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Abstract

Background: Angiogenesis is regulated by multiple genes whose variants can lead to different disorders. Among them, rare diseases
are a heterogeneous group of pathologies, most of them genetic, whose information may be of interest to determine the still unknown
genetic and molecular causes of other diseases. In this work, we use the information on rare diseases dependent on angiogenesis to
investigate the genes that are associated with this biological process and to determine if there are interactions between the genes
involved in its deregulation.
Results: We propose a systemic approach supported by the use of pathological phenotypes to group diseases by semantic similarity.
We grouped 158 angiogenesis-related rare diseases in 18 clusters based on their phenotypes. Of them, 16 clusters had traceable gene
connections in a high-quality interaction network. These disease clusters are associated with 130 different genes. We searched for
genes associated with angiogenesis througth ClinVar pathogenic variants. Of the seven retrieved genes, our system confirms six of
them. Furthermore, it allowed us to identify common affected functions among these disease clusters.
Availability: https://github.com/ElenaRojano/angio_cluster.
Contact: seoanezonjic@uma.es and elenarojano@uma.es
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Introduction
Angiogenesis deregulation is associated with a large
number of diseases, including different types of cancer,
autoimmune and rare diseases [3, 39, 50]. This biological
process is complex in molecular terms and its regulation
is susceptible to changes in the genome [52]. Despite
being an essential process for the maintenance of the
organism there is much more to investigate about the
genes and the regulation of this process.

It is known that genes involved in diseases described
with similar phenotypes can be functionally related on

the molecular level [43]. Consequently, to deepen in the
knowledge of the angiogenesis deregulation, it can be
possible to analyze what phenotypic similarities there
are between angiogenesis-dependent diseases. There are
different approaches that use semantic similarity to cal-
culate how similar two diseases are using Gene Ontology
terms [25], the Disease Ontology [4] and the Human
Phenotype Ontology (HPO) [24]. Here, we consider that
phenotypically similar angiogenesis-dependent diseases
can be grouped to determine which genes they have in
common and to relate them to the angiogenesis deregu-
lation.

https://creativecommons.org/licenses/by-nc/4.0/
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In this work, we rely on the analysis of angiogenesis-
related rare diseases (A-RDs) to analyze the genetic
factors involved in the angiogenesis deregulation. This
heterogeneous group of diseases provide informa-
tion of multiple pathological phenotypes and genes
that is useful to help to understand the angiogenesis
dysregulation.

In 2012, our research group performed a systemic
review of A-RDs, with a manual search of A-RDs used
to identify disease-associated genes and available drugs
for their treatment using Orphanet resources [39]. Here,
we update the list of A-RDs and use it to get a better
understanding of the A-RDs and their associated genes.
To do so, we use a semantic similarity measure and
clustering analysis of these A-RDs. There are plenty of
studies that describe several similarity measures [31]
applied for disease analysis at the phenotypic level as
the rare disease map (RDmap) [59] or for the differential
diagnostics for common diseases [47]. Furthermore,
the use of semantic similarity for data clustering is
frequent for the stratification of patients in cohorts [48]
or disease groups [2]. In addition, this methodology is
also used for the identification of genes that could be
involved in disease development. For example, there
are essential resources such as the Monarch Initiative
[28] and DisGeNET [33] that can be used to retrieve
gene information, and tools like Priori-T [36] that
uses information from MEDLINE abstracts for gene
prioritization.

In this way, we apply this knowledge to A-RDs design-
ing a full analysis protocol to analyze a pool of dis-
eases. Our motivation is to give a reliable and straightfor-
ward insight of the rare diseases related to angiogenesis,
grouping them at a phenotypic level. With this stratifica-
tion, we explored each A-RD group at a genetic level to
analyze the biological functions of the associated genes
and which other genes could be related. Finally, we iden-
tified close A-RD groups at both phenotypic and genetic
levels, giving a reference point to A-RD researchers to
elucidate the disease mechanisms.

Material and methods
A-RDs selection
Information concerning A-RDs was compiled with
the criteria described in the work of Rodríguez-Caso
and collaborators [39]. Following their procedure, we
performed an advanced search for specific terms that
emerged in publications of any year. This search was
performed in the Web of Science (WOS) and PubMed
databases. We personalized our search in the following
way, according to the database consulted: in the case
of WOS, we searched for terms related to rare diseases
and angiogenesis ‘(TS = (rare disease AND angiogen*))’,
whereas in PubMed were used ‘((rare diseases [MeSH
Terms]) OR (rare AND diseases) OR (rare diseases)
OR (rare AND disease) OR (rare disease) AND angiogen*)’.
Both searches were made in August 2021. We exported

the results of the articles corresponding to this search
and eliminated the repeated records.

In the same line as Rodríguez-Caso and collaborators
followed in their study, [39], to perform the A-RDs articles
selection we made a search for terms in the title and
abstract of all articles, and specifically in the abstract
keywords and MESH terms of PubMed articles and in
the author keyword and keyword plus of WOS articles.
We searched for two groups of keywords: ‘angiogen’ and
‘VEGF’ to verify that the article had content about this
biological process, or ‘rare’ and ‘disease’ to confirm that
there were rare diseases mentioned in the article. All
the articles that did not meet these search requirements
were removed from the study.

