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a b s t r a c t 

Three hydrazone derivatives have been synthesized using condensation reaction of 4-hydrazinylbenzoic 

acid with three aromatic aldehydes namely: thiophene-2-carbaldehyde, thiophene-3-carbaldehyde and 

2-furaldehyde in ethanol at 78 °C reflux. The synthesized molecules have been characterized using spec- 

troscopic and physicochemical methods including UV–Vis, IR, 1 H NMR, 13 C NMR, 15 N NMR and melting 

point determination. Optimized molecular structures, UV–Vis and IR spectra modeling, the reactivity, the 

stability and some quantum chemical parameters of the synthesized molecules were modeled utilizing 

density functional theory (DFT). The obtained theoretical results were found in good agreement with the 

experimental results. On the other hand, the antioxidant and antibacterial activities of the molecules un- 

der study were evaluated to better understand the associated mechanisms of action specifically. Also, 

predicted ADME-T and pharmacokinetic parameters indicated that these compounds showed good oral 

bioavailability. Finally, molecular docking has been used to predict the inhibitory activity of the studied 

hydrazone derivatives on the SARS-CoV-2 main protease (Mpro). 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Hydrazone derivatives are considered among the most impor- 

ant molecules in organic chemistry, which show an efficient activ- 

ty in a wide range of applications including development of new 

rugs with anti-cancer [1–4] , antimicrobial [5–7] , analgesic [8] , an- 

ihypertensive [9] , anticonvulsant [10] , anti-inflammatory [11] , an- 

ituberculosis [ 12 , 13 ], antitumoral [ 14 , 15 ], anti-HIV [ 16 , 17 ], anti-

alarial [18] , antidepressant [19] , vasodilatory [20] , anti-Alzheimer 

 21 , 22 ], and anti-corrosion activities [ 23 , 24 ]. The presence of both

 ̶ N and C = N functional groups in the structure of hydrazones is

esponsible of their high therapeutic activity [25] . 

The most common process to prepare hydrazone compounds 

onsists in heating the appropriate hydrazines with different alde- 

ydes or ketones in various organic solvents such as ethanol 

nd methanol. Gudasi et al. described the ineffectiveness of 

ynthesizing hydrazone by condensing carbaldehyde with o - 
∗ Corresponding author. 

E-mail address: n.chafai@univ-setif.dz (N. Chafai) . 
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minobenzoylhydrazide [26–28] . Another synthesis route of hydra- 

ones consists in coupling aryldiazonium salt with active hydrogen 

ompound [29] . 

Recently, DFT (Density Functional Theory) calculations have 

ostly been utilized to determine the active sites of organic 

ompounds [30–32] . Also, the electronic and structural proper- 

ies calculated by DFT can be used to correlate different activi- 

ies of chemical species [33–35] . DFT calculations with B3LYP/6–

11 ++ G (d,p) as the basis set have also been used to determine the

ptimized geometry, dipole moment, polarizability, E HOMO -E LUMO 

nergy, molecular electrostatic potential and excited state energy 

 36 , 37 ]. 

During the last two years, scientists have accelerated the re- 

earches to discover new drugs and vaccines to combat COVID- 

9 pandemic. In this context, the crystalline structure of SARS- 

oV-2 main protease (Mpro) is considered as a target to discover 

herapeutic agents to COVID-19 [38] . Also, the molecular docking 

alculations are a useful pathway to predict the inhibitive activ- 

ty of organic compounds towards Mpro, by studying the possible 

nteractions and energies required to inhibit the activity of Mpro 

38–41] . 

https://doi.org/10.1016/j.molstruc.2022.134005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/molstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2022.134005&domain=pdf
mailto:n.chafai@univ-setif.dz
https://doi.org/10.1016/j.molstruc.2022.134005
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This work reports the synthesis and spectral analysis of 

hree hydrazone derivatives, namely: 4-{(2 E ) −2-[( thiophen -2- 

l ) methylidene ]hydrazinyl}benzoic acid ( HYDZ-1 ), 4-{(2 E ) −2- 

( thiophen -3- yl ) methylidene ]hydrazinyl}benzoic acid ( HYDZ-2 ) 

nd 4-{(2 E ) −2-[( furan -2- yl ) methylidene ]hydrazinyl}benzoic acid 

 HYDZ-3 ). The synthesized molecules have been characterized by 

pectroscopic and physicochemical methods such as UV–Vis, IR, 
 H NMR, 13 C NMR, 15 N NMR and melting point. Density functional 

heory was used to calculate the optimized molecular structures, 

V–Vis and IR spectra, the highest occupied molecular orbital 

HOMO) and lowest unoccupied molecular orbital (LUMO), the 

eactivity, the stability, and some quantum chemical parameters 

f the investigated molecules. On the other hand, the biological 

ctivities of the synthesized hydrazones were evaluated. Also, the 

nhibition activity of SARS-CoV-2 main protease of the synthesized 

olecules has been evaluated in silico by molecular docking calcu- 

ations. It is noted that is the first time that these molecules were 

ested. 

. Chemistry, materials and methods 

.1. Chemical reagents 

All the compounds used in this work for the syntheses of the 

nvestigated hydrazones are commercially available and purchased 

rom Sigma-Aldrich and Fluka. In addition, they were used without 

ny further purification. 
OO

N
N
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H
H
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Ethanol 78 °C

Ethanol 78 °C

Ethanol 78 °C
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Fig. 1. Synthetic rout of the stud

2

.2. General procedure for the synthesis of hydrazone derivatives 

.2.1. 4-{(2E) −2-[( thiophen -2- yl ) methylidene ]hydrazinyl}benzoic 

cid (HYDZ-1) 

According to Fig. 1 , 1.0 mmol of 4-hydrazinylbenzoic acid 97% 

nd 1.0 mmol of thiophene-2-carbaldehyde 98% are dissolved in 

thanol. The mixture was refluxed at a temperature of 78 °C for 

0 h. The resulting crude solution was cooled at room temperature 

nd kept clear until a solid precipitate forms. The resulting product 

as purified by methanol crystallization. The yellow solid hydra- 

one is produced in yield 79%. MF: C 12 H 10 N 2 O 2 S, M.p. 240.02 °C,

V–Vis (Methanol), λmax (nm): 363. IR (ATR, ν (cm 

−1 )): 3502 (O–

), 3311 (N–H), 3276 (C–H Ar ), 2930 (C–H Alph ), 1661 (C = O), 1593

N 

= C Ar ), 1541 (C 

–H), 1273 (C 

–N), 1138 (N–N), 1090 (C 

–O), 852 (C-

), 685 (N–H). 1 H NMR (400 MHz, DMSO, δ(ppm)): 7.01 (s, 1H, -C 

 Ar5 ), 7.10 (s, 1H, C H Ar3 ), 7.30 (d, 2H, C H Ar8 –C H Ar9 ), 7.55 (s, 1H,

 H Ar4 -S), 7.83 (d, 2H, C H Ar10 –C H Ar11 ), 8.15 (s, 1H, C H 

= N), 10.75

s, 1H, -N H 

–N), 12.23 (s, 1H, O H ) ; 13 C NMR : (75 MHz, DMSO,

(ppm)): 111.54 (d, 2C, C H Ar10 – C H Ar11 ), 120.84 (s, 1C, C Ar12 ), 

27.13 (s, 1C, C H Ar5 ), 128.17 (s, 1C, - C H 

= N 

–N-), 128.30 (s, 1C,

 H Ar4 -S), 131.69 (d, 2C, C Ar10 – C Ar11 ), 134.93 (s, 1C, C H Ar3 ), 140.71 

s, 1C, C Ar1 -S), 148.99 (s, 1C, C Ar7 –NH), 167.74 (s, 1C, C OOH) ; 15 N 

MR , DMSO, δ(ppm) : 147.71 (s, 2 N, - N H 

– N = C). 

