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Genome-wide omics technology boosts deep interrogation into the clinical prognosis and inherent mechanism of pancreatic
oncology. Classic LASSO methods coequally treat all candidates, ignoring individual characteristics, thus frequently
deteriorating performance with comparatively more predictors. Here, we propose a wavelet-based deep learning method in
variable selection and prognosis formulation for PAAD with small samples and multisource information. With the genomic,
epigenomic, and clinical cohort information from The Cancer Genome Atlas, the constructed five-molecule model is validated
via Kaplan-Meier survival estimate, rendering significant prognosis capability on high- and low-risk subcohorts (p value <
0.0001), together with three predictors manifesting the individual prognosis significance (p value: 0.0012~0.024). Moreover, the
performance of the prognosis model has been benchmarked against the traditional LASSO and wavelet-based methods in the
3- and 5-year prediction AUC items, respectively. Specifically, the proposed model with discrete stationary wavelet base
(bior1.5) overwhelmingly outperformed traditional LASSO and wavelet-based methods (AUC: 0.787 vs. 0.782 and 0.721 for the
3-year case; AUC: 0.937 vs. 0.802 and 0.859 for the 5-year case). Thus, the proposed model provides a more accurate
perspective, but with less predictor burden for clinical prognosis in the pancreatic carcinoma study.

1. Introduction

Pancreatic adenocarcinoma (PAAD) cancer is one of the lead-
ing causes of global cancer-related mortality, but until now,
the diagnosis and prognosis are still hysteretic with its death
toll approaching the diagnosed cases [1]. Pancreatic ductal
adenocarcinoma (PDAC) is the most common subtype of
pancreatic cancer, named for its histological similarity to
ductal cells [2, 3]. Quite a few developed countries have 3 to
4 times higher pancreatic cancer incidence than developing
nations, with the highest rates in Europe, North America,
Australia, and New Zealand. Notably, in many EU countries,
pancreatic cancer is overtaking breast cancer as the third lead-
ing cause of cancer death [4].

In previous diagnosis and prognosis studies, Park et al.
inferred prognostic markers from patient-specific gene rele-
vance networks and identified diverse prognostic gene pairs

[5]. Wang and Wei proposed a multivariate mixed model
(IMIX) framework to screen genes and CNV related to the
prognosis of pancreatic cancer, and the key genes identified
were positively correlated with CNV status [6]. Nikolova
et al. proposed a Bayesian multitasking method to infer the
key genes for PAAD occurrence [7]. HiFreSP, a high-
frequency subpath mining method, was proposed to identify
cancer risk factors and the molecular pathways related to
prognosis [8].

From the perspective of digital signal processing, S. Wang
and X. Wang introduced a two-dimensional wavelet into
protein structure prediction for denoising [9]. Lin et al. used
stationary wavelet transform for sequence similarity analysis,
where wavelet transform was used to convert complex num-
bers obtained from cluster mapping into feature vectors [10].

Recently, combined with a convolutional neural network
(CNN), a stacked ensemble model was introduced to extract
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features and achieve satisfactory prognosis performance
[11]. Chen et al. proposed a deep-learning capsule network,
CapsNetMMD, which can transform gene identification into
a supervised classification problem, outperforming classic
machine learning methods [12]. DeepType is also a deep
learning-based algorithm for cancer subtype classification,
which effectively combines supervised learning and unsu-
pervised clustering [13]. Hao et al. proposed a sparse deep
neural network, PASNet, for prognostic analysis and identi-
fication of complex biological processes related to prognostic
pathways [14].

Both CNN for feature extraction and discrete wavelet
transform in signal processing were adopted to tumor sub-
type classification in medical imaging [15]. Meintjes et al.
utilized CNN and continuous wavelet transform in the clas-
sification of heart sounds [16]. In the segment study of brain
tumor, wavelet transform can enhance the CNN structure,
thus leading to effectively improve the image processing
capability [17].

Although massive contributions were completed in can-
cer diagnosis and treatment, to significantly reduce its mor-
bidity and mortality, it is still required to thoroughly identify
feasible biomarkers for the occurrence and development in
combination with multisource data and to comprehensively
reveal its tumorigenesis mechanisms.