We calculated a content score to prioritize articles
according to where these terms were included in the
publications. This score is calculated in the following
way: if the searched terms are in the title, we add 3
points to the score, 2 if they are included in the keywords
or MeSH terms and 1 if it is in the abstract. Using the
content score, we focused on articles whose score was
equal to or greater than 4 as we considered them as the
most relevant.

We manually inspected these articles to verify that
they were describing A-RDs. All diseases resulting from
manual curation were searched in Orphanet to get an
official ORPHA code. These ORPHA codes will be used
to find additional information about A-RDs in different
databases.

For each A-RD ORPHA code we retrieved both their
phenotype and gene annotations. In the case of phe-
notypes, we selected all the HPOs related to each A-
RD ORPHA codes from the HPO annotation website
[19] (http://purl.obolibrary.org/obo/hp/hpoa/phenotype.
hpoa). The genes associated with A-RDs were retrieved
from the Monarch Initiative resources [28] (https://
data.monarchinitiative.org/tsv/all_associations/gene_
disease.all.tsv.gz). More information about the list of
A-RDs, their HPOs and associated genes is available in
Supplementary Table 4.

Disease workflow analysis overview
We developed a workflow to group diseases with similar
phenotypes to determine the genetics and molecular
processes common to these diseases. The workflow uses
a list of disease codes, in this case A-RDs ORPHA codes,
to retrieve their associated HPO terms and genes from
the Monarch Initiative. Then, the following steps are per-
formed: (1) grouping diseases in clusters by phenotypic
similarity; (2) calculation of the average shortest path
(ASP) between known genes associated with diseases in
each cluster using STRING data; (3) for clusters that have
all gene pairs with computable paths in the interaction
network, we do an expansion of the cluster with avail-
able genes in all shortest paths; (4) enrichment analysis
in the Gene Ontology (GO) for both raw and expanded
gene clusters; and (5) gene cluster prioritization in the
interaction network using the CRank algorithm.

http://purl.obolibrary.org/obo/hp/hpoa/phenotype.hpoa
http://purl.obolibrary.org/obo/hp/hpoa/phenotype.hpoa
https://data.monarchinitiative.org/tsv/all_associations/gene_disease.all.tsv.gz
https://data.monarchinitiative.org/tsv/all_associations/gene_disease.all.tsv.gz
https://data.monarchinitiative.org/tsv/all_associations/gene_disease.all.tsv.gz
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Figure 1. Representation of the main stages and steps followed in this work. The first stage consisted on the search for A-RDs through a systematic
review of the literature. HPO terms associated with each A-RD were searched in the HPO annotation website and genes from the Monarch Initiative. The
second stage describes the workflow developed in this work. The first step of this stage consists in retrieving the disease clusters. Then, in the second
step, the ASP is calculated among genes for each disease cluster in the interaction network. For clusters with computable paths between its associated
genes in the interaction network, they are expanded with the genes that are presented in the computed shortest paths. Finally, raw and expanded gene
clusters are used in GO enrichment analysis and cluster prioritization in the interaction network.

The overview of the methodology is given in Figure 1.
The workflow was developed in AutoFlow [45] and
is available at https://github.com/ElenaRojano/angio_
cluster.

Establishing A-RDs groups by phenotypes

We used the Cohort Analyzer tool [40] to group dis-
eases using semantic similarity. This tool, included in the
Patient Exploration Tools Suite [41], calculates different
statistics in a cohort of patients or a pool of diseases
and uses different semantic similarity methods to group
them according to their HPO profiles [40].

The steps to obtain the disease clusters are performed
as follows. First, the Lin similarity measure [31] is used
to calculate a semantic similarity matrix among the A-
RD HPO terms. This matrix is transformed to a dissimi-
larity matrix (the Lin measure ranges between 0 and 1,
it is transformed with 1—similarity). This dissimilarity
matrix is used to perform a hierarchical clustering with
the R core function hclust using the Ward criterion [29].
The resulting dendrogram is split with the cutreeDy-
namic function included in the dynamicTreeCut R pack-
age [21] to get the final disease clusters. This algorithm is
a hard clustering procedure that iterates the dendrogram
analyzing the tips of the branches to identify possible
tightly connected clusters. It is used with default settings

except for the minClusterSize and deepSplit parameters.
The minClusterSize is the minimum items that can con-
tain a cluster and we calculated it as the 1% of the dis-
eases that have HPO terms. And the deepSplit parameter
configures several internal parameters that controls how
the branch partitioning and the clustering merging is
performed. We set it to 2 following the cutreeDynamic
authors recommendations.

Exploring the molecular mechanisms involved in the
disease clusters

Once we obtained the disease clusters grouped by their
phenotypic similarity, we analyzed their associated genes
to explore the underlying molecular mechanisms. These
clusters may have some variability in terms of the num-
ber of diseases they have. However, it is expected they
share associated genes or at least having genes with
similar functions. We eliminated clusters with a single
disease as they were meaningless in this study.