.2.2. 4-{(2E) −2-[( thiophen -3 yl ) methylidene ]hydrazinyl}benzoic 

cid (HYDZ-2) 

HYDZ-2 is prepared by dissolving 1.0 mmol of 4- 

ydrazinylbenzoic acid 97% and 1.0 mmol of thiophene-3- 
O
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arbaldehyde 98% in ethanol. The mixture was refluxed for 

2 h at a temperature of 78 °C ( Fig. 1 ). The obtained crude solu-

ion was cooled at room temperature and it remained clear until 

he formation of a solid precipitate. The resulting solid is purified 

y crystallization using ethanol. The yellow solid hydrazone is 

roduced in yield 77%. MF: C 12 H 10 N 2 O 2 S, M.p. 252.1 °C, UV–Vis

Methanol), λmax (nm): 346. IR (ATR, ν(cm 

−1 )): 3524 (O–H), 3313 

N–H), 3282 (C–H Ar ), 2954 (C–H Alph ), 1654 (C = O), 1593 (N = C),

541 (C 

–H), 1268 (C 

–N), 1150 (N–N), 1091 (C 

–O), 852 (C-S), 627

N–H). 1 H NMR (400 MHz, DMSO, δ(ppm)): 7.09 (s, 1H, -C H Ar15 ), 

.53 (s, 1H, -C H Ar11 -S), 7.58 (d, 2H, C H Ar2 –C H Ar3 ), 7.73 (s, 1H, C

 Ar4 -S), 7.82 (d, 2H, C H Ar4 –C H Ar5 ), 8.01 (s, 1H, C H 

= NH), 10.64 

s, 1H, -N H 

–N), 11.91 (s, 1H, O H ) ; 13 C NMR : (75 MHz, DMSO,

(ppm)): 111.54 (d, 2C, C H Ar2 – C H Ar3 ), 120.55 (s, 1C, C Ar6 ), 125.12 

s, 1C, C H Ar11 -S), 125.16 (s, 1C, C H Ar13 ), 127.61 (s, 1C, C H Ar14 -S),

31.64 (d, 2C, C Ar4 – C Ar5 ), 135.63 (s, 1C, C H Ar15 ), 138.82 (s, 1C, 

 16 = N -), 149.38 (s, 1C, C Ar1 –NH), 167.77 (s, 1C, C OOH) ; 15 N NMR ,

MSO, δ(ppm) : 147.15 (s, 2 N, - N H 

– N = C). 

.2.3. 4-{(2E) −2-[( furan -2- yl ) methylidene ]hydrazinyl}benzoic 

cid (HYDZ-3) 

The synthesis was performed according to the same procedure 

s before, in which we dissolved 1.0 mmol 4-hydrazinybenzoic 

cid 97% and 1.0 mmol 2-furaldehyde 99% in ethanol. The mix- 

ure was refluxed at a temperature of 78 °C for 4 h. The result- 

ng crude precipitate was purified by crystallization in methanol. 

he obtained yellow solid hydrazone is produced in yield 77%. MF: 

 12 H 10 N 2 O 3 , M.p. 187.9 °C; UV–Vis (Methanol), λmax (nm): 354. 

R (ATR, ν(cm 

−1 )) : 3564 (O–H), 3312 (N–H), 3277 (C–H Ar ), 2975 

C–H Alph ), 1650 (C = O), 1590 (N 

= C Ar ), 1527 (C 

–H), 1272 (C 

–N),

162 (N–N), 1095 (C 

–O), 674 (N–H). 1 H NMR (400 MHz, DMSO, 

(ppm)): 6.58 (s, 1H, -C H Ar13 ), 6.74 (s, 1H, C H Ar11 ), 7.06 (d, 2H,

 H Ar2 –C H Ar3 ), 7.75 (s, 1H, C H Ar12 –O), 7.83 (d, 2H, C H Ar4 –C H Ar5 ),

.85 (s, 1H, CH 

= N-), 10.75 (s, 1H, -N H 

–N), 12.23 (s, 1H, O H ) ;
3 C NMR : (75 MHz, DMSO, δ(ppm)): 110.77 (s, 1C, C H Ar11 ), 111.60

d, 2C, C H Ar2 – C H Ar3 ), 112.42 (s, 1C, C H Ar13 ), 120.87 (s, 1C, C Ar6 ),

29.98 (s, 1C, C H Ar12 –O), 131.66 (d, 2C, C Ar4 – C Ar5 ), 144.22 (s, 1C, 

 Ar14 = N -), 149.07 (s, 1C, C Ar9 –O), 150.76 (s, 1C, C Ar1 –NH), 167.73 

s, 1C, C OOH) ; 15 N NMR , DMSO, δ(ppm) : 148.63 (s, 2 N, - N H 

–

 = C). 

.3. Characterization 

The synthesized molecules have been characterized by spectro- 

copic and physicochemical methods such as UV–Vis, IR, 1 H NMR, 
3 C NMR, 15 N NMR and melting point. The open capillary tech- 

ique in BÜCHI melting point B-540 was used to determine the 

elting point of the synthesized compounds. The UV–Vis spec- 

ra were evaluated in methanol solution using a Jasco V-650 spec- 

rometer in range of 190–900 nm. Also, IR spectra of the synthe- 

ized molecules were realized in solid state at room temperature 

sing the JASCO 40 0 0 FTIR spectrometer in the region of 60 0–40 0 0

m 

–1 . The NMR spectra were realized on a Bruker AVANCE III HD 

ith sande BBO liquid at 400 MHz for 1 H NMR, 13 C NMR and 

15 N

MR in DMSO–d 6 as a dissolvable. 

.4. DFT calculations 

Recently, DFT calculations are considered the most generally 

tilized computational techniques because of their precision and 

ess time utilization. In this context, the Gaussian 09 W program 

as utilized to perform all quantum chemical computations. Also, 

he DFT method at the B3LYP/6–311 ++ G (d,p) level has been uti- 

ized to calculate the optimized molecular structures of HYDZ-1, 

YDZ-2 and HYDZ-3 ( Fig. 6 ) [42] . In addition, the calculated vi-

rational frequencies have been obtained at the optimized struc- 
3 
ures of the investigated hydrazones. On the other hand, the Time- 

ependent DFT (TD-DFT) with the B3LYP/6–311 ++ G (d,p) method 

as been used to predict the electronic spectra of the studied 

ydrazones derivatives in methanol as solvent. The energy gap 

 �E GAP ), electrophilicity index ( ω), dipole momentum ( μ), global 

oftness ( σ ), global hardness ( η) and absolute electronegativity ( χ ) 

re calculated using the obtained values of energies of HOMO and 

UMO orbitals. All these parameters are calculated using the fol- 

owing equations [43–45] : 

E GAP = E LUMO − E HOMO (1) 

= 

E LUMO − E HOMO 

2 

(2) 

= 

1 

η
(3) 

= 

−( E LUMO + E HOMO ) 

2 

(4) 

 = 

χ2 

2 η
(5) 

.5. In vitro biological evaluation 

The antioxidant activity of the synthesized hydrazones was 

valuated in vitro using DPPH [46] , ABTS [47] , CUPRAC [48] , 

RAP [49] and phenantroline [50] assays. In these procedures, the 

ethanol was used as a negative control, while BHA (butylated 

ydroxyanisole), BHT (butylated hydroxytoluene) and ascorbic acid 

ere used as standards. All assays were performed in 96-well mi- 

roplates using Perkin Elmer, Enspire microplate reader, in tripli- 

ate. 

