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Abstract

Background: The severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)
has caused a deadly pandemic in the 21st century, resulting in many deaths,

economic loss, and international immobility. Vaccination represents the only

mechanism to defeat this virus. Several intramuscular vaccines have been ap-

proved and are currently used worldwide.

Main body: However, global mass vaccination has not been achieved owing to

several limitations, including the need for expertise to administer the injection‐
based vaccine, improper distribution of the vaccine, and lack of cold chain facilities,

particularly in resource‐poor, low‐income countries. Mucosal vaccines are typically

administered either orally or nasally, and several studies have shown promising

results for developing these vaccines against SARS‐CoV‐2 that might serve as viable

alternatives to current vaccines. SARS‐CoV‐2 invades the human body via oral and

nasal mucosal surfaces; thus, an oral or nasal vaccine can trigger the immune

system to inhibit the virus at the mucosal level, preventing further transmission via

a strong mucosal and systematic immune response. Although several approaches

toward developing a mucosal vaccine are currently being tested, additional atten-

tion is required.

Conclusion: In this article, the current approaches used to develop effective oral

and nasal mucosal vaccines against SARS‐CoV‐2 and their benefits, prospects, and

challenges have been summarized.
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1 | INTRODUCTION

In December 2019, a new respiratory disease, named
coronavirus disease 2019 (COVID‐19), was first reported
in Wuhan, China. This disease is caused by a positive‐
stranded respiratory RNA virus identified as severe acute
respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Since
then, COVID‐19 has spread globally across more than
220 countries.1–4 To date (January, 2022), more than 298
million people have been infected with SARS‐CoV‐2, and
over five million deaths have been reported worldwide.5

Those affected by this ongoing pandemic have flooded
the healthcare systems of low‐income countries and im-
pacted the advanced healthcare systems and national
preparedness approaches of many high‐income nations.6

Several drugs, therapies, and immunomodulatory re-
gimens, such as remdesivir, ivermectin, dexamethasone,
convalescent plasma therapy, antibody‐based immuno-
therapies, and monoclonal antibodies have been applied
under emergency use approvals to reduce disease severity
among patients with COVID‐19; however, the efficacy of
these treatments remains controversial, with no un-
ambiguous evidence of treatment success.7,8 Scientists
internationally have focused on developing vaccines, with
successful vaccine development viewed as imperative and
representing the best option for combating the virus. Mass
vaccination can prevent the severe health conditions
associated with COVID‐19, reducing the burden on
healthcare systems and minimizing economic losses.9

This crisis has sparked an unprecedented race to de-
velop vaccines using both existing and novel vaccinology
expertise. Historically, before any vaccine could be used in
clinical trials, 10–15 years of research, development, and
testing were required.10 However, in early 2020, scientists
embarked on an unprecedented record‐breaking effort to
develop safe and effective vaccines against SARS‐CoV‐2.
More than 180 vaccine development projects were laun-
ched worldwide, many of which involved active preclinical
trials in animals.10,11 According to a recent World Health
Organization (WHO) report, 132 vaccines are currently in
Phase 1–3 clinical trials and an additional 194 are in
preclinical development. In addition to conventional
approaches to human vaccine development, various newly
developed technologies have been applied for the first
time.10,12,13 To date, at least seven vaccines (Covishield,
Janssen/Ad26, Moderna COVID‐19, Sinopharm, Sinovac‐
CoronaVac, Pfizer/BioNtech, and COVAXIN) have been

authorized for human use against SARS‐CoV‐2, most of
which are administered through intramuscular (IM)
injections.14–19

Similar to other ground‐breaking scientific technolo-
gies, vaccines against SARS‐CoV‐2 have become more
widely available in high‐income countries much sooner
than in low‐income countries.20–22 Because of wide-
spread vaccination, the health situation in high‐income
countries will likely continue to improve with a return to
normal life, whereas low‐ and middle‐income countries,
such as those in Latin America and South Asia, have
already begun to experience waves of rising cases from
vaccine scarcity. In addition, mild to severe side effects
have been reported in vaccinated people, resulting in low
vaccination compliance.23,24

