we use DTW (7) to
calculate the distance between the unlabelled samples with the confusing types of samples
to determine the pseudolabel. ∣∣∣H(Pu

s , Pi
j )− H(Pu

s , Pk
j )
∣∣∣ < ε (6)

DTW(Q, C) = min


√

∑K
K=1wk

K

 (7)

The principle of the DTW algorithm is that for two series Q and C with lengths n
and m, we construct a matrix of n×m matrix where matrix (i,j) is the distance of qi and
cj, which is the Euclidean distance: (qi − cj)

2. We calculate the DTW distance between
the unlabelled sample with all the confusing types of samples from the source domain
and average the distances. The lowest distance, called the warping path (wk), assigns the
unlabelled sample to the corresponding fault type.

4.3. Supplement Unbalancing Dataset

After pretraining and assigning the pseudolabels, we obtain a target model composed
of Fs

θ and Gt
φ and a target dataset Dt = Dl

t
⋃

Dpl
t , the size of which was n + m. To make

the distributions of the source and the target domain similar so that the model fit better,
we supplement the target dataset with the weak types’ fault data from the source domain
based on the probability distribution of the number of the fault types, as shown in (8).

Nw
s =

P(T = Ts)

P(T = Tw)
× Nw

t (8)

Nw
s is the number of supplement samples to weak types’ samples, and Nw

t is the
number of weak types’ samples in the target dataset. P(T = Ts) is the probability of the
most common fault happening in the target power transformer, and P(T = Tw) is the
probability of the weak type’s sample in the target domain.

4.4. Experience Replay

The complete target dataset becomes Dt = Dl
t
⋃

Dpl
t
⋃

Dsup
t . Dw

t , the samples of the
main fault type in each power transformer, are the most important. The mass occurrence
of that type of fault over last year means this fault is more likely to happen. For a specific
power transformer, we should consider the different conditions and adapt the weights
more inclined to predict the main fault of that one. For this reason, we employ the idea of
experience replay, which is used in the reinforcement learning model DQN [29].

For each batch during the training process, we denote the initial target model as Q,
the sample of the most common fault as xs

t and the trained target model after the end of
the training of each batch as Q

′
. We record the output vector in one dimension of the main

fault’s sample as Ps1
t = Q(xs

t ). Before moving on to the next batch, we replay the training
process (9) as below.

Ps2
t [s] = γmax(Q

′
(xs

t )) + Q(xs
t )[s] (9)
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We obtain a new output vector using the trained model Q for the specific sample
during the replay process. We multiply the max value of the new output vector, which is
the probability of predicting the most common fault, with a gamma which we set as 0.01.
Then, we add the multiplication value to the raw vector’s corresponding fault probability
as the new output vector Ps2

t [s] for that sample and retrain the model Q
′

on it.

5. Experimental Evaluation

This presents the results of the training processes on the source target and transfer
learning results of the three target power transformers.

5.1. Model Training on the Source Domain

The source domain contains 7122 samples, which we shuffled randomly and split into
80% training and 20% validation sets. The model’s training process sets the batch sizes
equal to 8 and 40 epochs with a loss function of categorical cross-entropy, Adam optimizer
and accuracy metrics. The learning rate is changed during the training process since we
found that the loss of train and validation datasets fluctuated after dozens of iterations.
Therefore, we set the learning rate to be 1× 10−3 for the first ten epochs, 1× 10−4 for the
following ten epochs, 5× 10−5 for the next ten and 1× 10−5 for the final ten epochs.

The training history of the validation dataset is shown in Figure 6. We compare
the proposed model architecture with three other models: FCNN–Attention, FCNN and
FCNN–BiLSTM–Attention. The conditions of the training were all the same. We trained
each model five times for fair conditions and picked the best one of them as the final model.
The FCNN–Attention–BiLSTM mechanism outperformed the other three, ending with over
95% validation accuracy and about 0.1 validation loss.

For more Accuracy, we also calculated the Accuracy (10), Recall (11), Precision (12)
and F1 score (13) between the prediction values and true validation data. TP, TN, FP and
FN stand for true positive, true negative, false positive and false negative, respectively. The
evaluation results are shown in Table 2.

Accuracy =
TP + TN

TP + TN + FP + TN
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

F1 Score = 2× (
Precision ∗ Recall
Precision + Recall

) (13)

Table 2. Evaluation results of different deep learning models’ performances on the source domain.