Therefore, this work attempted to identify the combinato-
rial predictors for PAAD prognosis through the integration of
multisource genomic, epigenomic, and clinical information.
We proposed a novel deep learning-based method with wave-
let feature selection to construct the PAAD prognostic model.
With the mRNA profiling (RNA-seq), DNA methylation, and
corresponding clinical information retrieved from The Cancer
Genome Atlas (TCGA), the constructed model was validated
by the predictive ROC (receiver operating characteristics) test
on the 3-year and 5-year survival rates, respectively. Together,
our proposed model was compared with classic LASSO and
previous wavelet-based approaches quantitatively, rendering
enhanced performance with less predictor consideration.
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Figure 1: The pipeline to identify key genes and construct a prognostic risk model. The initial three parts mainly cover the procedures to
retrieve, identify, and analyze key genes. The last part is the construction of the prognostic risk model.
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In the rest of the paper, Section 2 presents a detailed
method proposal and multisource datasets under study;
Section 3 discusses the validation and comparison results
for the method; Section 4 draws the conclusion and high-
lights the future direction.

2. Materials and Methods

Figure 1 depicts the analytic pipeline to identify candidate
prognostic predictors based on multisource genomic and epi-
genomic profiling and clinical information for PAAD. The ini-
tial step is to retrieve multisource mRNA profiling (RNA-seq)
and DNA methylation (Infinium HumanMethylation450K)
data from TCGA and determine differentially expressed genes
(DEGs) with the cutoff criteria (∣log FC ∣ ≥1:5 and the
adjusted p value < 0.05) and determine differential methyla-
tion probes (DMPs) with the cutoff criteria (∣deltaBeta ∣ >0:2
and the adjusted p value < 0.05). The key gene candidates
are filtered through integrating the DEGs and DMPs; specifi-
cally, the key genes are the DEGs that interact with differential
methylation probes. Secondly, a new DSWTmethod based on
deep learning is used for feature extraction from key genes.
And functional enrichment analysis was performed on the
screened key genes to identify functional clues. Enrichment
analysis includes Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomics (KEGG) analysis. After perform-
ing Cox regression analysis on the genes obtained after
feature selection of 56 kinds of wavelet basis functions, a prog-
nostic model of five genes was finally formulated.

Compared with the traditional LASSO method and the
latest method SWT-CNN, the predictive ability of the pro-
posed deep learning method is significantly higher than that
of LASSO [18] and SWT-CNN [19].

2.1. Gene Expression Data and DNA Methylation Data
Information. The gene expression profiling, DNA methyla-
tion, and clinical information in this study were retrieved
from TCGA, including 178 tumor and 4 normal samples.
Table 1 lists the data statistics adopted in this study. We
detected the DEGs between tumor and normal tissue sam-
ples using edgeR [20], with the ∣log FC ∣ ≥1:5 and adjusted
p value < 0.05 and identified the DMPs with the ∣deltaBeta
∣ >0:2 and adjusted p value < 0.05 as the cutoff criteria using
ChAMP [21].

2.2. Deep Learning-Based DSWT Method for
Feature Selection

2.2.1. One-Dimensional Stationary Wavelet Transform for
Noise Removal. Wavelet transform has been widely used in
signal processing and computer vision [22, 23]. Regarded
as an extension of short-time Fourier transform (STFT), it
can effectively solve the limitation that the shape and size
of the STFT window do not change with frequency. In many
signals, the low-frequency part is particularly important.
Based on the Mallet algorithm, discrete wavelet transform
(DWT) can effectively extract the low-frequency part of
the signal, also known as noise removal [24].

With a mother wavelet ψððt − bÞ/aÞ, the continuous
wavelet transform of a function xðtÞ can be formulated as.

CWTx a, bð Þ = 1ffiffiffi
a

p
ð∞
−∞

x tð Þψ t − b
a

� �
dt, ð1Þ

where a denotes the scale coefficient and b the translation
distance [25]. Frequently, the two parameters can be discre-
tized by the 2-base power series as.

a = 2j, b = k2j, for∀j, k ∈ℤ: ð2Þ

The mother wavelet ψðtÞ can be further reformulated as

ψj,k tð Þ = 1ffiffiffiffi
2j

p ψ
tffiffiffiffi
2j

p − k
� �

: ð3Þ

Thus, the corresponding discrete wavelet transform is
derived as

DWTx j, kð Þ = 1ffiffiffiffi
2j

p
ð∞
−∞

x tð Þψjk
tffiffiffiffi
2j

p − k
� �

dt, ð4Þ

where j denotes the scale coefficient and k is the translation
distance, respectively.