The in vitro antibacterial activity of these molecules was tested 

gainst four ATTC bacterial gram positive and Gram negative 

trains: Bacillus subtilis (ATCC-6633), Staphylococcus aureus (ATCC- 

538P), Escherichia coli (ATCC-8739) and Pseudomonas aeruginosa 

ATCC-9027). It was determined by the agar disk diffusion method 

 51 , 52 ]. First, the stock solution of the molecules tested was pre-

ared by dissolving 1 mg of the product in 1 ml of DMSO, and then

ilutions of 1, 2, 3 and 4 mg/ml were made. Filter paper discs of 

 mm of diameter were impregnated with the corresponding dilu- 

ions then are placed on the inoculated MH agar seeded previously 

y swabbing by an inoculum of ≈ 10 8 cells/ml of a young culture 

18–24 h) of the strain tested. Petri dishes are then pre-incubated 

or 1/2 h at room temperature, allowing the complete diffusion of 

he product and then incubated at 37 °C for 24 h. The antibacterial 

ctivity was determined by measuring of inhibition zone diame- 

ers (mm); a seeding from the zone of inhibition is used to deter- 

ine whether the activity is bacteriostatic or bactericidal. Gentam- 

cin (10 μg) was used as a positive control and DMSO as a negative 

ne. 

Furthermore, it is well known in drug development that the ab- 

orption, distribution, metabolism, excretion and toxicity (ADME- 

) properties of molecules are one of the main reasons for their 

ailure in clinical trials. The ADME-T properties of the synthesized 

ydrazones and their pharmacokinetic parameters were evaluated 

nd calculated using OSIRIS and Mol inspiration online property 

alculation toolkit (available at: http://www.molinspiration.com ) 

53] . 

.6. Molecular docking 

One of the best ways to understand the binding interaction of 

igands and proteins in drug design industry is molecular dock- 

ng research. Also, molecular docking is one of the best simula- 

ion methods for estimating complex of drug-target interactions by 

http://www.molinspiration.com


L. Adjissi, N. Chafai, K. Benbouguerra et al. Journal of Molecular Structure 1270 (2022) 134005 

Fig. 2. Crystal structure of SARS-CoV-2 main protease. 
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alculating energy minimization and binding energy [ 54 , 55 ]. The 

ompletion of the molecular docking check is to evaluate the bind- 

ng affinity of the synthetic ligands to the SARS-CoV-2 main pro- 

ease. The crystal structure of Mpro was provided from the PDB 

rotein data base through code of 6LU7 ( Fig. 2 ). Also, the opti-

ized geometries of HYDZ-1, HYDZ-2 and HYDZ-3 obtained by 

FT method at the B3LYP/6–311 ++ G (d,p) level have been used 

n molecular docking calculations. Therefore, the molecular dock- 

ng process has been executed by means of the iGEMDOCK pro- 

ram version 2.1. On the other hand, the obtained HYDZ-1/Mpro, 

YDZ-2/Mpro and HYDZ-3/Mpro complexes were visualized with 

ccelry’s Discovery Studio Visualizer version 16.1.0 [38] . 

. Results and discussion 

.1. Spectral analysis 

.1.1. Analysis of the UV–Vis spectra 

Generally, the examination of the resulting experimental and 

alculated UV–Vis spectra ( Fig. 3 ) of HYDZ-1, HYDZ-2 and HYDZ-3 

ecorded in methanol at room temperature indicate the presence 

f absorption bands in the ultraviolet region. 

The experimental spectra of HYDZ-1, HYDZ-2 and HYDZ-3 il- 

ustrate bands at 202 nm, 204 nm and 204 nm, respectively, cor- 

esponded to the n → π ∗ transitions produced by the carboxylic 

cid group (-COOH), where electrons are jump from n no bonding 

rbitals to π anti-bonding orbitals. Also, the observed shoulders 
able 1 

xperimental and theoretical frequencies of selected vibrations of HYDZ-1, HYDZ-2 and H

Compounds HYDZ-1 HYDZ-2 

Assignement 

Experimental 

frequencies (cm 

–1 ) Calculated frequencies (cm 

–1 ) 

Experimental 

frequencies (cm 

–1 ) C

Unscaled Scaled U

(N-H) 3311 3497 3362 3313 3

ν(C –H)Ar 3276 3248 3314 3282 3

ν(C –H)Alph 2930 3029 2912 2954 3

ν(C = O) 1661 1773 1704 1654 1

ν(C = N) 1593 1646 1582 1593 1

ν(C –N) 1273 1295 1245 1268 1

(N –N) 1138 1193 1146 1150 1

ν(C –O) 1090 1091 1048 1091 1

ν(C-S) 852 858 824 852 8

ρout(C –H) 762 701 673 771 6

ρout(N –H) 685 642 617 627 4

: stretching, ρout : out of plane bending. 

4 
t 225 nm, 228 nm and 237 nm, respectively, are corresponded 

o the n → σ ∗ transitions created by oxole and thiole groups [56] . 

n the other hand, the appeared bands at 269 nm, 276 nm and 

69 nm, respectively, are related to the π→ π ∗ transitions of the 

 = C group of the aromatic ring. The obtained shoulders at 300 nm, 

02 nm and 303 nm, respectively, represent the n → π ∗ transitions 

ssociated to the (N 

–NH) group [25] . Finally, the UV–Vis spectra of 

he three hydrazones reveal a broad band at 363 nm, 346 nm and 

54 nm, respectively, which are related to the n → π ∗ transitions 

roduced by the imine group (C = N) [38] . 

.1.2. Vibrational analysis 

The experimental and calculated IR spectra of HYDZ-1, HYDZ- 

 and HYDZ-3 are presented in Fig. 4 . Also, the obtained vibra- 

ional frequencies and their vibrational mode assignments groups 

re presented in Table 1 . On the other hand, a scaling factor of 

.9614 has been used to scale the calculated frequencies [57] . The 

xamination of the results of Table 1 shows that the scaled the- 

retical frequencies are in good harmony with the experimental 

requencies. The investigation of the experimental spectra of the 

ynthesized hydrazones shows the existence of the following vi- 

rational modes: 

.1.2.1. 4-{(2E) −2-[( thiophen -2- yl ) methylidene ]hydrazinyl}benzoic 

cid. According to Fig. 4 , the small peaks at 3502 and 3311cm 

–1 

re attributed to the O–H and N 

–H stretching vibrations, respec- 

ively. A weak peak appeared at 3276 cm 

–1 can be referred to the 
YDZ-3 . 

HYDZ-3 

alculated frequencies (cm 

–1 ) 

Experimental 

frequencies (cm 

–1 ) Calculated frequencies (cm 

–1 ) 

nscaled Scaled Unscaled Scaled 

516 3380 3312 3498 3362 

238 3113 3277 3244 3118 

153 3031 2975 3049 2931 

774 1705 1650 1773 1704 

651 1587 1590 1643 1579 

291 1241 1272 1296 1245 

097 1054 1162 1218 1170 

090 1047 1095 1102 1059 

23 791 – – –

52 626 734 743 714 

42 424 674 500 480 
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Fig. 3. Theoretical and experimental UV–Vis spectra of HYDZ-1, HYDZ-2 and 

HYDZ-3. 

s

t

p

r  

o  

H

i

I

r

g

b

i  

v

3

a

a

A

o

C

2  

c  

m

o

t

d

1

T

v

i

3

T

t

A

p

s

i

t  

o

r

t

s

p

t

1

c

r

l

f

o

H

u

t

t

3

H

p

s

Table 2 

Experimental 1 H NMR and 13 C NMR chemical shifts ( δ in ppm) of HYDZ-1, HYDZ-2 

and HYDZ-3 . 