More attention is required to develop alternative
vaccines that can minimize the challenges associated
with the currently available IM vaccines, such as re-
quiring injection and experienced health workers to ad-
minister the vaccines and the lack of cold chain
maintenance to ensure vaccine effectiveness. Mucosal
vaccines delivered through intranasal (IN) and oral
routes represent a promising option to induce mucosal
immunity.25–27 The IM vaccines induce a systemic im-
mune response without eliciting a mucosal immune re-
sponse; however, mucosal immunity is essential for
neutralizing SARS‐CoV‐2 in the upper respiratory tract,28

preventing the viral spread into the lower respiratory
tract and developing advanced disease stage. The absence
of mucosal protection through producing local secretory
immunoglobulin A (sIgA) antibodies increases the risk of
SARS‐CoV‐2 transmission from vaccinated people who
can still become infected and spread the virus.28

Recently, tremendous progress has been made toward
developing mucosal vaccines, which can be delivered via
oral or intranasal routes, are easy to administer due to
the noninvasive route, and can generate mucosal im-
munity. Such immunity is separate from humoral
and cellular immunity, rendering protection against
COVID‐19.29,30 In this context, several novel oral and
intranasal vaccines against SARS‐CoV‐2 are currently
being developed, with encouraging preclinical findings in
nonhuman primates and other animal models.13,31–35

Studies have also suggested that an IM vaccination fol-
lowed by an oral or intranasal vaccination leads to a
robust immune response, serving as a reliable approach
to attaining herd immunity among the population.29,36
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Oral and intranasal vaccines can elicit a substantial B
and T cell‐mediated immune response, together with the
desired mucosal immunity. In addition to providing im-
munity, oral or intranasal vaccines are easy to administer
outside of hospital settings, which may hasten the vac-
cination process.

If we overlook everything else, we need to vacci-
nate people against emerging variants of concern
through effective boosters that are expected to main-
tain or boost immunity in the face of newer variants'
emergence. The virus is continually changing and
causing successive waves. According to the WHO,
there are already five variants37 of concerns with
considerable amino acid substitution, and omicron is
currently spreading around the world,38 including
Bangladesh, where approximately 32%39 of the popu-
lation receiving two doses of vaccination. The vaccine
efficacy against the newer variants of concern is
always in face of threats.37 So, it is high time to in-
troduce an alternative vaccination route that is easily
administered for multiple boosters.

Although the world is anticipating a return to pre‐
pandemic life following vaccination, children aged 12–16
years can be vaccinated now, with younger children to
follow over the next few months. Multiple studies
on COVID‐19 in children have reported lower infection
rates, fewer symptoms, and lower mortality than in
adults. However, young children with comorbidities have
a higher risk of developing severe COVID‐19 than heal-
thy children, accompanied by a high mortality rate.40,41

Besides the direct health risks associated with COVID‐19,
the indirect effects are equally concerning, as they have
confined children to a deskbound lifestyle, making them
idle and physically inactive, and therefore increasing the
obesity rate among children. Other chronic diseases,
such as diabetes, cardiovascular disease, and some can-
cers are gradually becoming more prominent.42–44 Chil-
dren are the silent victims of this pandemic45–47;
therefore, they should also be included in vaccination
programs in almost all countries. Currently, IM vaccines
are authorized for persons 18 years and older, although
the Pfizer vaccine was recently authorized for use in
children 12 years and older.48 Bangladesh government
has also started administration of Pfizer vaccination to
school‐going children aged 12–17 years.49 Oral or in-
tranasal vaccination routes are often the most effective
and convenient methods to vaccinate children as well as
block transmission.50 Although several approaches are
being investigated, further research is required before
such vaccines can be administered to children.51

This article provides an overview of the potential
successes and challenges faced in developing an effective
mucosal vaccine that can be administered through oral

and nasal routes and current progress in the design and
development of vaccines to defeat SARS‐CoV‐2.