Then, we selected the union of all disease-associated
genes for each A-RD cluster and analyzed how they
were connected in the protein interaction network. We
downloaded all human interactions from the STRING
database [51] (version 11.0b) and selected those with a
combined score higher or equal to 900, which indicates
a high confidence interaction between proteins [54].

https://github.com/ElenaRojano/angio_cluster
https://github.com/ElenaRojano/angio_cluster
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In an additional step, we computed the degree for
each node in the network. All the degree values were
converted into Z-scores subtracting the mean degree
and dividing by the standard deviation each node degree.
We removed nodes with a Z-score greater or equal
than 2.5 as they were considered as hubs excepting
those that are listed in GO term angiogenesis or in the
the WikiPathway angiogenesis. In addition, we traced
the paths between genes associated with the A-RD
clusters by adjusting the methodology described for the
Human Gene Connectome [15]. This approach is useful
to detect paths between genes in clusters with a small
number of genes. For this, we downloaded and modified
the script ‘Gene-specific_connectome.py’ available at
https://lab.rockefeller.edu/casanova/HGC. Then, once all
the paths between genes have been determined for the
genes presented in the clusters, we used the gene paths
of the Human Gene Connectome to calculate the ASP to
measure the closeness of the disease associated genes in
each cluster. Disease clusters with a pair of associated
genes without path in the Human Gene Connectome
were removed from this study.

A gene expansion of the genes associated with the
disease clusters was performed using the paths of the
Human Gene Connectome. For this, we associated with
each cluster all the genes that presented in the paths that
connect each pair of disease cluster associated genes.
This expansion allows us to find genes very close to
disease-associated genes but that have not been initially
described for the diseases of each cluster, and that poten-
tially could be considered as possible genes involved in
the disease development. Additionally, the CRank [61]
algorithm was applied to the gene lists (raw or expanded)
to rank the A-RD clusters in accordance with their net-
work connectivity features at gene level. Furthermore, it
allows us to evaluate the improvement of the expanded
gene lists. This algorithm measures the magnitude of
structural features and the robustness against noise for
the clusters in the network using four different connec-
tivity metrics: Likelihood, Density, Boundary and Alle-
giance. All these metrics are summarized in the CRank
value, which ranges between 0 (the evaluated list is
the most dispersed cluster from the clusters set in the
network) and 1 (the evaluated list is the most connected
and coherent cluster in the clusters set).

We finally performed the functional enrichment anal-
ysis for the genes associated with the disease clusters in
their expanded form or not, using the clusterProfiler R
package [60]. This enrichment analysis was performed
in molecular function and biological process GO sub-
ontologies. The P-value associated with each functional
category was calculated using the Over Representation
Analysis (ORA) algorithm and corrected by multiple test-
ing with the Benjamini–Hochberg method. Functional
categories with adjusted P-value equal or less than 0.01
are reported. As the functional categories belong to the
GO, when a functional category and its parent are sig-
nificant for the same clusters, the parental terms are

removed to simplify the interpretation of the results. The
visualization of the enrichment results is generated with
the dotplot function of the clusterProfiler R package.

When the enrichment analysis displays a large
amount of functional terms, we use a summary rep-
resentation. For it, the terms for each disease cluster
are sorted by their adjusted P-value and the top N
categories (custom threshold) with the lowest P-value are
selected for each cluster. Then, using specific functions of
clusterProfiler, we calculate a Wang semantic similarity
matrix between the selected functional terms [56]. This
matrix is hierarchically clustered using the hclust R
function with the average method, and the resulting
dendrogram is split with the treecut function setting
h to 1 − S, where S is a custom similarity threshold used
to get the GO clusters. For each similarity cluster, the
common ancestor in all GO terms is searched and used
as a representative term of the cluster. All child terms are
replaced by this representative term and it gets the A-RD
cluster relations available in their children. A parental
cleaning process is applied as previously described. The
results of this analysis are plotted with the heatmaply
R package [8], building a heat map that groups rows
and columns by their similarity vector. We show only
a dendrogram for columns, corresponding to the disease
clusters.

Results and Discussion
Retrieving A-RDs
For this work, we performed a bibliographic search on A-
RDs in PubMed and WOS databases. We performed an
automated scoring of the found articles depending on
where the search terms for these diseases appeared and
to select those with the largest amount of information
regarding A-RDs. From an original list of 1107 articles, 242
were related to A-RDs. We selected and inspected them
manually, resulting in 158 A-RDs that were extracted
from the Orphanet database. Of these diseases, 107 were
characterized with HPO terms and 109 have associated
genes in the Monarch Initiative database (Supplementary
Table 4).

Characterization and clustering of A-RDs
We calculated with the Cohort Analyzer some statistics
of our A-RD list. The full report is available in the
GitHub repository at https://github.com/ElenaRojano/
angio_cluster. The A-RD list includes a large number of
different pathological phenotypes: 1476. Likewise, the
average number of HPOs used to describe each disease is
high: 28.36. This detailed description of the diseases will
allow us to cluster the diseases in a more precise and
informative way.

