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Abstract—Brain Age Gap Estimation (BrainAGE) is an esti-
mate of the gap between a person’s chronological age (CA) and a
measure of their brain’s ‘biological age’ (BA). This metric is often
used as a marker of accelerated aging, albeit with some caveats.
Age prediction models trained on brain structural and functional
MRI have been employed to derive BrainAGE biomarkers, for
predicting the risk of neurodegeneration. While voxel-based and
along-tract microstructural maps from diffusion MRI have been
used to study brain aging, no studies have evaluated along-tract
microstructure for computing BrainAGE. In this study, we train
machine learning models to predict a person’s age using along-
tract microstructural profiles from diffusion tensor imaging.
We were able to demonstrate differential aging patterns across
different white matter bundles and microstructural measures.
The novel Bundle Age Gap Estimation (BundleAGE) biomarker
shows potential in quantifying risk factors for neurodegenerative
diseases and aging, while incorporating finer scale information
throughout white matter bundles.

Index Terms—BrainAGE, machine learning, tractometry, dif-
fusion tensor imaging, diffusion MRI

I. INTRODUCTION

Brain Age Gap Estimation (BrainAGE) is widely used as
a metric of accelerated aging, and to predict a person’s risk
of developing neurodegenerative diseases. BrainAGE makes
the distinction between a person’s chronological age and an
estimate of their biological age. The difference between these
measures can be useful in predicting the risk of dementia,
and all-cause mortality [1]. BrainAGE is often estimated from
voxel-based brain MRI data using multivariate machine learn-
ing models. Studies have shown the association of BrainAGE
with cognitive decline and dementia severity [2]. Interpretabil-
ity analysis reveals spatial patterns that correspond to the
profile of atrophy associated with healthy aging [3].

Diffusion MRI (dMRI) [4] is sensitive to alterations in
white matter (WM) microstructure, which, in turn, is affected
in neurodegenerative diseases such as Alzheimer’s disease.
WM microstructure is typically studied using scalar metrics
calculated at the voxel- or region of interest (ROI) level,
such as those derived from diffusion tensor imaging (DTI)
[5]. However, tractography can be used to reconstruct WM
tracts as 3D geometric models of their trajectories, and these
provide more detailed representations of their underlying
structure. Tractometry is an approach that integrates tissue
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Fig. 1. Scalar maps of DTI metrics are mapped to each point on a bundle.
Along-tract segments are created using the atlas bundle as a reference, so that
they are aligned across subjects. DTI metrics are averaged for all points that
belong to each segment to create the bundle profile for downstream tasks.

microstructural metrics with tractography reconstruction to
map WM abnormalities along the length of the tract [6]–[8].
Using 3D convolutional neural networks (CNN), scalar maps
from diffusion tensor imaging (DTI) have been employed
for age prediction in diverse cohorts [9]–[11]. However, few
studies have evaluated the predictive performance of along-
tract profiles for brain aging. Kruper et al. trained a 1D
CNN model for glaucoma classification from along-tract mi-
crostructural profiles, and found that the visual pathways (optic
radiation tracts) performed better than non-visual pathways
[12]. However, no work has examined along-tract features for
brain age analysis using tractometry approaches.

In this study, we propose the BundleAGE framework for
age prediction using along-tract microstructural profiles of
4 widely used DTI metrics for 31 major WM tracts in
the brain. Along-tract profiles serves as an effective middle
ground between the high-granularity of whole-brain voxel-
wise analysis, and the coarse resolution of measures averaged
over larger ROIs.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.16.608347doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.16.608347
http://creativecommons.org/licenses/by-nc-nd/4.0/


All

AxD

FA

MD

RD

0.32 0.42 0.51 0.39 0.35 0.42 0.37 0.29 0.53 0.39 0.40 0.41 0.35 0.33 0.35 0.35 0.33 0.31 0.34 0.27 0.33 0.49 0.43 0.39 0.42 0.48 0.41 0.31 0.45 0.38 0.52

0.22 0.22 0.30 0.23 0.30 0.35 0.25 0.20 0.48 0.18 0.30 0.27 0.27 0.30 0.20 0.28 0.22 0.23 0.33 0.08 0.12 0.40 0.22 0.30 0.35 0.33 0.33 0.24 0.38 0.34 0.36

0.18 0.17 0.44 0.18 0.23 0.27 0.27 0.18 0.45 0.25 0.28 0.34 0.20 0.16 0.31 0.15 0.20 0.21 0.29 0.25 0.27 0.37 0.41 0.26 0.31 0.30 0.31 0.22 0.36 0.26 0.31

0.26 0.36 0.46 0.30 0.27 0.40 0.28 0.23 0.47 0.35 0.39 0.29 0.24 0.22 0.31 0.29 0.27 0.30 0.13 0.08 0.24 0.31 0.25 0.27 0.36 0.38 0.36 0.25 0.26 0.35 0.45

