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Significant progress has been made in the management of Wilms tumor (WT) in

recent years, mostly as a result of collaborative efforts and the implementation of

protocol-driven, multimodal therapy. This article offers a comprehensive overview of

current multidisciplinary treatment strategies for WT, whilst also addressing recent

technical innovations including nephron-sparing surgery (NSS) and minimally invasive

approaches. In addition, surgical concepts for the treatment of metastatic disease,

advances in tumor imaging technology and potentially prognostic biomarkers will be

discussed. Current evidence suggests that, in experienced hands and selected cases,

laparoscopic radical nephrectomy and laparoscopic-assisted partial nephrectomy for WT

may offer the same outcome as the traditional open approach. While NSS is the standard

procedure for bilateral WT, NSS has evolved as an alternative technique in patients

with smaller unilateral WT and in cases with imminent renal failure. Metastatic disease

of the lung or liver that is associated with WT is preferably treated with a three-drug

chemotherapy and local radiation therapy. However, surgical sampling of lung nodules

may be advisable in persistent nodules before whole lung irradiation is commenced.

Several tumor markers such as loss of heterozygosity of chromosomes 1p/16q, 11p15

and gain of function at 1q are associated with an increased risk of recurrence or a

decreased risk of overall survival in patients with WT. In summary, complete resection

with tumor-free margins remains the primary surgical aim in WT, while NSS and minimally

invasive approaches are only suitable in a subset of patients with smaller WT and low-risk

disease. In the future, advances in tumor imaging technology may assist the surgeon in

defining surgical resection margins and additional biomarkers may emerge as targets for

development of new diagnostic tests and potential therapies.

Keywords: nephroblastoma, kidney neoplasm, surgical oncology, nephron sparing surgery, minimal invasive

surgery, nephrectomy, therapy, biomarkers
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INTRODUCTION

Renal solid tumors account for ∼5% of all childhood tumors
with 8.3–15.1 cases per one million person-years worldwide
(1–3). Over 90% of these renal malignancies are Wilms
tumors (WT; syn. nephroblastoma) presenting at a peak
incidence of 2–3 years of age (4). The majority of cases
are sporadic, whereas 10–15% present in relation to genetic
malformation syndromes predisposing to tumor development
such as Beckwith-Wiedemann, Denys-Drash or WAGR (i.e.,
WT, aniridia, genitourinary anomalies and range of intellectual
disabilities) (5).

The first successful nephrectomy for a WT in a 2-year-
old boy by Thomas Richard Jessop in 1877 (Leeds, England),
the first histopathological description of WTs by “Max” Wilms
in 1899 (Leipzig, Germany) as well as the introduction of
radiation therapy and cytotoxic chemotherapy in the 1950s
and 1960s are the foremost origins of what has led to today’s
treatment standards for WT patients (6–8). Collaborative studies
by the National Wilms Tumor Study Group (NWTS)/Renal
Tumor Committee of the Children’s Oncology Group (COG)
in North America and by the International Society of Pediatric
Oncology (SIOP) in Europe laid the groundwork for protocol-
driven treatment plans. Today, a combination therapy of
surgical resection, adjuvant and/or neoadjuvant chemotherapy
and in some cases irradiation achieves an overall survival (OS)
exceeding 90% for localized WT, 75% for metastasized WT and
50% in the case of WT recurrence (9).

Despite the good outcome for the majority of patients with
WT, some remain at risk for poor survival or have a treatment
related long-term risk of side effects (10). Risk factors for reduced
event-free survival (EFS) and OS are: more than two-third
blastemal cells within the tumor after induction chemotherapy
(SIOP protocol, 8–9% of patients), anaplastic histology (5–
10% of patients), loss of heterozygosity (LOH) at chromosomes
1p/16q (12 and 17% of patients, respectively), (non-resolving)
metastasis (12–17% of patients), bilateral WT (5–8% of patients)
and recurrent WT (20% of patients) (11–19). These patients
need intensive chemotherapy and radiation therapy, thus putting
them at risk for treatment related side effects. Overall, 25% of
WT patients suffer from subsequent side effects such as renal
failure, cardiac toxicity, pulmonary restrictive disease, infertility
and secondary malignancies (20, 21).

Recent and ongoing clinical trials drive treatment strategies
toward a more and more risk-based and individualized
therapy approach. The identification of personal risk
factors will eventually confine intensive therapy to smaller
subgroups of patients, thus reducing chemotherapy-
related and radiation-related side effects for others without
reducing survival.

This article provides a comprehensive overview of current
multidisciplinary treatment strategies for WT, whilst also
addressing recent technical innovations including nephron-
sparing surgery (NSS) and minimally invasive approaches. In
addition, surgical concepts for the treatment of metastatic
disease, advances in tumor imaging technology and potentially
prognostic biomarkers will be discussed.

CURRENT DIAGNOSTIC WORK-UP AND
STAGING

The incidental palpation of an asymptomatic abdominal mass
is the most common presentation of a child with WT. In only
20% of cases, the presentation consists of malaise, pain, fever,
gross hematuria or renal hypertension (22, 23). Rarely, an acute
abdomen due to tumor rupture is the first presentation of a WT.
In other cases, WT is diagnosed by routine ultrasonography in
patients with conditions predisposing for WT such as Beckwith-
Wiedemann syndrome or in patients in whom metachronous
metastasis is suspected.

Abdominal ultrasonography is the first diagnostic choice to
confirm a renal mass. To differentiate a WT from other renal
masses (e.g., kidney malformations) or masses in close proximity
to the kidney (e.g., neuroblastoma), abdominal MRI- and CT-
scans are the current standards of imaging. Urine analysis for
catecholamines and metaiodobenzylguanidine scintigraphy can
also help to discriminate neuroblastoma from WT. Further
work-up includes laboratory tests screening for tumor-associated
anemia and thrombocytopenia, kidney malfunction, altered liver
enzymes in case of liver metastasis and disrupted coagulation
such as WT-acquired von Willebrand disease.