Cohort Analyzer computes the frequency for each
phenotype in the disease list. In Table 1, we show
the top 10 most frequent HPOs. We also check in the
current bibliography its relationship with angiogenesis.
For example, the terms HP: ‘Seizure’, HP: ‘Headache’

https://github.com/ElenaRojano/angio_cluster
https://github.com/ElenaRojano/angio_cluster
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Table 1. Top 10 most frequent HPOs in the A-RD cohort

HPO %

Seizure 28.03
Fatigue 25.23
Abdominal pain 20.56
Hepatomegaly 19.62
Splenomegaly 18.69
Weight loss 18.69
Thrombocytopenia 16.82
Fever 14.95
Headache 14.95
Hypertension 14.95

and HP: ‘Hypertension’ are quite related to endothelial
dysfunctions in patients with preeclampsia and hyper-
tensive encephalopathy, and have been associated with
dysregulations of vascular endothelial growth factor
(VEGF) in endothelial cells [20, 22, 26]. In fact, there
are studies that relates VEGF-induced angiogenesis and
the phenotypes HP: ‘Hepatomegaly’, HP: ‘Splenomegaly’
and HP: ‘Thrombocytopenia’ [57, 58]. Dysregulations
affecting VEGF levels lead to blood vessel anomalies
and consequently produce all these symptoms. The
HP: ‘Fatigue’ term is mostly related to patients with
cancer [13], and it also has been reported along with
HP: ‘Weight loss’ and HP: ‘Fever’ in a patient with
hemophagocytic lymphohistiocytosis, a rare immune
disease [23]. Other phenotypes observed in patients
with this rare syndrome include the top terms HP:
‘Splenomegaly’, HP: ‘Hepatomegaly’ and HP: ‘Abdominal
pain’ [7]. Taken altogether, this information shows that
top 10 most frequent HPOs are related to alterations of
the angiogenic process.

Cohort Analyzer tool computes the semantic similarity
of the HPO profiles associated with each A-RD by the
Lin method. Then, these A-RDs are clustered using these
similarity values. In this case, the tool generated 18 differ-
ent clusters (Supplementary Table 4, ‘ClusterID’ column)
with an average of diseases per cluster of 5.88. It is worth
mentioning that from the initial list of 158 A-RDs, 47 do
not have HPOs described. It also draws attention that
most of them are different types of cancer, including
retinoblastoma, various sarcomas such as liposarcoma
and rhabdomyosarcoma and carcinomas including pan-
creatic and renal cell carcinomas, among others. How-
ever, the HPO has not yet included all the pathologi-
cal phenotypes used to describe the different types of
cancer available in Orphanet. It should be mentioned
that the medical focus of the HPO in its early years was
the phenotypic characterization of Mendelian diseases
[12], and many types of cancer are produced by somatic
mutations in individual cells that do not follow a pattern
of inheritance [34]. This would explain why for many
types of A-RDs there are no annotations found for this
ontology and suggest that they are enriched in oncologic
diseases.

The angiogenesis map of genes and diseases
In Supplementary Table 4, we show in which clusters
the A-RDs have been grouped and the genes they have.
It is worth mentioning that a gene can be associated
with several or to few diseases of a cluster. In fact, in
most cases, the genes are connected to only a disease of
the cluster. As can be seen, from the 107 diseases with
pathological phenotypes available for this study, 23 have
no genes described. Diseases with HPO description were
used to perform the clustering. This does not mean that
this information is not valuable, but quite the opposite:
it is possible to determine whether diseases within the
same cluster participate in the same biological processes
to extrapolate the information to diseases whose genet-
ics are still unknown.

In Supplementary Figure 1 can be observed the robust-
ness of the cluster procedure and the semantic similar-
ity selection. Cohort Analyzer can use three measures:
Resnik, Lin and Jiang-Conrath. We executed all of them
and performed the correlation analysis shown in Sup-
plementary Figure 1A. As can be seen, Lin and Resnik
are very similar, in contrast with Jiang–Conrath. We per-
formed the clustering using the Jiang–Conrath similarity
and we obtained the results shown in Supplementary
Figure 1B. The similarity matrix has very homogenous
values, thus the clustering can only identify five clusters
(colored segments in vertical bar), whereas the Lin sim-
ilarity identifies 18 clusters. As the correlation analysis
shows that Lin and Resnik are equivalent, we selected Lin
similarity because it ranged between 0 and 1. Regarding
the clustering robustness of the Lin matrix similarity, we
have sampled the disease list 100 times selecting the 99%,
98%, 95% and 90% of the elements and performed the
whole clustering procedure with each sample. Each dis-
ease partitioning was compared with the full disease set
partitioning using the adjusted mutual information [53].
Values near 0 means that partitions are very different,
whereas values near 1 means that both partitions are
very similar. Supplementary Figure 1C shows the distri-
bution for the 100 samples of each sampling. As it can be
seen, most of the samples are accumulated between 0.85
and 0.87 of adjusted mutual information for selection of
99% but the other selections are decreased notably. These
are good values and we must take into account that to
calculate the adjusted mutual information, the members
of the two comparisons must be the same. To overcome
this problem, we have added a cluster with the removed
elements to sample clusterings and this step decreases
the adjusted mutual information.