In this study, we adopted the one-dimensional discrete
stationary wavelet transform (DSWT) due to its transla-
tional invariance. Compared with DWT, the length of each
channel coefficient after decomposition is equal to the
original signal. The DSWT algorithm contains two steps:
(a) the input signal is divided into two coefficient sets, high
and low; (b) the low-frequency coefficient set is decomposed
by the method in (a). The details are depicted in Figure 2.

We use the wavelet to denoise the gene expression pro-
files. Here, we mainly choose the basis function of DSWT
based on three parameters: (a) decomposition layers, (b)
the family of wavelets, and (c) the corresponding basis func-
tion in a family of wavelets.

The number of decomposition layers has a great influ-
ence on noise removal. Too few layers may lead to a poor
denoising effect, but too many layers may also lead to signal
distortion. Here, we select the optimal number of decompo-
sition layers according to the degree of distortion of the sig-
nal when setting different decomposition layers.

Here, we mainly consider 8 wavelet families and corre-
sponding 56 basis functions, which are daubechies (basis
function: dbi, i = 2, 3, 4, 5, 6, 7, 8), symlets (basis function:
sym i, i = 2, 3, 4, 5, 6, 7, 8), coiflets (basis function: coif i, i =
2, 3, 4, 5), biorSplines (basis function: biori, i = 1:1, 1:3, 1:5,
2:2, 2:4, 2:6, 2:8, 3:1, 3:3, 3:5, 3:7, 3:9, 4:4, 5:5, 6:8), reverse-
Bior (basis function: rbioi, i = 1:1, 1:3, 1:5, 2:2, 2:4, 2:6, 2:8,
3:1, 3:3, 3:5, 3:7, 3:9, 4:4, 5:5, 6:8), haar, dmeyer, and Fejer-
Korovkin (basis function: fki, i = 4, 6, 8, 14, 18, 22), respec-
tively (Table 2).

For its outstanding capabilities in processing matrix-wise
information, the CNN method develops rapidly and is
applied in quite a few topics [26, 27]. Here, we utilized it
in feature extraction. The DSWT results serve as the network
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input; specifically, 70% of the input samples were selected as
the training set and 30% as the test set.

2.2.2. Step Function for Determining Gene Scores. A score
metric is assigned to each gene to evaluate its importance
in prognosis. There are two procedures to acquire the gene
score: (a) the gene weight matrix Cn×m obtained by CNN
and (b) sparse matrix Dq×m. Matrix C is calculated according
to the output matrix A of the maximum pooling layer of
CNN. A is a three-dimensional matrix with dimension m
× n × p (m is the sample size of the input of CNN, n is the
number of features, and p is the number of channels). After
averaging the matrix A, according to the number of channels
P, we get the matrix Cn×m. We assume the expression matrix
of DEGs is Bq×m. Here, we obtain the matrix D by the
formula similar to a step function [28].

Dij =
0, Bij < 0

1  Bij ≥ 0

(
, s:t: HR > 1, ð5Þ

Dij =
1, Bij < 0

0  Bij ≥ 0

(
, s:t: HR < 1, ð6Þ

where HR is obtained by univariate Cox analysis of DEGs.
The relationship between Bij and 0 is corresponding to the
gene expression level and its median. And the matrix Eq×n
can be denoted as.

Eq×n =Dq×mC
T
n×m: ð7Þ

Then, individual gene score (GS) is estimated as.

GSi =
1
n
〠
n

i=1
〠
n

j=1
Eij: ð8Þ

2.2.3. Functional Enrichment Analyses. Gene Ontology (GO)
analysis is utilized to describe three types of gene products,
biological process (BP), molecular function (MF), and cellu-
lar component (CC). Then, we further systematically inter-
rogated KEGG pathways to link genomic profiling status to
higher-order functional information.