HYDZ-1 HYDZ-2 HYDZ-3 

1 H NMR 13 C NMR 1 H NMR 13 C NMR 1 H NMR 13 C NMR 

7.01 111.54 7.09 111.54 6.85 110.73 

7.10 120.84 7.53 120.55 6.74 111.60 

7.30 127.13 7.58 125.12 7.06 112.42 

7.55 128.17 7.73 125.16 7.75 120.87 

7.83 128.30 7.82 127.61 7.83 129.98 

8.15 131.69 8.01 131.64 7.85 131.66 

10.75 134.93 10.64 135.63 10.75 144.22 

12.73 140.71 11.91 138.82 12.29 149.07 
tretching vibration of aromatic C 

–H groups. The stretching vibra- 

ions of aliphatic C 

–H groups are corresponded to the less intense 

eak appeared at 2930 cm 

–1 . The presence of peaks within the 

ange of 160 0–20 0 0 cm 

–1 is mostly due to the bending vibration

f the C = N or aromatic C = C groups. The characteristic peak of

YDZ-1 is observed as a very intense peak at 1593 cm 

–1 which 

s assigned to the stretching vibration of the imine group (C = N). 

n addition, peaks with medium intensities obtained within the 

egion 1200–1273 cm 

–1 can be explaining the vibration of C 

–N 

roups. The detected peaks in the region 1100–1138 cm 

–1 could 

e assigned to the presence of the N 

–N functional group. The 
5 
ntense thin peak located at 685 cm 

–1 may be due to N 

–H bending

ibration [ 25 , 58 ]. 

.1.2.2. 4-{(2E) −2-[( thiophen -3 yl ) methylidene ]hydrazinyl}benzoic 

cid. The week peaks located at 3524 and 3313 cm 

–1 could be 

ttributed to the O–H and N 

–H stretching vibrations, respectively. 

 small peak appeared at 3282 cm 

–1 can be presents the vibration 

f aromatic C 

–H groups. The stretching vibrations of the aliphatic 

 

–H groups are corresponded to the less intense peak appeared at 

954 cm 

–1 . The presence of peaks within the range of 160 0–20 0 0

m 

–1 is mostly due to the bending vibration of the C = N or aro-

atic C = C functional groups. The characteristic peak of HYDZ-2 is 

bserved as a very intense peak at 1593 cm 

–1 which is assigned to 

he stretching vibration of the hydrazone group (C = N 

–N). In ad- 

ition, peaks with medium intensities obtained within the region 

200–1268 cm 

–1 can be explaining the vibration of C 

–N group. 

he observed peaks in the region 1100–1150 cm 

–1 present the 

ibration of the N 

–N functional group. The N 

–H bending vibration 

s observed as an intense thin peak at 627 cm 

–1 . 

.1.2.3. 4-{(2E) −2-[( furan -2- yl ) methylidene ]hydrazinyl}benzoic acid. 

he small peaks situated at 3564 and 3312 cm 

–1 are attributed 

o the stretching vibrations of O 

–H and N 

–H groups, respectively. 

lso, the stretching vibrations of aromatic C 

–H groups are ap- 

eared as a weak peak at 3277 cm 

–1 . On the other hand, the 

tretching vibrations of aliphatic C 

–H groups are observed as a less 

ntense peak at 2975 cm 

–1 . Generally, the bending vibrations of 

he C = N and aromatic C = C groups are obtained within the range

f 160 0–20 0 0 cm 

–1 . The very intense peak located at 1590 cm 

–1 

epresents the characteristic peak of HYDZ-3 , which is referred to 

he stretching vibration of the imine group (C = N). Moreover, the 

tretching vibrations of the C 

–N group are appeared as medium 

eaks within the region of 1200–1272 cm 

–1 . Generally, the charac- 

eristic peaks of the N 

–N group vibrations are situated between 

100 and 1162 cm 

–1 . Finally, the intense thin peak sited at 674 

m 

–1 may be associated to the N 

–H bending vibration. 

Fig. 5 shows the linear fit of the variation of scaling theo- 

etical frequencies versus experimental results. Generally, straight 

ines have been obtained between theoretical and experimental 

requencies with correlation coefficients of correlation coefficients 

f R 

2 = 0.9957, R 

2 = 0.9926 and R 

2 = 0.9932, respectively, of 

YDZ-1, HYDZ-2 and HYDZ-3 . We observe that the obtained val- 

es of R 

2 are approximately equal to 1, indicating that the scaling 

heoretical frequencies are in good agreement with the experimen- 

al frequencies. 

.1.3. NMR analysis 

The examination of the NMR results of HYDZ-1, HYDZ-2 and 

YDZ-3 ( Table 2 and Fig. S3) recorded in DMSO–d 6 at room tem- 

erature permits to determine the following characteristic signals: 

From 

1 H NMR results of HYDZ-1, HYDZ-2 and HYDZ-3 , the ob- 

erved signals between 6.58 and 7.83 ppm are attributed to the 
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Fig. 4. Experimental and calculated IR spectra of HYDZ-1, HYDZ-2 and HYDZ-3. 
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Fig. 5. Correlation diagrams between the theoretical and experimental wavenumbers of HYDZ-1, HYDZ-2 and HYDZ-3. 
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Table 3 

Global chemical reactivity descriptors for HYDZ-1, HYDZ-2 and HYDZ-3 calculated 

by DFT method at B3LYP/6–311 ++ G (d,p). 

Quantum chemical 

descriptors HYDZ-1 HYDZ-2 HYDZ-3 

E Tot (eV) −30,521.49432 −30,521.364 −21,732.7029 

E HOMO (eV) −5.70487 −5.9002 −5.6689 

E LUMO (eV) −2.061263 −1.8198 −1.9548 

�E GAP (eV) 3.6436 4.0804 3.7141 

μ (Debye) 4.4728 5.5653 4.4565 

η (eV) 1.8218 2.0402 1.8570 

σ 0.5489 0.4901 0.5385 

χ (eV) 3.8830 3.860 3.8118 

ω 4.1382 3.6515 3.9122 

D

d

(

3

t

t

t

b

T

o

c

romatic protons (C H Ar-benzene and C H Ar-heterocyclic ). The proton of 

he hydrazone group (C H 

= N 

–N) appears as a single signal at 8.15, 

.01 and 7.85 ppm, respectively. In addition, single signals observed 

t 10.75, 10.64 and 10.75 ppm, respectively, are related to the pro- 

on of the N H 

–N- group. Also, the clarification of the obtained 

 of the carboxylic acid group (O H ) was observed as a single 

ignal at 12.23, 11.91 and 12.29 ppm, respectively, for these three 

olecules [38] . 
13 C NMR spectra of the three hydrazones derivatives show that 

he following characteristic signals are present: the carbon of the 

 C Ar -NH-) group is observed as a single signal at 148.99, 149.38 

nd 150.76 ppm, respectively. The signal at 128.17, 138.82 and 

44.22 ppm can be related to the carbon of the imine group 

-N 

= C H-). Also, single signals observed at 167.74, 167.77 and 

67.73 ppm, respectively, are related to the carbon atom of the car- 

oxylic acid group ( C OOH). On the other hand, the aromatic ring 

arbon atoms are observed between 110.77 ppm and 140.71 ppm 

25] . 