In the NWTS-4, patients with a diagnostic biopsy had a higher
risk for local recurrence leading to an upgrading of a stage I and
II tumor to a stage III tumor in later protocols (24). An upstaging
is not recommended in the SIOP protocol, as studies have not
confirmed local recurrence (except in case of open tumor biopsy)
(25). In general, biopsies should only be considered when a
tumor different to WT is suspected. This is usually the case when
renal tumors present at an age older than 6 years, the mass is
completely extra renal or imaging shows distinct calcifications
suggesting a histology other than WT (26).

MRI, CT and ultrasound scans contribute to pretreatment
staging. The contralateral kidney should be screened for
synchronous bilateral disease. Aortocaval and hilar lymph nodes,
lung and liver need to be screened for metastasis. CT scans (with
or without contrast) have replaced plain X-ray images of the
chest to detect lung metastasis (27–30). Contrast MRI (or CT)
and ultrasound examinations will need to assess extension of the
tumor into the renal vein and vena cava. Echocardiography is
warranted to assess heart function and the venous extension of
a tumor thrombus into the atrium (31–33).

Current staging systems of WT are based on imaging and
surgical findings such as local tumor stage (e.g., complete vs.
incomplete resection, perioperative tumor rupture or lymph
node metastasis), bilateral disease and hematogenous metastasis
to the lung and liver (rarely bone, brain or other sites)
(Table 1). The histopathology of the resected tumor defines
the prognostic risk group. The NWTS/COG classifies tumors
in favorable and unfavorable, whereas SIOP differentiates low-,
intermediate- and high-risk tumor histopathology according to
the predominant cell components within the tumor (30, 34, 35)
(Table 2).

In recent years, central review panels assist in staging,
radiology interpretation, surgical decision-making and
histology examinations of patients with WT [established by

Frontiers in Pediatrics | www.frontiersin.org 2 July 2022 | Volume 10 | Article 852185

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Theilen et al. Multidisciplinary Treatment Strategies for Wilms Tumor

TABLE 1 | Current staging systems of WT according to NWTS/COG and SIOP (post-surgery).

Stage NWTS/COG staging SIOP staging

I Complete resection with

negative margins

Primary tumor within renal capsule, no capsule involvement

No extension to renal sinus

Tumor is confined to the kidney, no penetration of the

renal capsule

No tumor infiltration of the vessels at the renal sinus, the renal

pelvis and the ureter

II Complete resection with

negative margins

Primary tumor penetrating renal capsule but not Gerota’s

fascia

Lymphatic and venous involvement at renal sinus

Viable tumor is present within

– soft tissue of renal sinus

– the wall of renal pelvis or ureter

Tumor extension into renal vein/vena cava Viable tumor is present but completely resected within

– perirenal fat

– blood vessels/lymphatic vessels at the renal sinus

– adjacent organs (except adrenal gland)

– vena cava

III Incomplete resection,

residual tumor

Macroscopic or microscopic residual disease

– Preoperative biopsy of the tumor (including open and

percutaneous biopsy)

– Tumor rupture pre- or intraoperatively, removal of tumor

tissue in fragments

– Positive retroperitoneal/abdominal lymph node(s)

– Peritoneal involvement

– Positive resection margins at ureter, renal vein, main tumor

Viable tumor

– at the resection margin

– at the site of tumor rupture

Viable or non-viable tumor

– in abdominal lymph nodes

– thrombus at the resection margin of ureter, renal vein, vena

cava

– implants within the abdominal cavity

– penetrating through the peritoneal surface

Venous tumor thrombus resected piecemeal

Open tumor biopsy prior to chemotherapy

IV Metastatic disease Hematogenous metastasis (e.g., lung, liver, bone or brain) Hematogenous metastasis (e.g., lung, liver, brain or bone)

Lymphatic metastasis beyond abdominal and retroperitoneal

lymph nodes

V Bilateral disease Bilateral synchronous disease (+ stage should be evaluated

for each side separately)

Bilateral synchronous disease (+ stage should be evaluated

for each side separately)

TABLE 2 | Prognostic risk groups for WT according NWTS/COG and SIOP relating to the histopathology of embryonal renal tumors in childhood.

NWTS/COG SIOP

Prognostic risk

group

Histology (pre-chemotherapy) Prognostic risk

group

Histology (post-chemotherapy)

Mesoblastic histology Mesoblastic nephroma* Low-risk Mesoblastic nephroma*

Cystic partially differentiated nephroblastoma*

Completely necrotic WT after

neoadjuvant chemotherapy

Favorable histology WT with

– epithelial

– stromal

– blastemal

Intermediate- risk WT with

– epithelial

– stromal

– or mixed cell components

– or mixed (triphasic)

cell components

Regressive histology features

Focal anaplasia

Unfavorable histology WT with focal and diffuse anaplasia High-risk WT with

– blastemal cells

– diffuse anaplasia

Renal rhabdoid tumor*

Renal clear cell sarcoma*

Renal cell carcinoma*

*Non-Wilms tumors.

the NWTS/COG (i.e., AREN03B2 umbrella study) as well as by
the SIOP-Renal Tumor Study Group (RTSG) (i.e., UMBRELLA
SIOP-RTSG 2016; https://fnkc.ru/docs/SIOP-RTSG2016.pdf)]
(30, 34, 36). It has been shown that the COG central review
adjusted the initial risk stratification in ∼20% of cases (23).