We generated a network representation with Cytoscape
[46] to create the angiogenesis map of genes and diseases
(Figure 2), related by the computed A-RDs clusters. The
frequency of occurrence for each gene can be observed
in Supplementary Figure 2A. As can be seen, most genes
are connected to a single disease. We observe in Figure 2
that most of the clusters (green circles) are connected
between them by at least one gene (lilac circles). The
connected clusters present at least one disease (salmon

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
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Figure 2. Angiogenesis map of genes and diseases representation. The salmon circles represent A-RDs and green circles in which cluster they belong.
The lilac circles are the genes associated with each disease.

circles) that has been described with the same gene.
Some isolated clusters are also observed, such as clusters
4, 10, 12, 14, 16 and 18. For example, cluster 4 is a tight
gene-disease cluster with genes such as TET2, which
plays a key role in erythropoiesis and its mutations
are associated with anemia [10]. This gene has been
described in five diseases, three of them are different
types of anemia, and the other two are polycythemia vera
(a blood cancer characterized by excessive production
of red blood cells) and primary myelofibrosis (a bone
marrow disease that affects the correct production of
blood cells). As can be seen, these A-RDs share not only
characteristics at the phenotypic level but also at the
genetic level.

It is also remarkable that cluster 1 has 12 different dis-
eases, each one described with at least one gene except
the systemic sclerosis syndrome. This cluster overlaps
with clusters 2, 3, 5 and 8 due mainly to Cowden syn-
drome whose genes connect with A-RDs characterized by
the development of tissue tumors (malign or benign), a
characteristic phenotype of Cowden syndrome [11].

In the case of overlapping clusters, cluster 5 is an
interesting example of both similar phenotypic features
and genetic basis. Intrahepatic cholestasis of pregnancy
disease has two associated genes: the ATP binding cas-
sette subfamily B member 4 (ABCB4) and the ATPase
Phospholipid Transporting 8B1 (ATP8B1). The latter gene
belongs to the same family as the gene associated with
Wilson disease, the ATP7B gene [42]. This suggests a very
similar genetic basis for both diseases, supported by a
high phenotypic similarity. For this reason, this approach
could be used to identify some of these genes as involved
in diseases that have not genes associated yet.

In the case of clusters 1, 3 and 8 it is interesting
that they are connected by the genes SDHB and SDHC

that are shared by three diseases: Cowden syndrome,
gastrointestinal stromal tumor and hereditary pheochro-
mocytoma–paraganglioma. Furthermore, from the same
gene family, the genes SDHD and SDHA are shared for
some pairs of these diseases, all of them characterized for
generating benign overgrowths in different tissues and
following an inheritance pattern [30].

In addition, we can find some diseases with a large
number of genes, such as amyotrophic lateral sclerosis
(ALS) in cluster 17. In fact, these genes are only connected
to ALS. It is known that ALS is produced by mutations in
a single or several genes at the same time [27] and this
explains the large number of associated genes. Among
them, we found angiogenin (ANG), a gene that stimulates
angiogenesis in healthy and tumor tissue.

Altogether, the results shown and discussed in this sec-
tion clearly show that the angiogenesis map of genes and
diseases is very useful to extract new relations between
genes and diseases. For this reason, we perform further
analysis at gene interaction and functional levels.

Mapping the disease clusters onto the human
interactions network
Once we have the A-RD clusters and the genes associated
with the diseases, we can explore how these genes are
related between them.

To measure the proximity of the genes for each clus-
ter, we mapped them to a high-quality STRING human
interaction network that includes interactions with a
combined score higher or equal to 900 and removes hub
nodes as described in Material and Methods. The distri-
bution of degrees of this network is shown in the Supple-
mentary Figure 2B. This proximity measure is performed
through the ASP calculation, which gives the number

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
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Figure 3. Scatter plot representing the ASP calculated among genes within each disease cluster. X-axis represents the number of genes by cluster and
the Y-axis the ASP value. Dot size represents the number of diseases by cluster. Dots numbers are the identifier for each disease cluster.

of nodes between two genes. If only a single disease-
associated gene appeared in the interaction network,
as it happens with cluster 14, the cluster is discarded.
Genes that were not found in the interactions network
are available in the Supplementary Table 3.

For each cluster gene list, we calculated the ASP
values using the interaction network considering the
interaction weight itself (Supplementary Table 2, column
ASP_value). We removed cluster 14 and 17 because
no direct path could be established between all their
associated genes. Thus, we considered these clusters
as unconnected to the gene level. Figure 3 shows for
the remaining clusters the ASP, the number of disease-
associated genes in the cluster and the proportion of the
diseases in the cluster that have at least one associated
gene by Monarch. First, in most of the clusters it can
be observed that when the number of genes per cluster
increases, the ASP values also increase. This makes sense
because it is more difficult to find direct paths between
multiple different genes than in small groups of genes.
This trend can be observed in Figure 3 for most of the
clusters, except for cluster 1 which, despite having 25
genes, does not reach the ASP value of 5 that clusters
3 and 8 have with fewer genes (20). The same can be

observed for clusters 5 and 2, which have a higher
number of genes per cluster (16 and 11 respectively) but a
lower ASP than clusters 4 and 7 (10 genes). This indicates
that the genes in these A-RD clusters are close in the
interactions network and may point to similar pathways,
being interesting to study in more detail. Besides, the
distribution of clusters would indicate that they include
different diseases at the phenotypic level but that the
affected genes are close in the interaction network.