2.3. Cox Regression Analysis. The Cox Proportional Hazards
model, essentially a statistical regression model, is adopted
to investigate the association between the survival time of
patients and potential predictive factors [29].

2.3.1. Univariate Cox Regression Analysis. The genes obtained
by feature selection were analyzed by a univariate Cox regres-
sion model, and the relationship between the gene expression
level and its corresponding patient survival time was analyzed.
The results of univariate Cox regression analysis included
regression coefficient (β), risk ratio (95% confidence interval),
z, Wald test results, and p value [29].

2.3.2. Multivariate Cox Regression Analysis. Cox risk regres-
sion analysis was performed to assess the mutual effect of

several predictive factors on survival outcomes. Specifically,
initial screening was carried out on the genes obtained by
univariate Cox regression; then, multivariate Cox regression
analysis was performed on the screened genes. After both
univariate and multivariate analyses, a candidate gene with
its p value less than 0.05 can be considered an independent
predictor.

2.4. Construction of Multivariate Cox Regression Prognostic
Model. The prognostic risk score (PRS) for a multivariate
Cox regression model was calculated based on a linear com-
bination of regression coefficients and the corresponding
gene expression level, respectively.

PRS = 〠
N

i=1
Expi ∗ βi: ð9Þ

The median threshold of total risk scores divides the
samples into the high-risk and low-risk groups.

To analyze the relationship between PAAD patients’ risk
score and overall survival and their risk score, p value < 0.05
was the significance test level, and the risk score had a signif-
icant impact on the overall survival of PAAD patients. The
prognosis was predicted by the Kaplan-Meier curve and
the Cox regression model, and the sensitivity was tested by
the subject’s working curve.

Furthermore, in evaluating model performance, the true
positive rate (TPR, or sensitivity), a measure of the propor-
tion of positive cases in the data that are correctly classified,
is defined as

Table 1: Statistics of gene expression profiling, DNA methylation,
and clinical cohort information of PAAD under study.

PAAD clinical cohort Statistics

Tumor 178

Normal 4

Histological type

PDAC 146

Pancreas-colloid carcinoma 4

Other 28

Survival status (tumor)

Living 86

Deceased 93

Follow-up (months) 0.13-132.97

Age (years)

Range 35-88

Median 61.3

Gender (tumor)

Male 98

Female 80

#. (Epi)genomics data

mRNA profiling (DEGs) 17240

DNA methylation (DMPs) 10648
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TPR =
TP

TP + FN
, ð10Þ

where TP denotes true positive and FN for false negative.
And the false positive rate (FPR or fall-out), the proportion
of negative cases incorrectly classified as positive cases in
the data, is introduced as

FPR =
FP

FP + TN
, ð11Þ

where FP denotes false positive and TN for true negative. A
ROC (receiver operating characteristic) curve, parameter-
ized with the above measures, is utilized to evaluate the per-
formance of a classification model at all classification
thresholds. An AUC (area under the ROC curve) is intro-
duced to measure the classification efficiency.
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Figure 2: DSWT algorithm. (a) The input signal is divided into two coefficient sets, high and low; (b) the low-frequency coefficient set is
decomposed by the method in (a). Lo_D: low pass filter; Hi_D: high pass filter.

Table 2: A total of eight typical wavelet family functions adopted in the study.

Wavelets Description

daubechies ψ tð Þ =∑kgkϕ 2t − kð Þ, ϕ tð Þ: scale function, gk : weight
symlets An improvement over db and approximate symmetric wavelet function

coiflets Compared with db, ψ tð Þ and ϕ tð Þ have better symmetry

biorSplines The input signal f(t),

Decompos : Cj,k tð Þ = Ð
f tð Þ~ψ j,k tð Þdt

Reconstruct : f tð Þ =∑j,k~Cj,kψj,k tð Þ
s:t: the dual waveletψj,k tð Þ and ~ψj,k tð Þ

8>>><
>>>:

reverseBior Biorthogonal spline wavelets for which symmetry and exact reconstruction are possible

haar ψ tð Þ =
1, 0 ≤ t < 1/2ð Þ,
−1, 1/2 ≤ t ≤ 1ð Þ,
0, otherwise

8>><
>>: , ϕ tð Þ =

1, 0 ≤ t ≤ 1ð Þ,
0, othewise

(

dmeyer Discrete Meyer wavelet, FIR-based approximation of Meyer wavelet

Fejer-Korovkin It has an optimal progressive resolution.