2 | MECHANISM OF MUCOSAL
VACCINES IN INDUCING
IMMUNITY

The mucosal system is a common entry point for patho-
gens entering the body and is the first line of defense
against infection. The mucosal immune system can
be divided into two parts: immune‐inducing and immune
effector sites. The two most important mucosal immunity
inductive sites are gut‐ and nasopharynx‐associated lym-
phoid tissues.52 Oral and intranasal vaccines activate the
immune system when they contact these mucosal in-
ductive sites. Mucosal inductive sites are covered with
follicle‐associated epithelia, primarily comprising micro-
fold cells that transport foreign material (antigens) to
antigen‐presenting cells (APCs).53,54 The APCs activate
effector T cells, producing cytokines that stimulate folli-
cular plasma B cells to produce IgA antibodies. The IgA‐
producing B cells travel to effector sites through systemic
circulation, where they release sIgA antibodies.55 The sIgA
antibodies are transported across the mucosal surface via a
polymeric IgA receptor, where they inhibit pathogen entry
through immune exclusion, antigen excretion, and in-
tracellular neutralization.56,57 Serum‐derived IgA and IgG
antibody responses have also been documented in hu-
mans after mucosal vaccination, which protects the host
cell from pathogens by performing a diverse range of
effector functions.58

3 | DEVELOPMENT OF
POTENTIAL MUCOSAL VACCINES
AGAINST SARS ‐COV ‐2

Vaccination is the most effective method for combating
the COVID‐19 pandemic. All current WHO‐approved
vaccines against SARS‐CoV‐2 are administered via the
parenteral IM route,59 inducing high systemic neu-
tralizing antibody titers that can neutralize systemic viral
infections; however, they are ineffective in producing
efficient mucosal immunity.60 Mucosal vaccines provide
a new avenue for combating SARS‐CoV‐2 because they
can generate efficient immune responses at the mucosal
and systemic levels.61 Mucosal vaccines can be delivered
orally, intranasally, rectally, vaginally, ocularly, or sub-
lingually, although oral and intranasal delivery routes are
the most commonly used. Oral immunization induces
strong immune responses in the gastrointestinal tract
and mammary and salivary glands, whereas intranasal
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immunization provides noticeable antigen‐specific im-
mune responses in the respiratory, gastrointestinal, and
genital tracts. Mucosal‐based immunizations, such as
oral polio,62 rotavirus,63,64 typhoid fever,65 and intranasal
spray of influenza66,67 vaccines are alternative ap-
proaches to induce preventive immunity against various
enteric and respiratory infectious diseases.

SARS‐CoV‐2 primarily enters the host system via
mucosal routes and is then transmitted through the
mucosal membranes of the eyes, nose, and mouth.
The virus enters the respiratory tract through mucosal
barriers and invades the underlying mucosal and
epithelial layers (lungs).68 Studies on the SARS‐CoV‐2
spike (S) protein have revealed that it recognizes the
human angiotensin‐converting enzyme 2 receptor,
which represents the first point of entry into the host
cell.69–71 The angiotensin‐converting enzyme 2 re-
ceptors recognized by SARS‐CoV‐2 is highly expressed
on cell surfaces that comprise the mucosal linings of
the oral and nasal epithelia and on enterocytes of the
digestive system, such as the ileum and colon.72,73

The expression level of the angiotensin‐converting
enzyme 2 receptor is low in the alveoli74 and viral
replication is higher in the oral and nasal sites than in
the alveoli.75

Understanding the roles played by the nasal and
gastric mucosa in SARS‐CoV‐2 transmission and disease
progression helps support the potential benefits of mu-
cosal immunization using oral or intranasal vaccines.30

Mucosal vaccines have successfully been used previously
to prevent infectious diseases affecting the gastro-
intestinal and respiratory tracts, and they have been ef-
fective in inducing and activating the mucosal immune
system.76 For example, the live oral enteric‐coated ade-
novirus types 4 and 7 vaccines are approved for use in the
US military personnel aged 17–50 years and are safe and
highly effective in reducing disease burden and inducing
mucosal immunity against adenovirus‐associated re-
spiratory illnesses.77 An orally administered influenza
vaccine recently completed Phase II clinical trials and
generated protective immunity compared with the im-
munity generated by a licensed IM vaccine.78 These
findings represent significant progress in developing oral
vaccines for respiratory diseases and provide confidence
for the eventual successful development of mucosal
vaccines against SARS‐CoV‐2 that can be administered
through oral or intranasal routes. We reviewed the oral
and intranasal COVID‐19 vaccine candidates that are
currently in the development pipeline or have entered
the preliminary clinical stages and these are summarized
in Table 1.