This could also suggest that the A-RDs within a cluster
may have alterations in the same biological processes in
which different genes are involved. It may be discussed
that the gene closeness is due to the association of genes
with a specific A-RD; however, in Figure 3 it is shown that
60% to 80% of the A-RDs in a cluster have associated at
least one gene. If we focus on specific A-RD clusters, three
different groups can be observed. The first is composed
of three clusters: to the right of the figure we observe
clusters 3, 8 and 1 with the highest number of genes per
cluster that ranges from 20 to 25, and their ASP values
range from 4.42 to 5.31. In the middle of the graph, we
can observe a second group of four clusters (7, 4, 2 and 5)
with between 10 and 16 genes per cluster and ASP values
between 3.09 and 4.21. These two groups of clusters

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
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would point to coherent clusters at both phenotype and
interaction levels. Finally, the rest of clusters have both
the lowest number of associated genes (less than eight)
and the lowest ASP values, from 1 to 2.80. Consequently,
all these clusters have associated genes very close in the
interaction network.

This evidence supports that the disease clusters are
coherent at both phenotypic and interaction levels. The
genes associated with each cluster are very close in the
interactome and this suggests that they are involved in
the same biological mechanism.

Functional analysis of the A-RD clusters
In the previous sections, we determined the disease sim-
ilarity and the gene closeness in the human interaction
network for each disease cluster. In this section, we focus
on the functional perspective of these A-RD clusters.
In this way, we used the gene lists with a computable
average ASP value and performed a Gene Ontology (GO)
enrichment analysis.

In Figure 4, we found significant categories in GO
molecular function for 12 clusters. It is shown a high
specialization in the functions for each disease cluster.
Clusters 1 and 3 have the largest gene lists (25 and
20, respectively) and several significant functional
categories. Cluster 5, with 16 genes, is the one with the
highest number of significant functional categories (15),
including different kinase activities and transcription
factor binding, among others.

The highest functional overlap is observed in clusters
1, 3 and 8, with the two categories, ‘oxidoreductase activ-
ity, acting on the CH-CH group of donors’ and ‘quinone
binding’, both directly related to the electron transport
chain in mitochondria. Looking closely at the genes for
each cluster, we verified that all three clusters have
genes that code for different subunits of the succinate
dehydrogenase complex (SDH gene, Figure 2). Regarding
the specific functions of these clusters, we found cluster
15 with functional terms that are known to be associated
with angiogenesis, including ‘glycosphingolipid binding’
[17] and ‘glucosidase activity’ [32]. In the same way, clus-
ter 6 has the single category ‘Hsp90 protein binding’ and
this complex is known to be involved in angiogenesis as
well [16].

Regarding GO biological process, in Figure 5, we found
significant terms for 14 clusters. We also observed the
specialization in the functions for each disease cluster
mentioned for annotations in GO molecular function.
Clusters 1, 5 and 3 have the largest number of functions,
likely due to their substantial and diverse gene lists.
In fact, cluster 1 presents a high variability of func-
tional annotations but also includes specific processes
related to the VEGF signaling pathway, like ‘endothelial
cell migration’ and ‘response to cadmium ions’ [18]. It
is worth to mention that related to angiogenesis, when
detailed results of biological process are observed, Sup-
plementary Figure 3, cluster 3 has the terms ‘negative

regulation of epithelial cell proliferation’ and ‘endothe-
lial cell differentiation’.

This functional analysis supports the relationship
between the selected diseases and the angiogenesis
mechanism in which they relay. Furthermore, it allows
to inspect the functional specialization for each disease
cluster and which functions are shared by different
groups of diseases reflecting the interconnection of the
different angiogenesis related mechanisms.

A-RD clusters gene expansion to find unknown
disease associated genes
We explored the phenotypic, interaction and functional
levels of the clustered A-RDs and the evidence shown in
this work avails the relationships between the A-RDs, as
well as those between them and their associated genes.
To deepen the results, we can identify new putative
candidates and members of molecular mechanisms.
To do this, we used the ASP calculation to take the
genes in these short paths and expand the gene
list for each disease cluster (Supplementary Table 2,
ASP_expanded_genes column).

In Supplementary Figure 4, we can see how the num-
ber of genes associated with clusters 1, 3 and 8 range
from 160 to > 250. This is clearly due to the number of
associated genes in the Monarch Initiative to the cluster
diseases, from 20 to 25 genes (Figure 3). With this number
of genes, these clusters likely will be uninformative.

In addition, the expanded gene lists were explored
to identify new functions and connections between the
disease clusters, repeating the functional analysis.

When we explored the summary results for GO molec-
ular function (Figure 6), we observed that a larger num-
ber of clusters (15) have significant functional categories
than without gene expansion (12). Additionally, the gene
expansion increased the number of significant func-
tions and the functional overlap between disease clus-
ters, specially highlighted when full results are inspected
(Supplementary Figure 5). We also observed a functional
specialization for all disease clusters in Figure 6.