Centralized review and assistance by WT study groups may
eventually lead to more concise outcome data. To integrate and
combine the complex sets of medical data, e-health tools have
been developed such as “p-medicine” utilized by the UMBRELLA
SIOP-RTSG protocol.
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OVERVIEW OF CURRENT
MULTIDISCIPLINARY TREATMENT
STRATEGIES

The two most commonly applied treatment regimens for WT
derive from the NWTS/COG and SIOP. Current treatment
protocols of both groups are based on the concept of
risk-adapted therapy including surgery, chemotherapy and
irradiation. Throughout the multiple WT studies, patients have
been identified as requiring either intensified or reduced therapy
according to their individual risk factors. The NWTS/COG-
based protocols have followed the concept of upfront tumor
resection to plan therapy according to biological information
and local stage of the tumor. In contrast, the SIOP protocol
includes upfront chemotherapy before surgical resection to
shrink and downstage the tumor, thus increasing the chance
for complete resection and minimizing the operative risk of
a tumor rupture. However, in case of a kidney tumor in a
child under 6 months of age, the SIOP protocol recommends
upfront tumor resection, as most kidney tumors in this
age group either need no further therapy (e.g., congenital
mesoblastic nephroma) or need intensified chemotherapy at
the outset (e.g., malignant rhabdoid tumors) (30). Local stage
and tumor biology findings are used for a risk-modified
treatment. Despite these strategic treatment differences between
the NWTS/COG and SIOP approach, patient outcome is
nearly identical.

Metastatic Disease
About 10–12% of patients with WT present with metastasis.
Lymph node, lung and liver are the most prominent metastatic
sites. In recent studies, particular attention has been given to
the treatment of lung metastasis in WT. Standard treatment
for lung metastasis has consisted of escalated systemic therapy
and whole lung radiation therapy (WLRT) regardless of
lung nodule response. In the NWTS/COG AREN0533 study,
patients with complete response in chest CT scans after 6
weeks of DD-4A did not receive further WLRT. However,
patients with incomplete response and those with LOH at
chromosomes 1p/16q received additional intensified therapy
with four cycles of systemic cyclophosphamide and etoposide
andWLRT according to the NWTS/COG protocol (Box 1). Both
groups, complete and incomplete responders, had significantly
improved 4-year EFS and OS estimates (85.4 and 95.6%,
respectively) compared to the previous NWTS-5 (72.5 and
84.0%, respectively) (27). Similar results have been stated
by SIOP (17) (Box 2). In uncertain lung lesions on chest
CT or in so-called “slow incomplete responders” assessed
by chest CT imaging, some studies encourage to biopsy (at
least two) such lesions to certify metastasis before WLRT is
applied (37).

Aspects of Surgical Intervention
Complete resection with tumor-free margins remains the
primary surgical aim for cure ofWT. Generally, the NWTS/COG
protocol schedules surgical resection initially after diagnosis
before any further treatment. Neoadjuvant chemotherapy is only

given to NWTS/COG protocol-treated patients in cases, in which
the tumor has ruptured preoperatively, the tumor is deemed
to be irresectable (e.g., large tumors with intraoperative risk
for rupture, extensive organ invasion with the risk for organ
removal and venous tumor extension beyond the hepatic veins)
or the patient is at risk for anesthesia-related complications
due to cardiocirculatory compromise by a high tumor burden
or extensive venous thrombosis. In contrast, SIOP protocol-
treated patients are typically operated after four cycles of
neoadjuvant chemotherapy.

General Surgical Principles
In unilateral WT, complete tumor nephroureterectomy through
a transabdominal approach is the standard of surgical care
for NWTS/COG- and SIOP-treated patients. The ureter should
be resected along the tumor kidney and divided as close as
possible to the bladder as the tumor may extend along the
ureter. For local staging, hiliar and (inter-)aortocaval lymph
node sampling as well as peritoneal exploration is required.
Lymph node sampling should be performed even in cases
of negative nodal preoperative imaging. An insufficient nodal
dissection may lead to under-staging and under-treatment in
cases positive lymph nodes remain undetected (24, 38). The
impact of an undefined lymph node status in patients with
WT has been reviewed by many studies. For instance, NWTS-
4 and NWTS-5 both demonstrated an increased likelihood of
finding a positive lymph node when more than seven lymph
nodes were sampled (39). OS has also been shown to improve
significantly with the number of resected lymph nodes (i.e., 5-
year OS of 87% with no lymph nodes sampled to 95% with more
than 10 lymph nodes sampled) (40). In the current treatment
protocols, dissection of at least seven lymph nodes is therefore
recommended (30, 34).

The general nature of WT growth is expansion (i.e., pushing
organs away). In rare cases, adherence or invasion to adjacent
organs such as liver, diaphragm, adrenal gland or bowel
is seen. Table 3 summarizes general surgical principles in
(unilateral) WT.

Special (surgical) considerations have to be respected in case
of large tumors, ruptured tumors, intravascular tumor extension,
bilateral tumors, tumors in syndromic patients and tumors in a
horseshoe kidney.

Large Tumors and Tumor Rupture
Preoperative tumor rupture or intraoperative tumor spill is
of particular concern in WT as it creates a risk for local
recurrence (24, 47). Spontaneous or traumatic tumor rupture
is detected on preoperative imaging at a rate ranging between
3 and 23% (24, 48, 49). Intraoperatively, tumors larger than
12 cm in diameter are noted to be at risk for rupture (50).
Patients treated according to the NWTS/COG protocol (i.e., no
preoperative chemotherapy) have a risk of intraoperative tumor
spillage of up to 10% (38, 50). An intraoperative spillage rate
of 12% has been reported by SIOP in patients who had not
received preoperative chemotherapy treatment (51). However,
among SIOP-treated patients with neoadjuvant chemotherapy,
the risk for intraoperative tumor spillage had decreased to around
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BOX 1 | Basic treatment principles of WT as per NWTS/COG (covering most clinical situations).