Other new optimistic approaches have also been
reported. One of these is to use different administration

methods in subsequent vaccination doses, with both IM
and intranasal routes. Su et al. used this approach and
analyzed the resultant immune responses.33 In their
study, two groups of rhesus macaques were immunized
with subunit vaccines combined with adjuvant. One
group received IM‐priming and IN booster vaccines,
whereas the other group received IM‐priming and in-
tranasal booster vaccines. Both groups showed efficient
immune responses against SARS‐CoV‐2 infection, and
the intranasal vaccine was effective after multiple doses
(three booster doses), rapidly removing the virus from
the nasal cavity and preventing viral transmission.
Therefore, a complementary booster dose for conven-
tional systemic vaccines might provide added
protection.33

The IM‐priming and IN booster strategy using lenti-
viral vector‐based vaccines produce neutralizing anti-
bodies against the SARS‐CoV‐2 S protein. This vaccine
candidate has been tested in two animal models: mice and
golden hamsters.34 The IM immunization of mice using
this vaccine elicited a high level of neutralizing antibodies;
however, it only provided partial protection. Subsequent
administration of an intranasal booster dose showed a
significant decrease in lung viral loads and reduced local
inflammation. In the golden hamster animal model,
which closely mimics the COVID‐19 physiopathology
observed in humans, intranasal immunization with this
vaccine platform showed a significant prophylactic effect
preventing excessive lung injury.34 Another intranasal
subunit vaccine containing trimeric or monomeric S
protein combined with adjuvant (liposomal stimulator of
interferon genes agonist) induced strong mucosal and
systemic immunity in mice.100

Another study researched generating a cold‐adapted,
live, attenuated vaccine by adjusting SARS‐CoV‐2
growth in Vero cells at temperatures of 37°C to 22°C.
A single intranasal dose of the SARS‐CoV‐2/human/
Korea/CNUHV03‐CA22°C/2020 vaccine delivered to
mice elicited a significant B and T cell‐mediated im-
mune response and induced mucosal IgA antibodies,
fully protecting the animals against infection from
SARS‐CoV‐2.101 Therefore, nasal vaccination could re-
present a viable mechanism for eliciting a strong im-
mune response.12,101 The SARS‐CoV‐2 N protein has
also received attention as a potential vaccine target. The
intranasal vaccination of BALB/c mice with a re-
combinant Adenovirus type 5 (Ad5) expressing the
SARS‐CoV‐2 N protein‐induced significant quantities of
CD8+ and CD4+ T cell‐mediated immune responses,
whereas intradermal administration induced a less
robust response. The CD4+ T cell‐mediated immune
response has been associated with an enhanced
antibody‐mediated immune response.102
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Several studies have proposed the design of molecular
vaccines combined with potential adjuvants based on
nanotechnology advancements. Using nanoparticles as
an adjuvant allows these vaccines to be administered
intranasally and significantly induces systemic and mu-
cosal immunity.103–105

4 | ADVANTAGES OF ORAL AND
INTRANASAL VACCINES AGAINST
SARS ‐COV ‐2 OVER
INTRAMUSCULAR VACCINES

4.1 | Wide immune response:

All currently approved SARS‐CoV‐2 vaccines are ad-
ministered via the IM route, which primarily induces
immunity in the peripheral and lower respiratory tracts29

but not in the upper respiratory tract, whereas mucosal
immunity serves as the first line of defense against re-
spiratory pathogens.106 Mucosal immunization via oral or
nasal routes can effectively induce mucosal immune re-
sponses by recruiting antibodies and T cells to the wet and
open surfaces where most respiratory pathogens first in-
vade. Mucosal IgA plays a key role in viral neutralization
and blocks further viral transmission.36 Successfully de-
veloping oral or nasal vaccines against SARS‐CoV‐2 will
stop mucosal SARS‐CoV‐2 transmission and remove ma-
jor barriers to global vaccine distribution and deployment,
especially for low‐income countries.