Table 3: Performance comparison among the eight typical wavelet-
based and classic LASSO and SWT-CNN methods.

Method Basis
AUC at 3
years

AUC at 5
years

Predictors

haar haar 0.618 0.756 5

dmeyer dmeyer 0.823 0.869 7

symlets sym3 0.806 0.904 5

coiflets coif4 0.696 0.788 5

daubechies db7 0.804 0.867 5

biorSplines bior1.5 0.787 0.937 5

reverseBior rbior2.8 0.852 0.897 10

Fejer-
Korovkin

fk14 0.672 0.861 5

SWT-CNN sym4 0.721 0.859 8

LASSO 0.782 0.802 11
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3. Results

We retrieved mRNA profiling data (RNA-seq) and filtered
the candidate genes satisfying the cutoff criteria, ∣logFC ∣ ≥
1:5, and adjusted p value < 0.05, as the DEGs; in the DNA
methylation dataset (Infinium HumanMethylation450K),
we filtered the methylation positions satisfying the cutoff
criteria, adjusted p value < 0.05, and ∣deltaBeta ∣ >0:2 as
DMPs, then identified the key genes related to DMPs using
ChAMP [21]. Then, we merged the DEGs and the genes
related to DMPs as the key genes. After the screening analy-
sis, totally 3864 gene candidates were obtained.

3.1. DSWT-Based Noise Removal Analysis. In this study,
through experiment validation, it is most reasonable to set
the number of decomposition layers of DSWT at 2. A total
of 56 wavelet basis functions are selected to remove the
noise. The optimal basis function was obtained after the
prognostic analysis. The evaluation criteria of the optimal
wavelet basis function include two parts: (a) the prognostic
model constructed has the best prognosis performance; (b)
the least number of predictors is involved in the correspond-
ing prognostic model. The major performance comparisons

are provided in Table 3, and the detailed comparison analy-
ses on the proposed method, classic LASSO, and wavelet-
based methods with diverse predictors are listed in addi-
tional file 1.

3.2. CNN-Based Feature Extraction. Since the gene positions in
the expression matrix are not correlated, a one-dimensional
CNN is adopted in this study to construct a 9-layer deep neu-
ral network, as depicted in Figure 3.

To achieve robust experimental results, the feature
extraction process was repeated 100 times. Then, the model
with the optimal predicted results of the test dataset was
reserved for the subsequent analysis. The step function
defined in Section 2.2.2 was utilized to score 3864 key genes,
and the functional analysis was based on the top 1000 genes.
Then, Cox analyses were performed based on the top 200
genes. According to the performance comparison among
the constructed prognosis models, bior1.5 is adopted as the
optimal wavelet basis in our proposed model.

3.3. Functional Enrichment Analysis. The key genes identi-
fied from the feature selection were further performed with
GO and KEGG analyses, respectively. Figure 4 depicts the
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size: 2
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Units: 128
Rate: 0.40

Output
size: 2Input
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Filter: 48
kernel: 3

Convolution
Flattern

Dense
Dropout

Figure 3: The CNN model structure for feature extraction. The proposed deep model consists of 9 layers, namely, convolutional layer, max-
pooling layer, convolutional layer, max-pooling layer, batch normalization layer, flatten layer, hidden layer, dropout layer, and output layer,
with the size and link noted above.
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GO function and KEGG pathway enrichment results for the
key genes.

The significantly enriched KEGG pathways of the DEGs
are illustrated in Figure 4(a). These pathways mainly include
MAPK signaling pathway, pancreatic cancer, pancreatic
secretion, and ECM-receptor interaction. The full results of
KEGG pathway analyses are shown in additional file 2. In
Figures 4(b)–4(d), the results indicate that the key genes
were mainly enriched in these BP terms as extracellular
structure organization, extracellular matrix organization,
digestion, and cell adhesion; and CC terms cover secretory
granule membrane, cell-cell junction, and actin filament;
MF terms include serine-type peptidase activity, endopepti-
dase activity, and actin binding. All the results of GO analy-
sis about the BP, CC, and MF terms are shown in additional
files 3 to 5, respectively.