0.24 0.43 0.43 0.31 0.33 0.36 0.32 0.28 0.46 0.35 0.31 0.34 0.22 0.16 0.31 0.27 0.27 0.25 0.20 0.15 0.30 0.41 0.40 0.30 0.30 0.35 0.28 0.25 0.32 0.31 0.45

All

AxD

FA

MD

RD

120 109 96 108 118 111 112 118 95 105 110 107 105 124 115 117 117 102 104 124 109 98 107 106 106 100 106 103 100 111 91

122 130 117 123 120 118 120 125 96 127 114 123 112 126 128 120 121 111 103 137 123 110 121 113 111 114 113 109 106 111 104

130 135 103 128 122 124 124 128 100 118 119 113 117 141 120 131 132 110 109 124 113 108 108 115 115 115 115 104 109 123 109

125 113 105 115 124 114 120 123 101 110 110 118 112 132 118 123 122 106 117 139 117 117 124 121 116 114 112 105 110 113 95

126 108 101 118 118 119 120 119 104 110 117 113 117 138 121 127 124 108 113 135 110 104 112 118 118 114 120 104 111 120 99

AF_L
AF_R C_L C_R

EMC_L

EMC_R
FAT_L

FAT_R
IFOF_L

IFOF_R
ILF

_L
ILF

_R

MdLF
_L

MdLF
_R

SLF
_L

SLF
_R

UF_L
UF_R

STT_L
STT_R

CC_F
orc

eps
Majo

r

CC_F
orc

eps
Mino

r
CCMid

CST_L
CST_R

FPT_L
FPT_R

OPT_L
OPT_R

OR_L
OR_R

All

AxD

FA

MD

RD

0.57 0.67 0.72 0.63 0.61 0.66 0.62 0.54 0.75 0.63 0.64 0.65 0.61 0.60 0.61 0.60 0.61 0.57 0.59 0.57 0.59 0.70 0.70 0.63 0.66 0.71 0.65 0.57 0.68 0.63 0.74

0.50 0.47 0.56 0.49 0.56 0.62 0.52 0.46 0.71 0.46 0.60 0.58 0.53 0.57 0.50 0.56 0.49 0.49 0.59 0.35 0.36 0.64 0.51 0.55 0.60 0.60 0.58 0.49 0.62 0.60 0.61

0.44 0.45 0.67 0.44 0.49 0.53 0.54 0.44 0.68 0.51 0.55 0.60 0.45 0.42 0.58 0.41 0.49 0.49 0.54 0.55 0.52 0.62 0.70 0.51 0.57 0.58 0.57 0.48 0.63 0.54 0.57

0.52 0.61 0.68 0.57 0.53 0.63 0.54 0.49 0.70 0.59 0.63 0.56 0.50 0.50 0.57 0.55 0.54 0.58 0.36 0.34 0.50 0.57 0.56 0.53 0.60 0.63 0.60 0.50 0.52 0.60 0.69

0.51 0.68 0.66 0.56 0.58 0.61 0.58 0.53 0.69 0.59 0.57 0.60 0.49 0.42 0.56 0.53 0.55 0.53 0.46 0.44 0.55 0.65 0.68 0.55 0.56 0.61 0.54 0.50 0.57 0.57 0.68

0.1

0.2

0.3

0.4

0.5

R
2

100

110

120

130

140

M
AE

 (m
on

th
s)

0.4

0.5

0.6

0.7

Pe
ar

so
n 

r

Fig. 2. Coefficient of determination (R2), mean absolute error (MAE), and Pearson’s correlation coefficient (r) for each random forest regression model
trained on the microstructural profile of 31 WM bundles, which include features from AxD, FA, MD, RD and all concatenated features.

II. METHODS

A. Data

We analyzed data from 568 healthy controls (HC) from
the Lifespan Human Connectome Project Aging (HCP-A)
study (239 male / 329 female; 36-100 years old; mean age:
57.45± 14.07 (SD) years) [13]. Accquisition parameters for
the diffusion and T1-weighted structural images can be found
in [14]. Preprocessing of dMRI of includes denoising using
local principal component analysis [15] and Gibbs ringing
correction [16], [17] implemented in DIPY [18], followed
by the HCP pipeline [19]. Diffusion images registered to
the MNI space were used to fit diffusion tensors at each
voxel using the non-linear least-squares method to produce
four scalar maps of fractional anisotropy (FA), mean (MD),
radial (RD), and axial (AxD) diffusivity. Fiber orientations
were reconstructed using Robust and Unbiased Model-BAsed
Spherical Deconvolution (RUMBA-SD) [20] with Contextual
Enhancement [21]. Whole-brain tractograms were generated
using particular filtering tracking [22], with 27 seeds per voxel
generated from the WM mask, a step size of 0.75 mm, angular
threshold of 30◦, and the continuous map stopping criterion.
BundleSeg [23] was used to segment 31 WM tracts using the
population-averaged HCP-842 atlas [24].