Stage I (patients <2 years of age): Tumors with favorable histology and tumor kidney weight <550 g: RN without further treatment

Stage I and II: Tumors with favorable histology: RN + adjuvant chemotherapy with regimen EE-4A for 18 weeks; tumors with favorable histology and LOH 1p/16q:

RN + adjuvant chemotherapy with regimen DD-4A for 24 weeks

Stage III: Tumors with favorable histology: RN + adjuvant chemotherapy with regimen DD-4A for 24 weeks + flank RT; tumors with favorable histology and LOH

1p/16q: RN + adjuvant chemotherapy with regimen M for 31 weeks + pulmonary RT

Stage IV: Tumors with favorable histology and isolated lung metastasis: RN + adjuvant chemotherapy with regimen DD-4A for 24 weeks + whole-lung RT; tumors

with favorable histology and LOH 1p/16q: RN + adjuvant chemotherapy with regimen M for 31 weeks + pulmonary RT

Stage V: Neoadjuvant chemotherapy with DD-4A for 6–12 weeks, partial nephrectomy, adjuvant chemotherapy depends on path

LOH, loss of heterozygosity; RN, radical nephrectomy; RT, radiation therapy; regimen EE-4A (vincristine, dactinomycin for 18 weeks); regimen DD-4A (vincristine,

dactinomycin, doxorubicin for 24 weeks), regimen M (vincristine, dactinomycin, doxorubicin, cyclophosphamide, etoposide).

BOX 2 | Basic treatment principles of WT as per SIOP (covering most clinical situations).

Stage I–III: Neoadjuvant chemotherapy (except patients <6 months of age: RN) with AV for 4 weeks followed by RN, adjuvant therapy is determined by local stage

and histology:

– Stage I: No further treatment to patients with RN and low-risk histology, all other patients receive chemotherapy with either AV for 4 weeks (intermediate-risk

tumors, TV <500ml) or AVD for 27 weeks (high-risk tumors, TV >500ml)

– Stage II: Chemotherapy with AV for 27 weeks (low- and intermediate-risk tumors, TV <500ml) or with HR-1 for 34 weeks (high-risk tumors, TV >500ml) + flank

RT for high-risk tumors

– Stage III: Chemotherapy with AV for 27 weeks (low- and intermediate-risk tumors, TV <500ml) + flank RT for intermediate-risk tumors or with HR-1 for 34 weeks

+ flank RT (high-risk tumors, TV >500ml)

Stage IV: Neoadjuvant chemotherapy with AVD for 6 weeks, re-imaging of metastatic lesions before RN, continuation adjuvant therapy depending on remission of

metastasis:

– Complete remission of metastasis: AVD for 27 weeks

– Incomplete response of metastasis: HR-1 for 34 weeks + RT of metastatic organ, surgical resection of metastatic lesions can be attempted when feasible without

risk of organ morbidity

– High-risk histology of the primary tumor: HR-1 for 34 weeks + RT of metastatic organ

Stage V: Neoadjuvant chemotherapy with AV for 4–6 weeks (12 weeks maximum) followed by surgery with the aim of nephron-sparing surgery, adjuvant

chemotherapy according to the histopathological subtype + abdominal/flank RT in appropriate cases.

AV, (actinomycin D, vincristine); AVD, (actinomycin D, vincristine, doxorubicin); HR-1, (etoposide, carboplatin, cyclophosphamide, doxorubicin); low-risk, (i.e., complete

necrosis); intermediate-risk, (i.e., blastemal tumor components); high-risk, (i.e., predominant blastemal, anaplastic components); RN, radical nephrectomy; RT,

radiotherapy; TV, tumor volume after neoadjuvant therapy.

3%. This is advocated as one of the major surgical advantages
of the SIOP approach (51, 52). Once rupture of the tumor
capsule is evident (pre- or intraoperatively), NWTS/COG stage
I-II tumors are upgraded to stage III tumors. Upon preoperative
surgical assessment, the NWTS/COG protocol provides the
option for neoadjuvant chemotherapy when preoperative tumor
rupture is evident, tumor spill is likely at surgery or the
tumor deems unresectable without significant morbidity due
to its size (24). The UMBRELLA SIOP-RTSG 2016 protocol
also adjusts treatment to stage III when viable tumor cells
are detected microscopically at the area of rupture (34).
In addition to the upstaging of the tumor with intensified
chemotherapy, whole abdominal irradiation for diffuse tumor
spillage or an irradiation boost to the flank is applied in most
cases (30, 53).

Intravascular Extension
In 4–10% of patients with WT, the tumor extends into the renal
vein or inferior vena cava, whereas an extension into the right
atrium or ventricle occurs in around 1–3% of cases (43, 54–57). A
complete picture of a possible intravascular extension is essential

for planning anesthesia and surgery. For example, an extensive
tumor thrombus to the cardiac atrium may lead to cardiac
deprivation and the need for cardiopulmonary bypass surgery for
its resection (31, 56, 58). As the venous tumor extension is not
always seen on preoperative imaging, intraoperative exploration
by manual palpation and/or ultrasonography of the renal vein is
mandatory. In general, excision of a tumor thrombus needs to
be achieved in continuity, as dissection will upstage the tumor
to stage III. The NWTS/COG protocol therefore recommends
neoadjuvant treatment when intravascular tumor extends up to
or above the hepatic veins (43, 59). It has been demonstrated
that in 45–87% of patients with a tumor thrombus in their
inferior vena cava, preoperative chemotherapy led to a size
reduction improving surgical conditions (43, 60, 61). However,
cardiac tumor extensions are often less responsive to neoadjuvant
therapy, but in cases of good responds, cardiopulmonary bypass
surgery can be avoided (43, 56).