Evaluation/Methods FCNN–Att–
BiLSTM FCNN–Att FCNN FCNN–

BiLSTM–Att

Accuracy 95.37% 94.18% 93.33% 93.63%

Recall 95.38% 94.19% 93.33% 93.63%

Precision 95.37% 94.18% 93.33% 93.63%

F1 Score 95.37% 94.18% 93.33% 93.63%
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Figure 6. Training history of the validation set on the source domain.

5.2. Transfer Learning

We compare the proposed AR framework with the following state-of-the-art semi-
supervised transfer learning methods. For a fair comparison, the learning process had the
same framework of the learning rate as 1× 10−5 because we did not want to suddenly
change the weights of the model layers by a significant factor that may adversely affect the
model performance, loss function, epochs and metrics.

1. Fine-tuning [18]: This is the pure supervised manner where unlabelled samples are deleted.
2. Pseudolabel [27]: It assigns the unlabelled samples by the model trained from the

source domain.
3. Freeze [30]: This lets the feature extractor layers freeze and their parameters are

untrainable during transfer learning. The unlabelled samples are ignored as well as
fine-tuning.
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4. ACR [21]: It contains the techniques of adaptive knowledge consistency by the
entropy-gate algorithm and adaptive representation consistency by the maximum
mean discrepancies (MMD) algorithm to regularize the weights.

5. EM [25]: The expectation maximization algorithm (EM) contains E and M steps. The
posterior distribution is calculated in the E step by Bayes’s theorem. In the M step, the
mixture distribution and the convolutional neural network parameters are updated.

6. LR [23]: It calculates the cross-entropy test loss and decomposes to several derivations,
leading to a new regularization term called Lautum regularization (LR).

We also compare AR with and without the experience replay step as well. The aim of
this research is trying to find the fastest and most steady transfer learning method. For this
reason, we do not compare the final accuracy of each algorithm but the shortest time to
achieve over 94% accuracy over three successive epochs on each target domain. The results
of the acquired epochs for each transfer learning method is shown in Table 3. AR reached
94% accuracy with the least time consumption from retraining. In addition, the experience
replay step accelerated the fitting process from the result.

Table 3. Epochs required to achieve over 94% accuracy three times for each transfer learning method.

Methods/Transformer No. 1 Power
Transformer

No. 2 Power
Transformer

No. 3 Power
Transformer

Fine-tuning 24 25 29

Pseudolabel 26 27 32

Freeze 35 37 35

ACR 13 15 15

EM 13 11 13

LR 14 15 14

AR without
experience replay 14 13 14

AR 9 9 10

The unlabelled data were given labels by the five semi-supervised transfer learning
methods: pseudolabel, ACR, EM, LR and AR. We checked the target domain’s sample
distribution after processing as shown in Table 4. Even after fitting the labels, the fault
types were still unbalanced for the pseudolabel and ACR methods.

Table 4. Sample distribution of each power transformer.

No. 1 Power Transformer No. 2 Power Transformer No. 3 Power Transformer

Methods/Labels Type 1 Type 2 Type 3 Type 4 Type 1 Type 2 Type 3 Type 4 Type 1 Type 2 Type 3 Type 4

Pseudolabel 287 113 1107 333 189 259 175 1398 347 913 122 615

ACR 357 97 1188 198 341 212 143 1325 280 954 165 598

EM 291 143 1217 189 303 271 183 1264 263 931 186 617

LR 350 103 1174 213 339 225 140 1317 291 944 169 593

AR 1347 1347 1347 1347 1366 1366 1366 1366 993 993 993 993

We predicted each raw target dataset without unlabelled samples to ensure that our model
correctly predicted the raw dataset rather than overfitting. Then, we checked the accuracy, recall,
precision and F1 score. The evaluation results are shown in Table 5. The accuracy is a little
below the raw performance, but the difference is not big and can be affordable.
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Table 5. Evaluation results of our proposed semi-supervised transfer learning models after training
on the raw target datasets without unlabelled samples.