There are several functional categories that are pre-
sented by many clusters, such as ‘ubiquitin protein ligase
binding’, shared by seven clusters, ‘p53 binding’, shared
by six clusters and ‘RNA polymerase II transcription fac-
tor binding’, shared by five clusters. Being such general
functions, it is not rare to find them in different clusters,
although somehow they are related to angiogenesis.
For example, p53 tumor suppressor is known to have
a regulatory effect on VEGF expression and consequently
on angiogenesis [5]. Another more specific function such
as ‘phosphoprotein binding’ is shared in clusters 10, 4, 5,
3 and 8. There are proteins with this function that have
been related to angiogenesis stimulation in pathogenic
processes [9]. Clusters 1, 2 and 8 are those with a greater
number of associated functional categories, being mostly
related to the mitochondrial transport chain in clusters
1 and 8, while cluster 2 has functions mostly related
to protein synthesis and cellular communication. It is

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
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Figure 4. Dot plot for results obtained with the clusterProfiler R package in GO molecular function. X-axis includes the A-RD cluster identifiers and
the number of genes by cluster between brackets. Y-axis represents each GO molecular function term associated with the genes for these clusters.
Color scale represents the adjusted P-value (red: lower, blue: higher) and dot size indicates the proportion of genes in the functional category that are
annotated in the cluster.

remarkable that cluster 3 has functional annotations
especially related to angiogenesis. For example, in the
case of the ‘S100 protein binding’ function, it is known
that protein S100A4 is associated with metastasis and
promotes angiogenesis [44]. Furthermore, the ‘platelet
derived growth factor receptor binding’ function in
the same cluster is related to angiogenesis and cell
proliferation in injured tissues [35]. It is also worth to

mention that clusters 5 and 9 both share the ‘sequence-
specific double-stranded DNA binding’ function. It is
known that the double-stranded RNA-binding protein
DRBP76/NF90 regulates the stability of the VEGF mRNA
stability in breast cancer, and its repression is associated
with a reduction of the angiogenic and tumorigenic
process in breast cancer cells [55]. Another interesting
angiogenesis-related function is ‘SH2 domain binding’,
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Figure 5. Heat map for results obtained with clusterProfiler R package in GO biological process. X-axis shows the A-RD cluster identifiers and Y-axis
shows the summarized terms for the enrichment results as described in Material and methods, using 50 terms per cluster and a similarity threshold
of 0.7.

shared by clusters 4 and 2. The growth factor receptor
bound protein 2 (Grb2-SH2) domain binding is an antag-
onist of VEGF and blocks angiogenesis [49]. And finally,
it is known that proteins with the ‘G protein-coupled
receptor binding’ function, observed in clusters 11, 7 and
2, also have a regulatory effect in angiogenesis [37].

In the case of GO biological process (Supplementary
Figure 6), due to the large number of functions asso-
ciated with the genes for each cluster, we show only
the summary results. As in the case of GO molecular
function, here we can see again how the gene expansion
finds functional terms for clusters that were not avail-
able with the original genes.

In any case, the gene expansion approach allows us to
identify the participation of diseases or molecular mech-
anisms of previously not related genes, and to contribute
to reveal the biological basis of these diseases.

A comparison of angiogenesis-related genes with
ClinVar data and known angiogenesis gene sets
To illustrate the value of the relationships found between
A-RDs, their associated genes and the inferred genes
through interaction data, we compared our results
with genomic known data. For this, we explored known
pathogenic variants related to angiogenesis. We searched
for the keyword ‘angiogen*’ in the ClinVar database and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
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Figure 6. Heat map for results obtained with clusterProfiler R package in GO molecular function for expanded clusters. X-axis shows the A-RD cluster
identifiers and Y-axis shows the summarized terms for the enrichment results as described in Material and methods, using 35 terms per cluster and a
similarity threshold of 0.6.

selected variants with clinical significance defined as
pathogenic and whose length was less or equal to 50 nt to
ensure that they only affected a single gene. We got a list
of 16 pathogenic variants included in the Supplementary
Table 4. From this pool of variants, we used the gene
identifiers associated with ClinVar. As we are aware
that ClinVar search engine could give inaccurate results,
we checked if they were involved in angiogenesis
by performing a bibliographic search (Supplementary
Table 5). In Table 2, we show the comparison between
the angiogenesis-related genes from ClinVar and the
gene lists obtained in this study. The genes ANG, SDHA,
SDHD, TP53 and VEGFC were found between the genes

associated with the A-RDs by the Monarch Initiative.
The F7 gene was found when the gene clusters were
expanded with the interaction data. This F7 gene is
a coagulation factor related to angiogenesis, but the
study [1] was overlooked by our bibliographic search.
This work has all the features described in Material and
methods to be included; however, it has no mention of
the VEGF gene although it relates F7 with angiogenesis.
There are three genes that our study did not relate to
angiogenesis: MT-TE, RNASE4 and AIMP. In the first case,
MT-TE is a mitochondrial gene that encodes a tRNA for
glutamic acid. Mutations in this gene are known that
produces myopathies [14] or diabetes mellitus [38], but

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
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Table 2. List of genes affected by pathogenic variants associated
with angiogenesis in ClinVar database. The Match column
shows if the gene is identified in this study. Associated genes
means that the gene is found in the list of genes retrieved from
the Monarch Initiative, whereas Expanded genes means that the
gene was found in the gene lists obtained with the STRING
interaction data

Gene Associated variants Match

AIMP1 1 No
ANG 8 Associated genes
RNASE4 8 No
F7 1 Expanded genes
MT-TE 1 No
SDHA 1 Associated genes
SDHD 1 Associated genes
TP53 1 Associated genes
VEGFC 1 Associated genes

there are no studies relating this gene to angiogenesis at
the disease level. This gene does not encode a protein,
therefore the protein interaction data are useless. In
the case of the RNASE4 gene, we found that its genomic
coordinates were overlapping the ANG gene coordinates
and its eight associated variants were also affecting
the ANG gene. In fact, when the identifiers of these
variants were inspected in Supplementary Table 4 for
these two genes, they referenced the ANG gene but
not RNASE4. Consequently, we could consider that the
pathogenic variants affect the ANG gene but not RNASE4,
and ANG was identified as an angiogenesis-related gene.
In the case of the AIMP gene, it was not identified
at all due to the two following reasons: this gene
causes the Pelizaeus–Merzbacher-like disease encoded as
ORPHA:280293 but it does not have HPO terms described
in the Monarch Initiative, and its related publication
([6]) does not include the ‘rare’ keyword. Consequently,
our criteria ignores it although it lists five different
OMIM entries. This highlights that our methodology can
identify six of seven angiogenesis-related genes with
known pathogenic variants.