For the 15 N NMR results, the obtained spectra of HYDZ-1, 

YDZ-2 and HYDZ-3 (Fig. S3) show the presence of the follow- 

ng characteristic signals: single intense signals appeared at 147.71, 

47.15 and 148.63, respectively, are attributed to the two nitrogen 

toms of the hydrazone group (- N H 

– N = C). 

.2. DFT study 

Table 3 combines the obtained values of the chemical re- 

ctivity descriptors of the synthesized hydrazones determined by 
7 
FT calculations, such as total energy (E Tot ), energy gap ( �E GAP ), 

ipole momentum ( μ), electrophilicity ( ω) and chemical hardness 

 η) [ 59 , 60 ]. 

.2.1. Optimized molecular structures 

According to the values of the total energy calculated at the op- 

imal geometries of the studied compounds ( Table 4 ), we observe 

hat HYDZ-2 presents the minimum value of E Tot , which indicates 

hat the conformation of HYDZ-2 presented in Fig. 6 is more sta- 

le than these of HYDZ-3 and HYDZ-1 . Also, we can be seen from 

able 3 that the value of the �E GAP of HYDZ-1 is low than these 

f HYDZ-2 and HYDZ-3 , indicating that the HYDZ-1 has the good 

hemical reactivity and the lowest stability which indicate that the 
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Table 4 

Atomic NBO charges of HYDZ-1, HYDZ-2 and HYDZ-3 calculated by DFT method at B3LYP/6–311 ++ G (d,p). 

HYDZ-1 HYDZ-2 HYDZ-3 

Symbol NBO Charge Symbol NBO Charge Symbol NBO Charge 

C1 −0.2196900 C1 −0.3600700 C1 0.2420600 

C2 −0.2457100 S2 0.4482700 O2 −0.4609100 

C3 −0.2439300 C3 −0.1716300 C3 −0.2562800 

S4 0.4259500 C4 −0.3762300 C4 0.1305300 

C5 −0.3827100 C5 −0.2621100 C5 −0.2944000 

C6 0.0257600 C6 0.0447000 C6 0.0077900 

H7 0.2199800 C7 −0.2430600 C7 −0.2448700 

H8 0.2267800 C8 −0.1258000 C8 −0.1250500 

C9 −0.2444200 C9 0.1904000 C9 0.1872100 

C10 −0.1249300 C10 −0.2055000 C10 −0.2061700 

C11 0.1877300 C11 −0.2491000 C11 −0.2489400 

C12 −0.2062300 C12 −0.1409600 C12 −0.1402900 

C13 −0.2489400 C13 0.7855200 C13 0.7850000 

C14 −0.1400200 O14 −0.6124800 O14 −0.6127000 

C15 0.7850000 O15 −0.6979600 O15 −0.6977500 

O16 −0.6126400 N16 −0.4033300 N16 −0.3762900 

O17 −0.6977300 N17 −0.2401700 N17 −0.2366500 

N18 −0.3780000 H18 0.1945300 H18 0.2305500 

N19 −0.2395200 H19 0.2300800 H19 0.2286600 

H20 0.2303400 H20 0.2295300 H20 0.2028600 

H21 0.2286700 H21 0.2257700 H21 0.2253900 

H22 0.2028800 H22 0.2331300 H22 0.4836000 

H23 0.2253700 H23 0.2283000 H23 0.3559200 

H24 0.4836100 H24 0.2029600 H24 0.2308000 

H25 0.3553200 H25 0.2248100 H25 0.2238900 

H26 0.2289000 H26 0.4834000 H26 0.1978500 

H27 0.1581900 H27 0.3670100 H27 0.1681800 

Fig. 6. Optimized molecular structures and frontier molecular orbitals density distributions of HYDZ-1, HYDZ-2 and HYDZ-3. 
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Fig. 7. Molecular electrostatic potential maps of HYDZ-1, HYDZ-2 and HYDZ-3. 

Table 5 

Determination of the antioxidant activity of the examined hydrazone derivatives by DPPH, ABTS, CUPRAC, FRAP and Phenantroline assays. 

Compounds DPPHIC 50 mM 

a ABTSIC 50 mM 

a CUPRACA 0.50 mM 

a FRAPA 0.50 mM 

a PhenanthrolineA 0.50 mM 

a 

HYDZ-1 87.91 ±3.34 8.29 ±0.32 49.23 ±1.2 41.12 ±0.40 11.49 ±1.45 

HYDZ-2 143.07 ±1.30 7.46 ±0.39 31.59 ±0.30 77.40 ±0.30 14.06 ±0.87 

HYDZ-3 38.33 ±0.81 1.27 ±0.10 30.95 ±1.05 56.38 ±0.49 15.89 ±1.12 

BHA b 24.28 ±1.28 7.67 ±0.40 17.97 ±0.66 N.T 4.31 ±0.03 

BHT b 70.9 ± 6.6 8.24 ±0.13 16.62 ±0.79 N.T 4.20 ±0.06 

Ascorbic acid b N.T N.T N.T 15.39 ±1.10 N.T 

a Values expressed are means ± S . D. of three parallel measurements. ( p < 0.05). N.T: not tested. 
b References. 

9
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Table 6 

The antibacterial inhibition diameters in mm. 

Strains Diameter of the inhibition zones (mm) 

HYDZ-1 HYDZ-2 HYDZ-3 GM 

P. aeruginosa 14 ±2.08 7 ± 0.57 < 5 20 

B. subtilis < 5 < 5 < 5 30 

S. aureus < 5 < 5 < 5 25 

E. coli < 5 < 5 < 5 22 

∗GM : gentamicine. 
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ransfer of electrons between HUMO and LOMO is easiest for it and 

herefore it acts as a better bioactive molecule [ 61 , 62 ]. 

.2.2. Frontier molecular orbitals analysis 

The stability and the chemical reactivity of bioactive com- 

ounds can be explained extensively via HOMO and LUMO orbitals 

nd their energies [38] . Generally, a high value of E HOMO is related 

o the electron donor ability of the molecule [63] , while a higher 

alue of the E LUMO is related to the molecule ability to accept elec- 

rons [64] . Fig. 6 shows that the electron densities of the HOMO 

nd LUMO orbitals are almost dispersed on the entire molecular 

tructures of HYDZ-1, HYDZ-2 and HYDZ-3 . On the other hand, the 

ositive phases of each molecule are colored in red solid surfaces, 

hile the negative phases are colored in green [33] . The HOMO 

ensities are related to the strong electronegativity of oxygen and 

ulfur atoms. It was disturbed on the thiophene, furan ring and 

 = N function which have larger affinity to conserve their elec- 

ronic pairs [25] . The high HOMO energy corresponds to a high 

apacity to lose an electron, whereas the smaller LUMO energy in- 

icates the greatest affinity for electrons. We observe from Table 3 , 

he order of E HOMO is HYDZ-3 ( −5.6689) > HYDZ-1 ( −5.70487) 

 HYDZ-2 ( −5.9002), hence HYDZ-3 has better electron donat- 

ng ability and liberates electrons more than HYDZ-1 and HYDZ- 

 which expresses their capacity in antioxidant activity. Also, the 

owest value of E LUMO is referred to the HYDZ-2 ( −1.8198) which 

hows its elevated potential to receive electrons. 