3.4. Cox Regression Analysis and Construction of the
Prognostic Model. First, univariate Cox regression analysis
was carried out on key genes to filter satisfactory candidate
predictors, wherein the stepwise regression was conducted

on the results of the univariate Cox regression analysis.
Afterwards, the prognostic models are further constructed
with multivariate Cox analysis based on the initially filtered
candidates.

The prognostic ability of the established model was eval-
uated by calculating the AUC value of the ROC curve to
select the optimized prognostic model. The detailed decom-
position results are depicted in Table 3. According to
Table 3, the optimal prognosis model was acquired when
the biorSplines wavelet family was selected and the smooth-
ness was 1.5.

Comparatively, the prognostic model with the biorS-
plines basis bior1.5 can achieve the AUC value 0.937 with
5 predictors in the 5-year survival case; while in the 3-year
survival case, the reverseBior wavelet rbio2.8 can achieve
the AUC value of 0.852 on 10 predictors. However, the clas-
sic LASSO method requires at least 11 predictors to achieve
the AUC, 0.782 for the 3-year case, and 0.802 for the 5-year
case; the previous SWT-CNN requires at least 8 genes to
achieve the AUC 0.721 for the 3-years and 0.859 for the 5-
year case.
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Figure 4: Illustration of KEGG and GO analysis results for the key genes in PAAD. (a) the KEGG pathways of the key genes; (b) the
biological process (BP); (c) the cellular component (CC); (d) the molecular function (MF).
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Table 4: The univariate and multivariate Cox regression analysis results.