Bilateral WT
About 6–7% of patients develop synchronous and <1%
metachronous bilateral WT (15, 62). The prevalence is higher
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TABLE 3 | General surgical principles in unilateral WT to achieve local control.

Organ/Structure Surgical measure Comment References

Tumor kidney Radical resection, avoid tumor spillage Tumor spillage will lead to stage upgrading and more

intensive therapy, tumor rupture is associated with

relapse

(24, 41)

Ureter Division at the most distal level (closest to the bladder) To achieve negative margins in case of tumor

involvement of the ureter

(42)

Renal vein, inferior

vena cava

Palpation and/or intraoperative ultrasonography to rule

out tumor extension, en-bloc excision of a venous tumor

thrombus

Complete tumor removal, en-bloc resection of the tumor

thrombus together with the primary kidney tumor to

avoid tumor tissue dissection and upstaging of the tumor

(43)

Lymph node Sampling of hiliar, paracaval and paraaortic lymph nodes

(and suspicious mesentery lymph nodes)

Local staging, sampling of more than seven lymph nodes (34, 41)

Ipsilateral adrenal

gland

Can be left in situ when easily separated from the tumor

kidney and when without signs of tumor involvement

Incidence of tumor invasion into the gland in <5% of

cases

(44)

Diaphragm En-bloc resection in case of adherent tumor To avoid spillage dissecting the tumor off the diaphragm (30)

Liver Extensive en-bloc resection or partial hepatectomy is not

recommended in case of direct spread

Minimize secondary liver complications, no benefit

shown for survival in case of extensive hepatic resection

(24, 45)

Bowel Partial resection of intestine/colon In case of tumor infiltration

Peritoneum Peritoneal exploration Local staging, sign of tumor extension

Contralateral kidney Exploration Only in case of a suggested contralateral kidney lesion or

enlarged contralateral lymph nodes in pre-operative

imaging, exploration should be done prior to tumor

nephrectomy of the primarily involved kidney to adapt

the surgical approach intraoperatively

(24, 38, 46)

in patients with genetic predisposition syndromes carrying WT1
gene mutations and loss of imprinting (LOI) at 11p15 (15). As
these genetic alterations are driving factors for early-disrupted
embryologic differentiation of the kidney tissue, (multifocal)
nephrogenic rests or nephroblastomatosis lesions are often
seen in bilateral WT (63, 64). Conditions predisposing to
metachronous bilateral WT are Denys-Drash syndrome, WAGR
syndrome, Beckwith-Wiedemann syndrome, Fanconi anemia
and familial WT. In these patients, up to 90% of WTs occur
within the first 7 years of life necessitating close routine screening
programs (15, 64).

Data from early studies revealed that patients with bilateral
WT have a higher risk to suffer from end-stage renal disease
(ESRD) within 20 years after treatment (cumulative incidence of
12% in bilateral WT vs. <1% in unilateral WT) (65). In patients
with predisposing conditions, renal insufficiency rates are even
higher (e.g., 83% in Denys-Drash syndrome and 43% in WAGR
syndrome) (66, 67). In cases of synchronous or potentially
metachronous bilateralWT, renal tissue can be preserved by NSS.
Best conditions for successful NSS are low volume tumors in
the kidney’s periphery (67, 68). Neoadjuvant chemotherapy to
confine the tumor enabling surgical resectability is therefore part
of all treatment protocols. In a selected group of patients with
bilateral WT, bilateral nephrectomy and kidney transplantation
may be considered as a treatment option to eliminate the
risk of initial or metachronous WT development (68, 69).
This subgroup includes patients with Denys-Drash syndrome
in whom prophylactic or secondary bilateral nephrectomy (in
case of ESRD) is an acceptable procedure (64, 70, 71). In these
patients, kidney transplantation is usually performed after 1–2
years of disease-free survival (64, 67).

Horseshoe and Solitary Kidneys
Wilms tumor in a horseshoe kidney is an exceptionally unique
situation. There is a historic collection of 41 patients reported
from the NWTS/COG (72). Surgical aims are the same as for
unilateral WT with complete tumor nephroureteroectomy and
lymph node sampling. However, some surgeons advocate NSS
(73). The treatment of WT in solitary kidneys is guided by the
same principles as for bilateral WT (30).

RECENT TECHNICAL INNOVATIONS

Nephron-Sparing Surgery
Performance of NSS is a necessity in children presenting with
bilateral WT (74). In unilateral WT, NSS must be considered
in syndromic patients with an increased risk of metachronous
development of (contralateral) WT, in patients with a solitary
kidney or an afunctional contralateral kidney as well as in patients
who are at risk of kidney failure (46). In non-syndromic unilateral
WT, NSS is not a standard procedure (75). Potential benefits are
prevention of functional renal impairment and ESRD, whereas
some long-term follow-up data suggest good renal function even
after unilateral radical nephrectomy (RN) for WT (65, 76–79).
However, higher rates of postoperative stage III WTs due to
positive resection margins have been reported (75). This required
conversion to RN and/or additional radiation therapy. Still,
EFS and OS were comparable to patients with RN (75, 80). If
NSS is considered in unilateral WT, careful patient selection
should be performed preoperatively (80). Davidoff et al. (81)
prospectively analyzed patients on NSS feasibility according to
radiological imaging and concluded that 8% of patients could
be treated with NSS. The SIOP-RTSG surgical panel formulated
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a list of preconditions under which NSS for unilateral WT
may be performed (i.e., tumor restricted to one pole, tumor
volume <300ml, no tumor rupture, no tumor in renal pelvis,
no continuous organ invasion, no venous tumor thrombus,
functioning kidney remnant after NSS) (30, 82).