Although dipole moment importance as an indicator of the 

lectronic distribution within a molecule is certain, studies have 

eported inconsistent findings on the association between dipole 

oment values and the inhibition efficiency of bioactive molecules 

65] . In the current study, as expected, we did find this significant 
able 7 

alculated physicochemical and pharmacokinetic parameters (ADME-T) of the synthesized

Compounds miLogP < 5 solubility 

TPSA 

(oA) 

< 500 
MW nO

HYDZ-1 4.57 −3.17 61.69 246.29 4 

HYDZ-2 4.26 −3.06 61.69 246.29 4 

HYDZ-3 3.93 −2.84 74.83 230.22 5 

Chloroquine ∗ 4.01 -4.06 28.16 319.88 3 

Hydroxychl-oroquine ∗ 3.08 -3.55 48.38 335.88 4 

: Drugs Reference, Topological polar surface area (TPSA); Number of rotatable bonds (

oefficient between n-octanol and water (miLogP); Number of hydrogen bond donors (n-O

utagenic (Tumo): tumorigenic (Irr) : irritant (R.E) reproductive effective. 

Table 8 

Energy distribution of the investigated hydrazones between va

interactions. 

Compounds Total energy vdW

Mpro –HYDZ-1 −89.90 −70.

Mpro-HYDZ-2 −85.66 −60.

Mpro-HYDZ-3 −84.82 −71.

Chloroquine ∗ -83.91 −74.

Hydroxychloroquine ∗ -82.27 −67.

∗ Drugs Reference , H-bonds: hydrogen bonding, vdW: van de

10 
ssociation between the dipole moment values and the order of 

he bioactivity: HYDZ-2 > HYDZ-1 > HYDZ-3 . 

The chemical hardness indicates the resistance to deformation 

r polarization of the electron cloud of atoms, ions or molecules 

nder a small disturbance of the chemical reaction. Also, hard 

olecules have a high energy gap and soft molecules have a small 

nergy gap [66] . Generally, the low value of the hardness and the 

igh value of the softness of a molecule can produce a high in- 

ibitory efficiency [67] . The hardness and softness of our molecules 

ollow the following order: HYDZ-1 < HYDZ-3 < HYDZ-2 and 

YDZ-1 > HYDZ-3 > HYDZ-2 , respectively. These results indicate 

hat the HYDZ-1 with a lowest hardness and highest softness is 

he less stable and the most reactive species. 

The values of electrophilicity index ( ω) of these compounds are 

etween 3.6515 and 4.1382. Generally, the high value of ω proves 

etter electrical properties, while a low value of ω indicates poor 

lectrophiles. According to the Table 3 , we find that our molecules 

ave better electrophilicity which measures the energy lowering 

ue to the electron flow between the donor and acceptor. Finally, 

e conclude that HYDZ-1 has a good inhibiting activity (antibacte- 

ial and inhibition of SARS-CoV-2 main protease) and HYDZ-3 have 

 good antioxydante activity, while HYDZ-2 shows a more stable 

onformer among these compounds. 

.2.3. Molecular electrostatic potential surfaces (MEP) 

To determine the active sites that lead to electrophilic and 

ucleophilic attacks, we decided to use the molecular electro- 

tatic potential surfaces (MEP) as a useful descriptor [58] . MEP de- 

cribes the charge distribution of molecules in a three-dimensional 

anner, and correlates the total charge distribution with dipole 

oment, electronegativity, partial charge, and chemically reactive 

ites of molecules [67] . The zero potential area is represented by 

reen color, and the evolution of potential follows the order of 

ed < orange < yellow < green < blue [68] . Fig. 7 represents the

alculated MEP surfaces of HYDZ-1, HYDZ-2 and HYDZ-3 with 

otential ranges of [ −5.944 10 –2 , 5.944 10 –2 ], [ −5.402 10 –2 , 5.402

0 –2 ] and [ −5.930 10 –2 , 5.930 10 –2 ], respectively. So, surfaces un- 

er investigation appear in different colors. Generally, red, orange 

nd yellow zones indicate the negative regions of MEP, correspond- 

ng to nucleophilic sites (carboxylic, thiophene, furane and hydra- 

one functional groups). On the other hand, green and blue zones 
 compounds, which important for a good oral bioavailability. 

N < 10 nOHNH < 5 MV vio 

Toxicity risks 

Mut Tumo Irr R,E 

2 208.83 0 No No No No 

2 208.83 0 No No No No 

2 199.68 0 No No No No 

1 313.12 1 Yes No Yes No 

2 321.38 0 Yes No No No 

n-rotb); Molecular weight (MW); Molecular volume (MV); Logarithm of partition 

HNH); Number of hydrogen bond acceptors (n-ON); Lipinski’s violation (vio) (Mut) 

n der Waals forces, hydrogen bonding and electrostatic 

 H-Bond Elec 

17 −17.17 −2.56 

75 −22.03 −2.88 

07 −13.07 −0.69 

41 −9.5 0 

02 −15.25 0 

r Waals forces and Elec : electrostatic interactions. 



L. Adjissi, N. Chafai, K. Benbouguerra et al. Journal of Molecular Structure 1270 (2022) 134005 

p

t

3

a

N

a

d

o

d

t

T  

n

m

a

n

H

O

3

3

p

c

s

(

r

b

f

h

1

p

w

O  

g

c

p

b

d

s

t

4

a

t

1

t

(

D

i

resent the positive regions responsible for the electrophilic at- 

acks (hydrogen atoms and benzene ring). 

.2.4. Atomic charges of HYDZ-1, HYDZ-2 and HYDZ-3 using NBO 

nalysis 

In general, the electron density of molecules can be affected by 

BO charges. Also, to check bonds and interaction bonds within 

nd between molecules, NBO analysis can be used to evaluate the 

elocalization of the electron density between occupied Lewis-type 

rbitals and empty non-Lewis NBOs, indicating the stability of the 

onor-acceptor interaction [69] . For the investigated hydrazones, 

he calculated natural atomic charges of all atoms are offered in 

able 4 . From the obtained results, it can be seen that oxygen and

itrogen atoms have the most negative charges, which is due to 

olecular relaxation [38] . In addition, the more positive charges 

re located on the hydrogen atoms. For the studied molecules, the 

egative charges are located on O16, O17, N18 and N19 atoms for 

YDZ-1 , O14, O15, N16 and N17 atoms for HYDZ-2 and O2, O14, 

15, N16 and N17 atoms for HYDZ-3 . 

.3. Biological activity 

.3.1. Evaluation of the antioxidant activity 

The IC 50 and A 0.50 values were determined for all the com- 

ounds and presented in Table 6 . In DPPH assay, all tested 

ompounds showed a good antioxidative activity. Also, HYDZ-3 

howed the lowest IC 50 value among the synthesized hydrazones 

38.33 ± 0.81 mM), and presents an antioxidant activity supe- 

ior to that of the standard BHT (70.9 ± 6.6 mM), and compara- 

le to that of the standard BHA (24.28 ± 1.28 mM). It is there- 

ore possible to conclude that all the prepared hydrazones ex- 

ibit a high antioxidant activity (IC 50 between 38.33 ± 0.81 and 

43.07 ± 1.3 mM) [70] . 
Fig. 8. Best docked poses visualization of HYDZ-1, HYD

11
The results attained from ABTS assay attest that all tested com- 

ounds exhibit elevated antioxidant activities. In addition, HYDZ-3 

as found to be the best antioxidant agent (IC 50 1.27 ± 0.10 mM)). 

n the other hand, it can be seen from Table 5 that the investi-

ated hydrazone derivatives have an antioxidant activity higher or 

omparable to that of the standards BHT and BHA. 

According to the CUPRAC assay, we can see that all the pre- 

ared hydrazones exhibit a comparable antioxidant activity (A 0.50 

etween 31.59 ± 0.30 and 49.23 ± 1.2 mM) with that of the stan- 

ards BHA and BHT (17.97 ± 0.66 mM and 16.62 ± 0.79 mM, re- 

pectively). 