Univariate Cox Multivariate Cox

Candidates HR (95% CI) p value HR (95% CI) p value

ABHD8 0.5712 (0.4411-0.7397) 0.00001

MCF2L 0.58195 (0.456-0.7426) 0.00003 0.6378 (0.454-0.897) 0.0097

FAM184B 0.6376 (0.5084-0.7997) 0.00010 0.7063 (0.517-0.965) 0.0287

GPRC5A 1.27261 (1.1239-1.441) 0.00010 1.0309 (0.804-1.323) 0.8108

KRT19 1.4003 (1.1809-1.6606) 0.00010 1.3305 (1.005-1.761) 0.0460

PADI1 1.1260 (1.0585-1.1978) 0.00020

TNS4 1.1852 (1.0839-1.2961) 0.00020

SEMA3C 1.29315 (1.1238-1.488) 0.00030

MUCL3 1.0985 (1.0426-1.1572) 0.00040

RNF223 1.24345 (1.102-1.4031) 0.00040

PCAT2 1.2261 (1.0947-1.3733) 0.00040

C6orf132 1.3850 (1.1484-1.6703) 0.00070

C5orf49 0.8046 (0.7097-0.9123) 0.00070

GABBR1 0.73285 (0.6096-0.881) 0.00090

ARID3A 0.6824 (0.5442-0.8558) 0.00090

FOSL1 1.2481 (1.0938-1.4242) 0.00100

CHGA 0.9029 (0.8494-0.9598) 0.00100

KRT8 1.4131 (1.1458-1.7428) 0.00120

PLS1 1.30127 (1.1046-1.533) 0.00160

CNIH2 0.8180 (0.7215-0.9274) 0.00170

RYK 1.6625 (1.2059-2.2921) 0.00190

CTSE 1.1388 (1.0482-1.2372) 0.00210

GBP4 1.2933 (1.0965-1.5255) 0.00230 1.3814 (1.139-1.676) 0.0010

GALNT5 1.1870 (1.0626-1.3259) 0.00240 0.9135 (0.743-1.123) 0.0391

MAPT 0.83235 (0.739-0.9375) 0.00250

TRIM59 1.4513 (1.1282-1.8671) 0.00370

PLAC8 1.2037 (1.0616-1.3649) 0.00380

TECPR1 0.6379 (0.4698-0.8663) 0.00400

GRIN2C 0.7433 (0.6068-0.9105) 0.00420

RASAL1 1.25077 (1.073-1.4579) 0.00420

CALHM31 1.1261 (1.0353-1.2249) 0.00560

FGF12 0.8187 (0.7081-0.9467) 0.00690

TCEA2 0.7593 (0.6204-0.9293) 0.00760

KRT5 1.0792 (1.0202-1.1416) 0.00790

TINAG1 1.1122 (1.0281-1.2031) 0.00800

KCNK3 0.8803 (0.8010-0.9674) 0.00810

CAPN5 1.2323 (1.0548-1.4396) 0.00850

SLCO4A1 1.1957 (1.0465-1.3663) 0.00860

KCNK12 0.8240 (0.7122-0.9532) 0.00920

FSTL4 0.8815 (0.8015-0.9694) 0.00930

GPR78 1.2335 (1.0527-1.4452) 0.00940

FOXA2 0.8482 (0.7381-0.9746) 0.02020 1.0812 (0.891-1.313) 0.4300

DUOX2 1.0933 (1.0138-1.1791) 0.02060

HDAC4 0.7096 (0.5308-0.9487) 0.02060

MPPED2 0.8509 (0.7413-0.9768) 0.02180

SDK1 0.8594 (0.7549-0.9784) 0.02200

STAC 1.1520 (1.0199-1.3012) 0.02280

VRK2 1.3697 (1.0399-1.8043) 0.02520

ITGBL1 1.1277 (1.0126-1.2557) 0.02860
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Figure 5: Continued.
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Figure 5: Continued.
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The results of our proposed method outperformed the
other two methods overall; thus, the biorSplines basis was
adopted as the variable selection in constructing the progno-
sis model. Then, univariate and multivariate Cox regression
analyses were further performed on the predictor candi-
dates, detailed in Table 4.

Table 4 depicts the univariate and multivariate Cox
regression analysis to filter the prognosis risk candidates,
wherein five molecules, namely, MCF2L, FAM184B,
KRT19, GBP4, and GALNT5, were determined as the pre-
dictors. Thus, after the above quantitative comparison, the
final optimal prognosis model is denoted with the five
molecular risk predictors.

PRS = −0:342 ∗ ExpFAM184Bð Þ + 0:300 ∗ ExpKRT19ð Þ
+ 0:318 ∗ ExpGBP4ð Þ + −0:070 ∗ ExpGALNT5ð Þ
+ −0:412 ∗ ExpMCF2Lð Þ:

ð12Þ

3.5. Kaplan-Meier Survival Analysis. Each patient’s risk score
was calculated using the prediction function based on the
constructed prognosis model in Equation (12). The cohorts
were divided into two groups, the high-risk group and the
low-risk group, respectively.

The survival rates were calculated from the high-low risk
groups, and the corresponding Kaplan-Meier survival dia-

gram is illustrated in Figure 5(a); and for the comparison
of prognosis potentials of individual molecules, the other
five molecular predictors are provided in Figures 5(b)–5(f).
Noticeably, the three predictors involved in the 5-molecule
prognosis model are statistically significant, namely,
FAM184B, KRT19, and MCF2L (log-rank test p value <
0.05). Noticeably, although the five protein-coding genes
have not been reported in PAAD, they have interfered with
other disease or pathway dysfunction, for example,
interferon-gamma signaling and cytokine signaling in
immune system, GPCR pathway, and p75 NTR receptor-
mediated signaling.

3.6. Comparison with Other Typical Methods. The prognostic
power of the established model was evaluated by the AUC
value of the ROC curve with the SWT-CNN and classic
LASSO methods (Figure 6), where the AUC measure for
the 3- and 5-year terms was compared, respectively. The
AUC at 3 years of our proposed model is 0.787, and the
AUC at 5 years is 0.937, while for the classic LASSO method,
the AUC at 3 years and 5 years are 0.782 and 0.802, respec-
tively. For the SWT-CNN method, the AUC at 3 years and 5
years are 0.721 and 0.859, respectively. The results indicate
that the prognostic model proposed had a better sensitivity
in predicting the survival risk of PAAD patients.