Evaluation/Methods No. 1 Power
Transformer

No. 2 Power
Transformer

No. 3 Power
Transformer

Accuracy 93.13% 93.27% 93.07%

Recall 93.13% 93.27% 93.07%

Precision 93.14% 93.27% 93.07%

F1 Score 93.13% 93.27% 93.07%

6. Discussion

The experiment was conducted on two tasks: the source task and the target task. The
source task contained enough three-phase fault grounding currents of the iron core and
balanced class type from one main 110 kV power transformer. The target task contained
three 110 kV power transformers’ three-phase fault grounding currents of the iron core, while
the target classes were unbalanced and contained undefined fault types. The three-phase
grounding current of the iron core, Phase A, Phase B and Phase C, were recorded by three
detection devices at the same time every twenty seconds. There were 7122 samples in the
source domain and we preprocessed each one with the Lag2 difference method. We trained
the proposed network on the source task in the framework of FCNN–Attention–BiLSTM
and compared its performance with three other deep neural network frameworks: FCNN–
Attention, FCNN–BiLSTM–Att and FCNN. For each model, we trained five times under
the same conditions and recorded the best one. We visualized their training histories of
them in Figure 6 and found out that our proposed model reached over 95% accuracy, which
outperformed others. The model achieved 90% accuracy after four epochs but vibrates little.
Its accuracy stabilized above 94% accuracy after 35 epochs and every epoch’s validation
accuracy beat the other three models by more than 1–2% accuracy. For further comparison,
we calculated the accuracy, recall, precision and F1 score of each model. The highest one
was FCNN–Attention–BiLSTM, with about 95.37% accuracy, and the second one was the
FCNN–Attention framework, with approximately 94.18% accuracy.

After we trained the model on the source task, we transferred it to the three target tasks.
We compared our proposed semi-supervised transfer learning framework, AR, with six other
state-of-the-art semi-supervised transfer learning methods: fine-tuning, pseudolabel, freeze,
ACR, EM and LR. We also compared AR without the step of experience replay as well. The
evaluation metrics were the fitting speeds of these frameworks. The quickest one was the
AR framework, which just needed 9–10 epochs to stabilize over 94% accuracy at each target
task, while the second one was the EM algorithm, which needed about 15 epochs. We also
checked the new distribution of the fault type in each target task by the generating label
methods: pseudolabel, ACR, EM, LR and AR. AR supplemented all the lacking type’s data so
it required more time to train each epoch, though the time consumption of fitting was still the
lowest. When the model stabilized over 94% accuracy, we stopped training and predicted the
validation set’s classes with the raw dataset without the supplement samples. The accuracy
for the three power transformers was about 93% separately. Though it is a little lower than
the accuracy on the training dataset, the difference is less than 1%, which is affordable.

The aim of this investigation is classifying fault type after fault occurrence based on the
three-phase grounding current of the iron core. The work focuses on quick semi-supervised
transfer learning. For further research, we will try to predict fault preoccurrence with the
dissolved gas data. The methodology can be improved with signal processing techniques, the
frequency response analysis technique and loss optimization algorithms.

7. Conclusions

This research focuses on the task of classifying the fault types, Phases A, B, C and ABC
to ground fault, based on the three-phase fault grounding current of the iron cores from
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110 kV power transformers. The values of the data were recorded every twenty seconds
and increased substantially after the fault occurred. After the abnormal current appeared
and exceeded the warning threshold, which was 100 mA, we collected the sample of the
fault current in the length of 30 and preprocessed it with the Lag2 difference method.

This paper proposes an FCNN–Attention–BiLSTM model to classify fault type based
on fault data. This architecture achieves over 95% accuracy. Apart from this, a semi-
supervised transfer learning method called AR is illustrated to transfer the trained model
to diverse power transformers. AR includes four steps: pretraining the classifier layer, gen-
erating a pseudolabel by DTW and cross-entropy algorithms, supplementing unbalanced
data by the probability distribution of the fault classes and relaying the training experience
of the most-occurring fault. AR reduces the epochs required dramatically to achieve a high
accuracy score in our target task.

For real-time diagnosis, while the current value exceeds the warning threshold, which
is 100 mA, the system waits until enough data in the length of 30 (10 min from when the
fault happens) are generated. The model inputs the preprocessed fault data and returns
the probability distribution of the four types of faults. If the largest probability is higher
than the confidence level, which we set as 0.7, the system will deliver the corresponding
fault type message to the maintenance worker. On the other hand, if the four probabilities
are close, the system will wait another twenty seconds until the next detection data are
generated and then replicate the above steps.
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