As to the results of the FRAP assay, our hydrazones deriva- 

ives exhibit also a comparable antioxidant activity (A 0.5 ° between 

1.12 ± 0.40 and 77.40 ± 0.30 mM) to that of the standard ascorbic 

cid (15.39 ± 1.10 mM). 

Regarding the phenantroline assay, the high antioxidant ac- 

ivity has been observed for HYDZ-1 with an A 0.50 value of 

1.49 ± 1.45 mM, which demonstrates that it has a good an- 

ioxidant activity comparable to that of standards BHA and BHT 

4.31 ± 0.03 and 4.20 ± 0.06 μM, respectively). 

In summary, from the results of the antioxidant evaluation by 

PPH, ABTS, CUPRAC, FRAP and Phenanthroline assays, the follow- 

ng observations can be derived: 

- The studies carried out measuring the antioxidant activity did 

not correlate with each other. This result can be explained by 

the different mechanisms of action of the assays. 

- The prepared hydrazone derivatives exhibited a high antioxi- 

dant activity. 

- In DPPH and ABTS assay, compound HYDZ-3 showed a higher 

antioxidant activity than that of the standards BHA and BHT, 

due to presence of furan group within hydrazone compounds 

that exerted an abundant inhibitory effect against various free 

radicals. 
Z-2 and HYDZ-3 with SARS-CoV-2 main protease. 
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non-correlation of the results. 
- The thiophene group contributed to the antiradical activity 

even if it is in position 2 or 3 on the hydrazone moiety ( HYDZ-

1 and HYDZ-2 ). It is to be noted that position 2 ( HYDZ-1 ) is

more reactive than position 3. 

- In FRAP and Phenanthroline assays, HYDZ-1 was regarded as 

the best antioxidant with comparable value of the standards 

BHA and BHT because they showed a low value of E Gap , which 

means that it is likely to react more, and the mechanism of this 

assays is consists in the electron transfer which explains the re- 

activity of this compound. 
Fig. 9. 3D and 2D Binding-interaction diagrams of HYDZ-1, HYDZ-2, HYDZ-3,

12 
- It is well known that the best anti-oxidant activity is observed 

with HYDZ-1 and HYDZ-3 due to the electronic resonance out- 

come of the hydrazone compounds [71] . 

- The mechanism of DPPH and ABTS based on the transfer of H 

+ 

(IC 50 ) and CUPRAC, FRAP phenantroline based on the mecha- 

nism of transfer of electrons (A 0.5 ) explain the different reactiv- 

ities of these molecules. 

- Finally, except the ABTS assay, the other assays showed a 

smaller dynamic range in the data. This could also explain the 
 Chloroquine and Hydroxychloroquine with SARS-CoV-2 main protease. 
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Fig. 9. Continued 
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.3.2. Evaluation of the antibacterial activity 

Among the examined strains ( Table 6 ), only P. aeruginosa was 

usceptible to the HYDZ-1 (15 mm) and HYDZ-2 (7 mm). Although, 

. aeruginosa is intrinsically resistant to many antibiotics [72] , and 

s capable of rapidly acquire additional resistance during treatment 

s a frequent source of therapeutic failure [73] , its double mem- 

rane structure specific to lipids makes it sensitive to lipophilic 

ubstances, which affect the membrane integrity and permeability 

nd would lead to the lysis of the bacterial cell. On the other hand,

ccording to Haenni et al. [73] , the microbiological studies showed 

hat the presence of an aromatic or a hetero aromatic moiety con- 

aining more lipophilic character significantly contributed to an- 

ibacterial activity. El-Etrawy et al . [74] attributed the inhibitory ef- 

ect of the new synthesized hydrazones against pathogenic bacteria 

o its ability to activate enzymes and some cellular proteins essen- 

ial for ATP synthesis and expression of ribosomal subunit proteins. 

tudying the structure-activity relationship suggests that different 

ubstitutions on aromatic rings affected drastically the antibacterial 

ctivity of the synthesized compounds [75] . In the same way, the 

resence of electronegative atoms and groups (-NO 2 , -Cl, S-H and 

 

–H) on aromatic rings improves the antimicrobial activity of the 

ompounds [76] . The presence of active functions on the aromatic 

ing, N = C groups of hydrazones and thiophene motif enhances the 

ntibacterial activity of the studied compounds. This activity re- 

ains bacteriostatic and lower than gentamicin. This activity, with 
13 
 mg (20 μl), is satisfying in comparison with other studies [ 75 , 77 ],

here high concentrations were used (50 μL, 35 μL). These obser- 

ations suggest that the molecular targets of HYDZ-1 and HYDZ- 

 are very different from the other molecules as well as those of 

onventional antibiotics. 

.3.3. Evaluation of the ADME-T activity 

Drug-likeness of the synthesized compounds compared with 

he known drugs was evaluated under Lipinski’s rule. In general, an 

rally active drug fulfill the following criteria: Not more than 5 hy- 

rogen bond donors (n-OH and n-NH), not more than 10 hydrogen 

ond acceptors (n-ONs), molecular weight (MW) less than 500 D, 

ot more than one violation and octanol-water partition coefficient 

milogP) should be not more than 5 [78] . As it can be seen from

able 7 , all our hydrazone derivatives did not show any violation 

f Lipinski’s rules with showing a good solubility. Contrarily to the 

tandards, and as an example, chloroquine drugs exhibited one vi- 

lation, which poses risks of mutagenic and irritation. On the other 

and, in the toxicity profile, the studied compounds were ranged 

s relatively safe species, except standards which showed a risk of 

oxicity. The tested compounds did not show any risk of toxicity. 

onsequently, they do not cause any mutagenic, tumorigenic, irri- 

ation, or reproductive effect. These results suggest that the syn- 

hesized hydrazones have good ADME-T parameters and can be 

onducive candidates as drugs. 
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Table 9 

Molecular docking results interactions and distance of the investigated inhibitors with SARS-CoV-2 main protease. 

Compounds Amino acid Interactions Distance ( ̊A) Type of the interaction 

HYDZ-1 - LEU141 

- HIS172 

- MET49, HIS141, MET 165 

- MET165 

6.35 

4.93 

5.44, 5.14, 5.32 

5.24 

Hydrogen bond 

vdW 

Pi-sulfur 

Pi-sigma 

HYDZ-2 - ARG 217, THY 304 

- GLN 256 

- VAL 303 

5.44, 3.83 

4.11 

6.24 

Hydrogen bond 

Pi-sigma 

vdW 

HYDZ-3 - CYS145, GLY143, 

SER144,SER 144, HIS163 

- CYS145 

- GLU166 

- MET165 

- MET 165 

3.55, 3.41, 3.93, 3.36, 4.57. 

6.00 

5.18 

6.08 

4.71 

Hydrogen bond 

Hydrogen bond 

Pi-Alkyl 

vdW 

Pi-sigma 

Pi-cation 

Chloroquine ∗ - ASN 142 

- HIS 164 

- LEU 27 CYS 145 

- CYS 145 CYS 145 

- GLY 143 

4.12 

9.65 

5.00, 4.09 

4.41, 6.79 

4.95 

Hydrogen bond 

Pi-Pi T-shaped 

Pi-Alkyl 

Pi-cation 

vdW 

Hydroxychloroquine ∗ - GLY143, SER 144, CYS 

145 

- CYS145 HIS163 

- HIS172 THR 26 

2.95, 4.28, 3.07 

6.69, 5.77 

5.01, 4.28 

Hydrogen bond 

Pi-Alkyl 

vdW 

∗ : Drugs Reference. 
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Table 10 

Comparison of the binding energy of HYDZ-1, HYDZ-2 and HYDZ-3 with these of 

some drugs. 