In addition, we listed the genes associated with the
GO term angiogenesis (GO:0001525) and the GSEA group
wp_angiogenesis that is extracted from WikiPathways
(pathway WP1539). We performed an enrichment anal-
ysis for each cluster only with these two categories. We
selected results with adjusted P-value <= 0.05 (Table 3).
Surprisingly, the angiogenesis GO category does not give
any significant results but the wp_angiogenesis list is
significant for 6 of 16 expanded clusters. This evidences
that several clusters generated in this work are related
to the angiogenesis pathway and the others that are not
significant are related to angiogenesis-dependent pro-
cesses, suggesting the genes presented in the expanded
clusters are important for the angiogenesis process.

Prioritization of gene groups associated with
A-RD clusters in the interaction network
Finally, we applied a prioritization approach to the A-
RD clusters using their associated genes. In this way,

Table 3. List of clusters with adjusted P-value 0.05 or less for
angiogenesis pathway in WikiPathway database

Cluster id Adjusted P-value

1 5.86x10−4

8 1.2x10−2

5 9.13x10−4

7 7.15x10−3

9 8.86x10−3

3 2.26x10−2

we could rank the A-RD clusters in accordance with the
network connectivity features of the associated genes
in the interaction network, rewarding the clusters with
high interconnectivity. This ranking allows us to select
which clusters (raw or expanded) are promising can-
didates for downstream experiments. For this reason,
we used the CRank algorithm [61] that uses Likelihood,
Density, Boundary and Allegiance metrics to character-
ize network connectivity features for each cluster in an
integrated way. These metrics measure the structural
features and the robustness against noise of the clusters
in the network structure. The integrated CRank value was
computed for both raw and expanded clusters, as shown
in Figure 7.

Regarding the A-RD clusters with the raw gene lists,
clusters 18, 7 and 2 were in the top three with 1, 0.81
and 0.81 CRank values, respectively. When the gene lists
were expanded with the ASP computation, six clusters
highly increased their CRank measures, whereas seven
clusters decreased their values to a lesser extent. Note-
worthy, with the expanded gene list, clusters 18, 7 and
2 decreased their CRank, but three new clusters reach
the top: clusters 4, 16 and 13 increased its Crank value
to 0.84, 1 and 0.93, respectively. As can be seen, the top of
prioritization changes if the gene clusters are expanded.

In this way, the gene association for the ASP calcula-
tion can be measured, giving the opportunity to choose
which clusters need further investigation.

Concluding remarks
The approach presented in this work has allowed us to
deepen our knowledge of A-RDs at the genetic, pheno-
typic and molecular levels. Starting from the work of
Rodríguez-Caso and collaborators, we have character-
ized the phenotypes of A-RDs to be able to group them
according to their semantic similarity. This allowed us
to analyze disease clusters at the genetic level, exploring
the molecular mechanisms involved in the development
of different diseases. Likewise, we have demonstrated
the coherence of the diseases within each cluster at
the genetic level with the use of network characteristics
such as the ASP. This approach allows the identification
of clusters whose genes are very close in the network
of interactions and that could be involved in related
molecular mechanisms. Besides, we propose the CRank

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac220#supplementary-data
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Figure 7. CRank values for the genes associated with each A-RD cluster, using the interaction network from STRING filtered by a combined score of 900.
Series show the CRank for raw clusters (pink) and gene expanded clusters (blue).

measure to prioritize the A-RD clusters and to select can-
didates for downstream experiments in wet laboratories
to validate the new gene associations.

In addition, this strategy has been essential to deter-
mine the common molecular mechanisms of these dis-
eases. It also allowed us to explore the putative genes that
could be associated with the A-RDs and whose function
is not well characterized, considering them as possible
genes involved in the disease development. To confirm
the role of these genes in angiogenesis, an experimental
validation is necessary. Furthermore, we have compared
the results in this work with ClinVar angiogenesis-related
data and we have achieved to list six of seven genes,
one of them through the interaction data. Finally, our
protocol can be extrapolated to the analysis of other
diseases or biological processes.

Keys Points

• We propose a systemic methodology for the study of a
set of rare diseases, grouping them according to their
phenotypic similarity and analyzing them at a functional
level using their disease-associated genes.

• This methodology is used to identify possible genes
involved in angiogenesis-related rare diseases for those
cases in which the genetic cause or functional impact is
not known.

• We applied our methodology to the study of
angiogenesis-related rare diseases, but it can be used to
analyze other human genetic diseases.

Supplementary data
Supplementary data are available at Briefings in Bioinfor-
matics online.
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