Nephron-sparing surgery can be carried out by partial
nephrectomy (i.e., tumor resection with a rim of normal renal
tissue) or enucleation of the tumor (i.e., tumor resection without
a rim of normal renal tissue) (30). At present, there are no
available data comparing both methods. Method selection is
highly dependent on tumor localization, size and the presence of
multifocal lesions.

The main aim of NSS is to preserve as much healthy kidney
tissue as possible. Preoperative chemotherapy may contribute to
the preservation of renal tissue. The COG-AREN0534 reviewed
34 patients with predisposing conditions to bilateral WT
presenting with unilateral tumors. This study showed that partial
nephrectomy was feasible in 65% of patients after neoadjuvant
chemotherapy, avoiding tumor nephrectomy and sparing renal
tissue without compromising EFS and OS (46).

To assure a bloodless dissection and good visibility when
dissecting through the kidney’s parenchyma, intermittent
clamping of the renal vasculature may be helpful. Some surgeons
have advocated adopting operative techniques from adult
kidney cancer surgery such as inducing renal hypothermia (e.g.,
application of ice water into the kidney bed) in the attempt to
maximize the preservation of kidney tissue (62, 83, 84). As this is
not yet a standard approach, future studies will need to address
possible outcome benefits of this technique.

Another surgical adjunct is the use of intraoperative
ultrasound in NSS. For example, ultrasound-guided mapping of
the tumor nodules can aid to optimize surgical dissection lines,
thus preserving healthy kidney tissue. Still, its use has to be
critically reviewed as it does not guarantee tumor-free resection
margins (83).

Minimally Invasive Approaches
Laparoscopic RN and laparoscopic-assisted partial nephrectomy
is becoming more common for the treatment of WT as
comparable outcomes have been reported. Nevertheless, the
outcome analysis may be biased by the fact that laparoscopically
resected tumors have lower stages of disease (75, 85–90).
Additionally, robotic-assisted laparoscopy (RAL) is a developing
field in pediatric surgical oncology (91–94). However, the
experience of RAL inWT surgery is yet limited and its indications
need to be carefully discussed in tumor and surgical reference
boards (82, 94). In general, minimally invasive tumor resection
is limited to tumors confined to the kidney with good exposure
of the hilar vessels (85, 95). Large tumors may not leave enough
operating space for laparoscopy. Therefore, patient selection is of
the utmost importance (95, 96). In the UMBRELLA SIOP-RTSG
2016 protocol, the following prerequisites for laparoscopic RN
including RAL have been proposed: small, central tumors with
a rim of non-malignant renal tissue, extraction of the specimen
in a bag without morcellation, no venous tumor thrombus, no
continuous organ infiltration, no extension of the tumor beyond
the ipsilateral boarder of the spine, no imminent tumor rupture

(i.e., in case of no response to chemotherapy) and feasibility of
lymph node sampling as well as the operating surgeon is expected
to be experienced in minimally invasive nephrectomy (30, 82).
In all instances, performance of minimally invasive surgery must
adhere to the same general surgical principles of WT treatment
such as complete lymph node sampling and thoroughness of
resection (30).

ADVANCES IN TUMOR IMAGING
TECHNOLOGY

Diffusion-weighted imaging (DWI) MRI technique has added
a new quality to the available imaging modalities for WT.
By defining the whole-tumor apparent diffusion coefficient, it
provides information on the “cell density” of a tumor lesion,
assisting the radiologist in defining necrotic from viable lesions
after chemotherapy and small lesions in nephroblastomatosis
(97–99). Imaging research studies aim at defining histological
subtypes of WTs by DWI for radiologic assistance in risk
stratification (100–102).

Detecting hiliar and retroperitoneal metastatic lymph node
disease is critically important in WT (103, 104). Lymph node
metastasis can be occult and may not necessarily be apparent
by lymph node enlargement during the operation. To improve
lymph node sampling in WT, first feasibility studies have
been conducted to establish the concept of intraoperative
sentinel lymph node detection. Two techniques have been
described in the attempt to delineate the lymphatic drainage
of the involved kidney: injection of a radioactive tracer (e.g.,
technetium-99m phytate detected with an intraoperative gamma
probe) or a fluorescence dye (e.g., indocyanine green visible
under near-infra red laparoscopy) (103, 104). In this recently
published study, including unilateral WTs with indication for
tumor nephrectomy, sentinel lymph nodes were most frequently
detected in the aorto-caval space after injection of a radioactive
tracer into the normal kidney tissue adjacent to the WT (104).
Further systematic studies will be needed to standardize and
verify the advantages of this technique.

Surgical research on fluorescence-guided kidney surgery
has also evolved. Surgical procedures delineating perfusion
of the kidney including separation of the upper and lower
pole, visualizing renal masses (cysts) or mapping lymphatic
drainage (e.g., in lymphatic sparing varicocelectomy) have been
successfully executed (105, 106). These new surgical imaging
techniques may eventually have the potential to transform the
surgical approach in WT treatment.

PROGNOSTIC BIOMARKERS

The number of newly identified biomarkers in WT is growing
constantly. To date, more than 30 (epi-)genetic and protein
biomarkers have been suggested (107). Most of these biomarkers
are closely linked to tumorigenesis and predisposition of WT.
Some may eventually play a role in targeted therapy. One such
candidate is an antagonist of the Wnt/beta-catenin pathway,
tegavivint (BC2059), which is currently under investigation by
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the COG for its antitumor activity in recurrent and refractory
pediatric solid tumors including WT. Currently, patients
with WT-associated CTNNB1 oncogene mutations leading to
Wnt/beta-catenin pathway activation can be included in this
study (https://clinicaltrials.gov/ct2/show/NCT04851119) (108).