Compounds Binding energy in Kcal/mol 

HYDZ-1 - 89.90 

HYDZ-2 −85.66 

HYDZ-3 - 84.82 

Chloroquine ∗ - 83.91 

Hydroxychloroquine ∗ - 82.27 

∗ : Drugs Reference. 
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.4. Molecular docking analysis 

The different interactions and their energies between an in- 

ibitor and amino acids inside the active sites of enzymes have 

een determined by molecular docking simulations. In this con- 

ext, the energy distribution of different interactions between the 

pro and the synthesized ligands are illustrated in Table 8 , which 

xplains the different interactions between the active amino acids 

f the targeted receptor (Mpro), and HYDZ-1, HYDZ-2 and HYDZ- 

 [79] . The obtained crystal structures of the best docked modes 

or Mpro-HYDZ-1, Mpro-HYDZ-2 and Mpro-HYDZ-3 complexes are 

epresented in Fig. 8 . It is to be noted that the investigated ligands

referably bind in the external structure of Mpro [38] . Also, the 

D and 2D binding-interaction diagrams of HYDZ-1, HYDZ-2 and 

YDZ-3 with SARS-CoV-2 main protease are shown in Fig. 9 . Gen- 

rally, the presence of hydrogen bonds is crucial for the interaction 

etween inhibitors and receptors. In this context, the interpreta- 

ion of the 3D and 2D interaction diagrams indicates the presence 

f the following types of interactions: 

In Table 9 , HYDZ-1 ligand was found to interact with a sin- 

le conventional hydrogen bond LEU141 (6.35 Å) with the oxy- 

en of the carboxylic group, a Pi-sigma type with MET165 (5.24 Å) 

nd the benzene group, a Pi-Sulfur with MET49 (5.44 Å), HIS41 

5.14 Å) and MET165 (5.32 Å) and thiophene group, a VDW bond 

ith HIS172 (4.93 Å) and carboxylic group. 

HYDZ-2 ligand was also observed to interact through two con- 

entional hydrogen bonds ARG217 (5.44 Å) and THR304 (3.83 Å) 

ith the oxygen of the carboxylic and amine groups of the hy- 

razone, respectively, a Pi-sigma type with GLN256 (4.11 Å) and 

 vdW with VAL303 (6.24 Å) with thiophene and C = N function, 

espectively. 

As to HYDZ-3 ligand, it has interacted through five hydrogen 

onds with CYS145 (3.55 Å), GLY143 (3.41 Å), SER144 (3.93 Å), 

ER144 (3.36 Å) and HIS163 (4.57 Å) which reacted on the 

arboxylic group, a Pi-Alkyl with CYS145 (6.00 Å), a Pi-Cation 

ith MET165 (4.71 Å) reacted on the furan group, a VDW with 

LU166 (5.18 Å) and Pi-Sigma with MET165 (6.08 Å) and benzene 

roup. 

For the standard Chloroquine, there is only one hydrogen bond- 

ng of ASN142 (4.12 Å) with amine group. Then, a Pi-Alkyl with 

EU27 (5.00 Å) and CYS145 (4.09 Å) with the Chlorure atom, a 
14 
i-Cation with CYS145 (4.41 Å), CYS145 (6.79 Å) react on the 

uinoleine group, a Pi-Pi T-shaped with HIS164 (9.65 Å), GLY143 

4.95 Å) of vdW interaction. 

For Hydroxychloroquine, there are three hydrogen bonds of 

LY143 (2.95 Å), SER144 (4.28 Å) and CYS145 (3.07 Å) with OH 

unction, two bonds of Pi-Alkyl of CYS145 (6.69 Å), HIS163 (5.77 Å), 

wo van der Waals bonding of HIS172 (5.01 Å), and THR (4.28 Å) 

nteracted with Chlorure atom and amine groups of hydroxychloro- 

uine, respectively. 

Pi-Pi Cation, Pi-Sulfur and Pi-alkyl type interactions are in- 

luded in the hydrophobic category of van der Waals forces, while 

he hydrophilic interactions included H-bonding forces [ 38 , 80 ]. 

rom these results, we observe that HYDZ-1, HYDZ-2 and HYDZ- 

 have a Pi-Sigma bond which does not appear in the standards. 

his means that the inhibitive effect has increased. We can con- 

lude that the amino acids reacted more strongly at the nucliphilic 

ites (hydroxy, furan and thiophene groups). 

Fig. 10 shows the interactions with the molecular surface 

round the studied ligands at the binding site of Mpro. Accord- 

ngly, the green area represents the electron acceptor region, while 

he pink area represents the electron donor one. The calculated 

nhibitor-receptor complex interactions showed very positive re- 

ults [81] . Table 10 gathers comparative values of binding ener- 

ies of the compounds according to the following order: HYDZ-1 

 HYDZ-2 > HYDZ-3 > Chloroquine > Hydroxychloroquine drugs. 

s a result, the investigated ligands showed a good inhibitory abil- 

ty against SARS-CoV-2 main protease than standards (Hydroxy- 

hloroquine and Chloroquine). Also, HYDZ-1 ligand showed a bet- 

er docking score ( −89.90 kcal/mol) than other compounds. 
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Fig. 10. Ligands interaction with their molecular surface maps inside the active site pocket. 
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. Conclusion 

In the present work, we have synthesized three new bioactive 

ydrazones. The obtained compounds were characterized by high 

elting points and their structures were determined by UV–Vis, IR, 
 H MNR, 13 C NMR and 

15 N NMR. Moreover, the quantum chemical 

tudy of the investigated hydrazones has been performed applying 

FT method with B3LYP/6–311 ++ G (d,p) basis set. IR and UV–Vis 

heoretical results were found in good agreement with the experi- 

ental results. Besides, the calculated values of E HOMO indicated 

hat the investigated HYDZ-3 is the more electron donor sharing 

lectrons with the acceptor species. Also, the obtained values of 

E GAP showed the high reactivity and non-stability of HYDZ-1 . 

he calculated MEP illustrated that the electrophilic reaction pos- 

ible sites are located at the O16, O17, N18 and N19 atoms for 

YDZ-1 , O14, O15, N16 and N17 atoms for HYDZ-2 , and O14, O15,

16 and N17 atoms for HYDZ-3 . According to the NBO charge re- 

ults, oxygen and nitrogen atoms are the most negatively charged. 

he in vitro evaluation of the antioxidant activity of the exam- 

ned hydrazones demonstrated that HYDZ-3 shows a higher activ- 

ty with DPPH than standards, using ABTS assays, while in FRAP 

nd Phenanthroline assays HYDZ-1 showed a good activity com- 

ared to standards. The antibacterial activity was obtained with 

ll three hydrazone derivatives. HYDZ-1 showed a moderate pseu- 

omonas bacteriostatic activity compared to gentamicin. Also, the 

redicted ADME-T and pharmacokinetic parameters indicated that 

hese compounds have a good oral bioavailability and show a pow- 

rful biological activity. So, the biological study demonstrated that 
15 
YDZ-1 and HYDZ-3 can be regarded as promising new radical 

cavengers and oxidative stress inhibitors for the treatment of liver 

isorders and could be a lead for new, effective, and safe drugs. 

n the other hand, the calculated binding energies of Mpro-HYDZ- 

, Mpro-HYDZ-2 and Mpro-HYDZ-3 complexes indicated the ability 

f HYDZ-1 to inhibit SARS-CoV-2 main protease. Finally, the dock- 

ng results allowed to conclude that the investigated hydrazones 

erivatives may be developed as therapeutic agents against SARS- 

oV-2. 
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