P = 0.0044
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Figure 5: Kaplan-Meier survival analysis of the 5-molecule signature and individual predictors. (a) Kaplan-Meier survival curve analysis for
overall survival of PAAD patients using the 5-molecule signature. Survival in the low-risk group was much longer than in the high-risk
group; (b) overall survival distribution of FAM184B; (c) overall survival distribution of KRT19; (d) overall survival distribution of GBP4;
(e) overall survival distribution of GALNT5; (f) overall survival distribution of MCF2L.
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4. Conclusions and Discussion

Pancreatic cancer is a high-incidence tumor type with poor
clinical prognosis. There is an urgent need to develop effective
methods for the prognosis prediction of pancreatic cancer.
Thus, we proposed a novel CNN-based model to enhance
prognosis performance in PAAD through combining wavelet
transform features. In the work, we integrated mRNA expres-
sion and DNA methylation, together with cohort clinical
information into PAAD prognosis formulation, from an
ensemble perspective of multiple omics data.

Firstly, with the noise reduction functionality of wavelet
transform in signal processing, a 1D-DSWT was utilized to
denoise the identified key genes, specifically differentially
expressed genes overlapping with differentially methylated
loci. The number of decomposition layers, wavelet family,
and basis function types are considered in the wavelet func-
tion selection for denoising, and the low-frequency part of
the signal value is reserved for the subsequent analyses.

Then, a 9-layer CNN structure is trained for feature
extraction after the above noise reduction process. The weights
of candidate genes are obtained from feature extraction, spe-
cifically the output matrix of the CNN pooling layer, for sub-
sequent analysis. A scoring measure is proposed for weighting
important molecular predictors involved in pancreatic cancer
prognosis. The score consists of three parts, the HR value
obtained by univariate Cox regression analysis of the key
genes, the sparse matrix constructed by the step function of
HR value, and the weights derived from the CNN structure.

Through enrichment analysis of the screened genes, it
indicates that these identified genes are involved in many
biological activities closely related to pancreatic cancer,
which manifests the biological significance of the candidates
to the prognosis of pancreatic cancer.

The initial candidate genes in the scoring process were
adopted for univariate Cox analysis to compress the candi-
date space; then after multivariate Cox regression, five mol-
ecule predictors were screened out to construct the
prognosis model. To verify the survival predictive capability,
the constructed model and individual predictors have been
examined with survival analysis via Kaplan-Meier estimate,
respectively. The constructed model has significant statistical
predictive ability on high- and low-risk cases (p value:
0.00007). For the other three individual factors, it also man-
ifested the underlying survival prognosis significance (p
value: 0.0012~0.024).

Moreover, to validate the prediction performance and
measure the diagnostic accuracy of quantitative tests, the
proposed prognosis model was compared with the tradi-
tional LASSO and wavelet-based methods in the 3- and 5-
year prediction AUC scores, respectively. In three prediction
cases, our proposed model with discrete stationary wavelet
base (bior1.5) got the optimal results, especially in the 5-
year case. We applied the proposed method to the other
tumor type, stomach adenocarcinoma (STAD). The results
were superior to some previous methods, proving that our
proposed method has a certain degree of robustness. The
data and specific results are shown in additional file 6.

Lasso_AUC at 3 years = 0.782
Bior1.5_AUC at 3 years = 0.787
SWT_CNN_AUC at 3 years = 0.721
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Figure 6: Performance comparison with the SWT-CNN and traditional LASSO methods. (a) AUC at 3 years: bior1.5_AUC at 3 years =
0:787, lasso_AUC at 3 years = 0:782, and SWT-CNN at 3 years = 0:721; (b) AUC at 5 years: bior1.5_AUC at 5 years = 0:937, lasso_AUC
at 5 years = 0:802, and SWT-CNN at 5 years = 0:859.
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In the future study, the proposed method will be applied
to diverse cancer types and multiple clinical and biological
profiling data to further test its robustness and flexibility in
tumor prognosis. Furthermore, combined with the charac-
teristics of pancreatic cancer data distribution, specific pro-
cessing measures for high-dimensional unbalanced data are
another focus in the subsequent analysis. The processing of
class imbalanced data can be further combined with feature
selection to improve the model accuracy and reduce the
complexity of the model.
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