So far, only one genetic biomarker, i.e., LOH at chromosomes
1p/16q, has been integrated as a decision-making factor into
the current COG treatment protocol. In the presence of
LOH at chromosomes 1p/16q, patients with stage I and II
favorable WT histology will be upstaged from low to standard
risk receiving regimen DD-4A (i.e., vincristine, dactinomycin
and doxorubicine for 24 weeks) instead of regimen EE-
4A (i.e., vincristine and actinomycin D for 16 weeks) after
nephrectomy. The previous NWTS-5 showed a significantly
improved EFS and OS in patients with intensified therapy (27).
Intensified chemotherapy is also given to patients with LOH at
chromosomes 1p/16q and lung metastasis in the NWTS/COG
protocol. Although it serves as a sensitive marker for risk
stratification, LOH at chromosomes 1p/16q is only applicable in
a small subset of patients and presently it does not offer possible
treatment targets.

With 30% of favorable histology WT cases, one of the most
prevalent outcome predictors is gain of function (GOF) at
chromosome 1q. It is associated with significantly poorer EFS
and OS, as reported by the NWTS/COG and SIOP study groups,
and is currently under reinvestigation in the UMBRELLA SIOP-
RTSG protocol for its prognostic value (30, 109, 110).

In general, WT is considered an embryonal tumor consisting
of primordial renal cells disrupted to mature into differentiated
kidney tissue. Variable proportions of blastemal (i.e., renal
stem cells), epithelial and stromal cells have great influence
on tumor behavior and outcome. During kidney development,
organogenesis passes the stage of nephrogenic differentiation.
This stage of development can persist as intra- or perilobar
nephrogenic rests throughout the first few years of life and is a
very likely origin for WT tumorigenesis. One important factor
in driving embryonal renal differentiation is the transcription
factor WT1 on chromosome 11p13. Its mutation is linked to
the development of WT. WT1 mutations are reported in 10–
20% of sporadic WT cases (111). Together with mutations in the
CTNNB1 andAMER1 (WTX) tumor suppressor genes, it unfolds
its tumorigenic role by upregulation of the Wnt/beta-catenin
pathway (112). As germline alterations, WT1 mutations are
common in syndromic predisposition syndromes (e.g., Denys-
Drash syndrome and WAGR syndrome), bilateral WT and WT
with synchronous nephrogenic rests (5, 113, 114). Another
transcription factor that plays a role in bilateral as well as
in predisposing syndromes is WT2 on chromosome 11p15.
Mutations in this gene are much more abundant (i.e., 70%
of cases) with 40% in sporadic cases and 30% in Beckwith-
Wiedemann syndrome (115).

In recent research, mutations have been identified in
microRNA (miRNA) processing genes in about 20% of patients
with WT (116, 117). These alterations in miRNA processing are
thought to conserve the embryonal stage of kidney development
(116, 118). However, data concerning their influence of clinical
behavior in WT have not yet been specifically reported.

When analyzing molecular markers in tumor tissues, it is
important to consider that tumors consist of miscellaneous tissue
parts containing different levels of marker expression. This has
been shown for GOF at chromosome 1q, leaving a general
uncertainty in biopsies (109, 119).

In the majority of cases, biomarkers identify WTs with
treatment resistance and poor prognosis. Table 4 provides
an overview of transcription factors, oncogenes and tumor
suppressor genes directing at multiple different pathways
potentially involved in tumorigenesis of WT.

FUTURE DIRECTIONS

The concept of “personalized medicine” has already improved
the treatment of children with WT. The future trend will
increasingly be driven by two principles: (1) de-escalation
of therapy with the aim to define the appropriate level of
treatment to achieve the best outcome while minimizing
secondary side effects, and (2) identifying tumor-related and
personal risk factors justifying escalation of therapy. To address
these principles, the two large WT consortia of the COG and
SIOP have designed new prospective studies (i.e., AREN03B2
umbrella study within the COG registry “Project: Every Child”
and UMBRELLA SIOP-RTSG protocol, respectively) to collect
and overlay clinical and biological data on a profound scale.
Within these registries, both groups have established systematic
biospecimen banks with tumor and blood samples available for
prospective and retrospective analysis. Due to the fact that many
prognostic (bio-)markers, such as blastemal histology or LOH
at chromosomes 1p/16q, are only identified in a small subset of
patients, treatment centers worldwide are encouraged to enroll
patients (30).

Molecular research has identified a multitude of genetic and
protein biomarkers for WT that may eventually assign patients
into more specific risk groups. Among the most prevalent and
promising prognostic markers for adverse outcome is GOF
at chromosome 1q, which is currently under investigation as
part of the UMBRELLA SIOP-RTSG protocol. Other markers
may potentially serve as therapeutic targets. Patients with
recurrent or refractory WT and alteration of the Wnt/beta-
catenin pathway can be included in a therapeutic phase I/II
application study of tegavivint (BC2059). The study is open for
a number of different pediatric solid tumors with refractory
treatment response and mutational activation of the Wnt/beta-
catenin pathway.

Genomic sequencing programs such as TARGET
(Therapeutically Applicable Research to Generate Effective
Treatments) in the United States and FACT (Factors Associated
with Childhood Tumors) in the United Kingdom have
accelerated the discovery of inherited and acquired factors
possibly responsible for the development of WT (128–130).
The growing knowledge on tumor biology and genetics will
increasingly influence the decision-making process, and
contribute to the general understanding of tumorigenesis of WT.