4.2 | Feasibility

A major impediment to widespread, global vaccination is
the lack of cold chain infrastructure and the technology
required for vaccine storage, distribution, and transpor-
tation, particularly in rural areas.107,108 The majority of
currently approved COVID‐19 vaccines require trans-
portation and storage at low temperatures. For example,
the Oxford–AstraZeneca and Sinovac COVID‐19 vaccines
must be maintained at 2–8°C, and mRNA vaccines such
as the Moderna COVID‐19 vaccine require a storage
temperature of approximately −58°C.109 Strict regula-
tions for temperature and care are crucial for maintain-
ing vaccine efficacy, potency, and stability.13 The
complexity involved in temperature maintenance might
cause reduced immunization coverage in remote areas,
increasing the probability of COVID‐19 outbreak infec-
tions. Most oral and nasal vaccine candidates under
development do not require cold storage as they are de-
signed to be heat stable and resistant to the acidic en-
vironments of the gut.26,76T
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4.3 | Simplified administration

The administration of oral or nasal vaccines does not
require the presence of trained healthcare professionals
because it is needle‐free in contrast to the IM vaccination
process. Needle‐free administration reduces the need for
trained personnel to administer vaccinations. The ad-
vantages of oral and nasal COVID‐19 vaccines might
significantly extend the practical options for vaccine
distribution, particularly in resource‐limited settings
where other preventive measures, such as social distan-
cing, may be more difficult to maintain.

4.4 | Expanded compliance

The goal of any vaccination campaign is to protect people
from infectious diseases by developing a sufficient level
of herd immunity, preventing further viral transmission.
Experts support the attainment of herd immunity to
SARS‐CoV‐2 through natural infection or vaccination.110

Mucosal vaccines represent a promising alternative to IM
vaccines because mucosal vaccine compliance is high
and effective for mass immunization.111 Moreover, mu-
cosal vaccines represent a better option for infants be-
cause the administration does not require injection.
Recently, CDC recommends the COVID‐19 vaccine
(Pfizer‐BioNTech) for children in the age of five and
older. Similar to adults, children can experience side ef-
fects in response to COVID‐19 vaccines, such as sore
arms, muscle aches, fever, and chills. However, oral and
intranasal vaccination routes are commonly associated
with reduced side effects compared to IM vaccines,112

which might enable children to be included in extensive
COVID‐19 vaccination programs.

5 | CHALLENGES TO THE
DEVELOPMENT OF COVID ‐19
MUCOSAL VACCINES THAT CAN
BE ADMINISTERED
INTRANASALLY AND ORALLY

5.1 | Ineffective long‐lasting immunity

Conventionally, mucosal vaccines administered orally or
intranasally require higher doses than those adminis-
tered via IM parenteral routes26 because vaccines ad-
ministered via nasal or oral routes become diluted by
mucus in the nasal or oral cavity and by the ciliary
movement of the respiratory tract. Intranasally delivered
antigens must reach the mucosal sites, cross the mucus
layer, and generate local IgA production, whereas orally

delivered antigens must remain intact in the low pH
environment of the upper gastrointestinal tract and
withstand various nucleases and proteases found in the
digestive tract to successfully induce immunity.2

5.2 | Scarcity of appropriate mucosal
adjuvants

To overcome these obstacles, vaccines are often com-
plemented with an adjuvant (chitosan, poly lactic‐co‐
glycolic acid, enteric‐coated gelatin capsules, or the
inclusion of copolymeric microparticle liposomes or
proteasomes) when delivered via oral or nasal
routes.113–117 Limited options are currently available
for use as adjuvants for administering human mucosal
vaccines, and large quantities of adjuvant are required
because microparticles become trapped in the mucus,
resulting in only a small fraction of the administered
vaccine achieving entry to the mucosal immunological
sites.25 The use of live, attenuated virus or live viral
vectors in intranasal immunizations is associated with
a risk of harmful antigens and adjuvants (such as
cholera toxin and Escherichia coli enterotoxin) gaining
entry to the central nervous system through the cri-
briform plate.25 These possibilities emphasize the im-
portance of evaluating toxicological outcomes, in
accordance with standard regulatory requirements,
before the approval of nasal SARS‐CoV‐2 vaccines.29