The Bundle Analytics (BUAN) tractometry pipeline [7] was
employed to create bundle profiles of four microstructural
metrics along 50 tract segments aligned across subjects for 31
tracts. Namely, scalar maps of these metrics were mapped to
each point on each streamline and averaged for each segment,

see Figure 1. A truncated mean was computed discarding the
top and bottom 10% of values for each segment to reduce the
effect of outliers. This resulted in 50 features per DTI metric
per subject to be used for the age prediction task.

B. Age Prediction Model

We first created an 80/20 train/test split across all partici-
pants stratified by sex, resulting in 454 training and 114 test
subjects. The 80% training split was then used to train a
random forest (RF) regression model (implemented in scikit-
learn v1.1.1) to predict the chronological age, measured in
months. For each bundle and DTI metric, we performed a
grid search over the following parameters using 5-fold cross-
validation (CV) on the 80% training data: the maximum
depth of the tree (5, 10, 15), the number of trees in the
forest (100, 250, 500), the maximum number of features used
for split (7, 20, 35, 50), and the minimum number for a
leaf node (1, 3, 5). Training data for each CV fold was
standardize to have zero mean and unit variance, and the same
scaler parameters were applied to the remaining data. The
coefficient of determination (R2) was used to evaluate each
model during grid search, and the best performing model was
then applied to the 20% held-out test set for evaluation. In
addition to R2, we also calculated the mean absolute error
(MAE) and Pearson correlation coefficient (r) between the
model predicted biological age and chronological age.

In addition training the RF model on 50 along-tract features
for each DTI metric, we concatenated features from mean
profiles 4 DTI metrics to create 200 features per bundle,
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Fig. 3. Along-tract feature importance for 4 DTI measures of the three best performing bundles from models trained on the concatenated features.

and trained an additional model using the same procedures
described above.

III. RESULTS

Results of three evaluation metrics – R2, MAE, and r –
for the age prediction model of bundle profiles, are shown
in Figure 2. For all bundles and metrics, the predicted brain
age values are significant correlated (pFDR < 0.05) with the
chronological age, after controlling for multiple test with FDR
correction. Out of all bundles, models trained on inferior
fronto-occipital fasciculus left (IFOF L), cingulum left (C L)
and optic radiation right (OR R) achieved the best perfor-
mance on three evaluation metrics. Models trained on the
spino-thalamic tracts (STT R) in the brainstem had the worst
performance, along with the middle longitudinal fasciculus
right (MdLF R).

Models trained on concatenated features outperformed sin-
gle metric features except for RD of AF R, AxD of STT L.
The DTI metrics used for age prediction reflect different
characteristics of water diffusion, and when combined, can
provide more comprehensive information for the model. For
models trained on bundle profiles of single metric, MD and RD
performed better than FA and AxD on average, consistent with
prior literature examining the relationship between regional
DTI measures with age [25], [26]. The best performing model
out of all experiments is the along-tract concatenated profile
of OR R, which achieved an MAE of 91 months (7.58 years)
on the test set.

The random forest regression model produces an impurity-
based feature importance score, in which a higher value
corresponds to a more important feature (bundle segment in
our experiments). We plot the along-tract feature importance
scores for the three best performing bundles from models

trained on the concatenated features in Figure 3. For these
bundles, patterns of feature importance are similar across
DTI measures, with AxD being the most dissimilar from
the other measures. Salient features are concentrated in the
frontal regions of the C L and IFOF L bundle, and are more
widespread than salient features for OR R.

Due to the age-dependent bias of the brain age gap [27], we
used correlation-constrained linear regression to calculated a
corrected brain age [28]. Scatter plots of the chronological age
versus the corrected biological age of the two best performing
models trained on single metric features are shown in Figure
4.

Fig. 4. Comparison of chronological age (CA) and biological age (BA) for
the two best performing models trained on single metric features.

IV. CONCLUSIONS AND FUTURE WORK

In this study, we propose bundle-specific brain age predic-
tion using along-tract microstructural profiles from 31 major
WM bundles. Machine learning models trained on these pro-
files achieve the best performance for the right optic radiation
(OR R), left inferior fronto-occipital fasciculus (IFOF L), and
left cingulum (C L), as well as the corpus callosum. Although
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models trained on concatenated features performed the best,
profiles of MD and RD, which characterize diffusion in
non-principal directions, outperform AxD and FA, consistent
with prior literature. By retaining spatial variability of tissue
microstructure along WM tracts that are often lost in ROI-
based methods, while avoiding the computational challenges
associated with 3D whole-brain models, our approach allows
for a practical and nuanced approach for studying the role of
WM in aging.

In our future work we will calculate and evaluate
BundleAGE on additional clinical datasets, such as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [29],
which includes participants with mild cognitive impairment
and dementia. We will relate the BundleAGE biomarkers
to neurocognitive assessments of dementia severity as well
as measures of amyloid and tau. With a larger sample, we
will also include additional microstructural measures from
advanced diffusion models such as neurite orientation disper-
sion and density imaging (NODDI) [30] and diffusion kurtosis
imaging (DKI) [31], and examine their effect on BundleAGE.
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