Another important field of research with respect to WT
biomarkers is the identification of tumor DNA in blood or
urine samples. In patients enrolled in SIOP and UKCCSG/CCLG
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TABLE 4 | List of selected biomarkers with potential relevance for WT prognosis and/or tumorigenesis.

Biomarkers, Gene Incidence Relevant findings Reference

CTNNB1 15% – Stromal predominant histology

– Upregulation of the Wnt/beta-catenin pathway

– Patients with CTNNB1 mutations leading to upregulation of the Wnt/beta-catenin pathway

are currently included in phase II trials as a possible treatment target for tegavivint (BC2059)

(10, 108, 111)

LOH 1p/16q 5.0% in WT with

favorable histology and

9.4% in relapsed WT

– NWTS-5: LOH 1p/16q predicted inferior 4-year EFS and OS in stage III and IV tumors (11, 107)

LOH 1p 12% – NWTS-5: Significantly increased rate of relapse and decreased OS independent of tumor

stage and histology

– Predicting WT relapse (RR 2.93)

(11, 107)

LOH 16q 17% – NWTS-5: Significantly increased rate of relapse and decreased OS independent of tumor

stage and histology

– Predicting WT relapse (RR 1.95)

(11, 107)

GOF 1q 30.0% overall and

18.3% in stage IV WT

– No histologic pre-dominance

– NWTS-5: Inferior 4-year EFS and OS in stage I, III and IV tumors

– Predicting relapse (RR 2.86) unrelated to tumor stage

(107, 109, 110)

WT1 (chr. 11p13) 10–20% – Predominant stromal histology

– Simultaneous presence of intralobar nephrogenic rests

– WT1 mutations and LOH 11p15 associated with relapse

– Germline mutations in Denys-Drash syndrome and WAGR syndrome

– 90% of patients with Denys-Drash syndrome and 50% with WAGR syndrome develop WT

(5, 111, 112,

114, 120)

WT2 (chr. 11p15) 70% – Germline mutation in Beckwith-Wiedemann syndrome

– 4–5% of patients with Beckwith-Wiedemann syndrome develop WT

– IGF2 upregulation

(115)

LOH 11p15 – IGF2 upregulation

– Increased risk of recurrence

– Described in anaplastic WT, relapse, and fatal cases

(107)

LOI 11p15 30–50% – Leading to H19 and IGF2 activation and unrestrained cell growth

– Predicting relapse in low-risk WT treated with surgery alone

(120, 121)

WTX (AMER1) 15–20% – Upregulation of the Wnt/beta-catenin pathway

– Combined with epigenetic 11p15 alterations

(111, 122)

miRNA processing genes 20% – Mutations in miRNA processing genes including DROSHA (80% of miRNA mutations in WT),

DGCR8 and DIS3L2 (Perlman syndrome)

(116–118)

MLLT1 4% – High prevalence of intralobar nephrogenic rests (123)

MYCN <10% – Described in treatment resistance, relapse, and fatal cases

– Detected at higher proportion of pre-treated anaplastic WT (>30%), potential marker for

treatment resistance

(124)

LOH 11q – Higher detection in mixed and diffuse anaplastic WT

– Associated with recurrence and fatal cases

(124)

SIX1 and SIX2 5–10% – Blastemal predominant histology

TRIM28 5% – Mature epithelial histology predominant

– Excellent prognosis

– Frequent in bilateral and familial cases

(107, 125, 126)

TP53 (chr. 17p13) 5% – 75% in diffuse anaplastic tumors

– Found primarily in advanced tumor stages

– Significantly poorer outcome in stage III and IV anaplastic tumors

– Linked to increased recurrence

(105, 106)

CTR9 Described in four

families and sporadic

cases

– Non-syndromic WT predisposition (127)

GOF, gain of function; LOH, loss of heterozygosity; LOI, loss of imprinting; WT, Wilms tumor.

(United Kingdom Children’s Cancer Study Group/Children’s
Cancer and Leukemia Group), a 5–12% rate of misdiagnosis
has been reported in patients without biopsy or primary surgery
(131). In the near future, so-called “liquid biopsies” may aid in
establishing WT diagnosis and screening patients in follow-up
programs for recurrent WT (131–133).

Recent studies have focused on the global epidemiology of
WT, offering a broad picture of who is at risk for the development
of WT not only by world region, ethnic background, gender
and age, but also by socioeconomic status and health care
accessibility (1, 3, 134). The highest WT incidence rates have
been reported in North America in children of African-American
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descent, whereas the lowest was seen in children in East Asia
(2). Differences in genetics have also been reported by ethnicity
and world region. For instance, the genetic alteration of the IGF-
2 gene locus playing the driving role in overgrowth syndromes
and WT was less frequently seen in children with WT from
Japan in comparison to Caucasian children (2, 135, 136). Future
research will need to overlay epidemiology with genetic data in
larger patient cohorts to identify populations at risk for WT
development, treatment resistance or worse outcome.

Centralized review of WT imaging and pathology as well
as treatment guidance has more and more been integrated in
current treatment protocols. In previous studies, discrepancies in
institutional and central histopathology interpretation have been
reported in 20–50% of cases (9, 35). Ultimately, centralized data
review may lead to more coherent data sets.

Despite significant progress in molecular biology, research
defining biomarkers and identification of new treatment
targets for WT, technical advances in imaging, surgery and
radiation therapy will evenly be important. In the future,
artificial intelligence algorithms of tumor imaging and 3-D
reconstructions ofWTmay assist the surgeon in defining surgical
resection lines, thus improving surgical outcome particularly in

cases of NSS (106, 137). In addition, advances in the application
of radiotherapy such as intensity-modulated radiation therapy
sparing non-tumorous tissue and limiting radiation-associated
toxicity will be beneficial for the WT patients (138, 139).
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