5.3 | Immune tolerance

Another concern is that mucosal vaccines that reach
immunological sites might induce immune tolerance,
which is a standard feature of the immune system at
mucosal surfaces.118,119 These challenges must be ad-
dressed effectively when developing oral or intranasal
vaccines against SARS‐CoV‐2, and several strategies such
as the accurate antigen dose to induce an immune re-
sponse, appropriate adjuvant in vaccine formulation, and
timing of vaccine delivery and intervals of multiple do-
sages have recently been investigated.120

5.4 | Effect of intrinsic host factors

In addition to the potential for immunotolerance, the
efficacy of mucosal vaccines is determined by various
factors, such as age, the environment, host genetics,
microbiome of the recipient, and the immunization re-
gimen. Currently, the number of approved mucosal
vaccines is very low. Oral rotavirus, influenza, and
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poliovirus vaccines are all widely used in humans. The
efficacy of orally administered rotavirus vaccines ranges
from 70% to 90%, and the efficacy for oral vaccines
against influenza and polioviruses ranges from 85% to
90%.61 The underlying health status of vaccinated people
can also affect efficiency, leading to disparate outcomes
between high‐ and low‐income countries. For example,
oral vaccines for cholera, polio, and rotavirus are less
effective in low‐income countries than in high‐income
countries. Several factors, including nutritional defi-
ciencies and low levels of vitamin A or zinc; concurrent
bacterial, parasitic, or viral infections; and high levels of
maternal antibodies in breastmilk can reduce vaccine
efficacy.121–123

In human challenge studies, the immunity acquired
following coronavirus infections is frequently transient
and, in some cases, re‐infection with the same virus is
possible after an extended period.124 SARS‐CoV‐2 infec-
tions are particularly severe in older patients (typically
those older than 50 years),125 and older individuals often
do not respond prominently to vaccination regarding
neutralizing antibody titers and require higher antigen le-
vels to produce sufficient immunogenicity.126,127 All these
issues must be addressed during the design and develop-
ment of an effective mucosal vaccine against SARS‐CoV‐2.
Before extending vaccination to vulnerable age groups and
immunocompromised people, the immunization effects of
vaccine doses should be investigated.

6 | CONCLUSION AND
PROSPECTS

The WHO has accelerated the vaccine development
process to expedite global access to safe, effective, and
high‐quality vaccines against SARS‐CoV‐2. Almost all
available vaccines are delivered via the IM route and
have shown high levels of efficacy, eliciting a significant
immune response. However, herd immunity is almost
impossible to achieve using only current vaccinations
due to many limitations, causing barriers to mass vacci-
nation efforts. Vaccine distribution, accessibility, and
administration should be equitable worldwide, especially
in high‐risk areas and among vulnerable groups in low‐
income countries. A recent study revealed that mucosal
vaccines (intranasal) could be used as a booster dose after
a primary dose of IM vaccination, resulting in a strong
immune response preventing replication of SARS‐CoV‐2
in the upper and lower respiratory tracts.29 Mucosal
vaccines can be used in addition to current IM vaccines
in situations where IM vaccine administration is difficult.

Intense research using advanced methodology is re-
quired to develop promising mucosal vaccines with high

efficacy and few adverse reactions in humans. Several
approaches from previous studies and data from pre-
viously used mucosal vaccines must be investigated to
develop a novel mucosal vaccine against SARS‐CoV‐2.

Developing effective and reliable mucosal vaccines by
adopting nonconventional approaches is crucial. In the
future, the availability of potential mucosal vaccines
might become feasible after further assessment of the
vaccines currently being developed, including the eva-
luation of large‐scale clinical studies and trials, leading to
their incorporation in worldwide vaccination programs.
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