
 International Journal of 

Molecular Sciences

Article

Imprinting of Mesenchymal Stromal Cell
Transcriptome Persists even after Treatment in
Patients with Multiple Myeloma

Léa Lemaitre 1, Laura Do Souto Ferreira 1, Marie-Véronique Joubert 1, Hervé Avet-Loiseau 1,2,3,
Ludovic Martinet 1, Jill Corre 1,2,3,*,† and Bettina Couderc 1,2,4,*,†

1 UMR 1037 INSERM, 31059 Toulouse, France; lea.lemaitre@inserm.fr (L.L.);
dosoutoferreira.laura@iuct-oncopole.fr (L.D.S.F.); marie-veronique.joubert@inserm.fr (M.-V.J.);
avetloiseau.herve@iuct-oncopole.fr (H.A.-L.); ludovic.martinet@inserm.fr (L.M.)

2 Université Paul Sabatier, Toulouse 3 University, 31062 Toulouse, France
3 Institut Universitaire du Cancer de Toulouse-Oncopole, 1 avenue Irene Joliot Curie, 31052 Toulouse, France
4 Institut Claudius Regaud, IUCT-O, 31052 Toulouse, France
* Correspondence: Corre.jill@iuct-oncopole.fr (J.C.); couderc.bettina@iuct-oncopole.fr (B.C.);

Tel.: +33-5315-6173 (J.C.)
† J. Corre and B. Couderc are co-senior authors.

Received: 26 April 2020; Accepted: 22 May 2020; Published: 28 May 2020
����������
�������

Abstract: Introduction. Multiple myeloma (MM) is a B-cell neoplasm characterized by clonal
expansion of malignant plasma cells (MM cells) in the bone-marrow (BM) compartment. BM
mesenchymal stromal cells (MSC) from newly diagnosed MM patients were shown to be involved in
MM pathogenesis and chemoresistance. The patients displayed a distinct transcriptome and were
functionally different from healthy donors’ (HD) MSC. Our aim was to determine whether MM–MSC
also contributed to relapse. Methods. We obtained and characterized patients’ MSC samples at
diagnosis, two years after intensive treatment, without relapse and at relapse. Results. Transcriptomic
analysis revealed differences in gene expression between HD and MM-MSC, whatever the stage of
the disease. An easier differentiation towards adipogenesis at the expense of osteoblatogeneis was
observed, even in patients displaying a complete response to treatment. Although their transcriptome
was similar, we found that MSC from relapsed patients had an increased immunosuppressive ability,
compared to those from patients in remission. Conclusion. We demonstrated that imprinting of MSC
transcriptome demonstrated at diagnosis of MM, persisted even after the apparent disappearance of
MM cells induced by treatment, suggesting the maintenance of a local context favorable to relapse.

Keywords: multiple myeloma; mesenchymal stromal cells; transcriptome; imprinting;
adipogenesis; immunogenicity

1. Introduction

Multiple myeloma (MM) is a hematological malignancy characterized by the abnormal expansion
of clonal plasma cells [1]. Despite a huge improvement in survival in the last two decades, most MM
patients relapse after a period of remission that is extremely variable from one patient to another. While
this relapse is probably due to the selection of chemoresistant-MM cell clones [2,3], some authors have
posited the influence of the microenvironment on the recurrence of MM [4,5].

MM develops in the bone marrow, which also contains mesenchymal stromal cells (MSC) that
are non-hematopoietic multipotent progenitor cells. MSC are implicated in the pathogenesis of
many solid cancers and hematological malignancies, including MM [6]. In MM, they are involved
in the growth of malignant cells [7], the acquisition of chemoresistance [8,9], and in the abolition of
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the anti-tumor immune response [9]. They are involved in the different steps of tumor progression, in
several ways [10]. They directly induce MM cell expansion through the huge amount of cytokines
that they produce [6] and via the secreted exosomes [11]. They can dialogue directly with MM cells
through close contact [7,12] and membrane exchange, inducing chemoresistance acquisition [13]. They
also play a role in the recruitment of other microenvironment cells involved in tumor cell growth,
chemoresistance acquisition, and depletion of the immune responses [14–16]

Our own studies and that of other authors have shown that MSC from patients with
newly diagnosed MM are abnormal [11,17], as they acquire pro-tumor potentialities. For
example, transcriptomic analysis showed that MSC from newly diagnosed MM patients expressed
abnormally high levels of GDF15 and IL-6 [11], two cytokines implicated in MM cell growth and
chemoresistance [18,19]. To determine whether MM BM-MSC also play a role in MM relapse, we
analyzed the phenotype and transcriptome of MM BM-MSC throughout the different stages of the MM
disease history—at diagnosis, during remission after intensive treatment, and at relapse. MSC are
self-renewing and multipotent progenitors and as such present an asymmetric division with one
cell retaining its strain character and one differentiating cell. Our aim was to determine whether
the phenotypic modifications of MSC induced by the appearance of MM cells in the BM occur in
the progenitor cells or the differentiated cells. In the first case, the acquisition of the MSC-associated
cancer character would be perennial, whereas in the second, the cells would be expected to return to
their original phenotype, when the patient is in remission with a complete response. Our second goal
was to determine which MSC abnormalities could potentially be involved in MM relapse.

2. Results

2.1. Patients’ Samples

We performed this study by isolating MSC from newly diagnosed MM patients (D BM-MSC)
(group 1, D BM-MSC, n = 12) or from patients treated for newly diagnosed MM, through first-line,
high-dose melphalan with autologous stem cell transplantation (post treatment BM-MSC) (n = 19).
Table 1 summarizes the patients’ characteristics. There were 8 men and 4 women in the diagnosis
group, the median age at diagnosis was 51 +/− 6 years, and there were 6 men and 13 women in
the post-treatment group and the median age at diagnosis was 59 +/− 5 years. MSC were isolated either
at early relapse (ER BM-MSC) (group 2, n = 9) or in complete remission (CR BM-MSC) (group 3, n = 10).
The bone marrow aspirations for the treated patients were performed 9 to 24 months post-transplant,
with a median of 16 +/− 4 months for the ER BM-MSC group, 5 to 24 months for the post-transplant
group, and 15 +/− 6 months for the CR BM-MSC group. Since January 1 2020, the patients in group 3
were still in complete remission, according to the consensus recommendations of the International
Myeloma Working Group [20], between 4 and 6 years post-treatment, except for two patients who
relapsed more than two years after the analysis (indicated with a star in Table 1). We used MSC from
the healthy donors (HD BM-MSC) (group 4, n = 10) as the control cells.

Table 1. Patient characteristics.

Patient
Number Male/Female Age (Years) Treatment

MSC Samples
Obtained at

(Months
Post-Transplant)

Early
Relapse

ER1 M 64 4VTD1/HD Mel +
ASCT2/2VTD

14

ER2 M 56 3VTD/HD Mel +
ASCT/2VTD 9

ER3 F 65 4VTD/HD Mel +
ASCT/2VTD 23
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Table 1. Cont.

Patient
Number Male/Female Age (Years) Treatment

MSC Samples
Obtained at

(Months
Post-Transplant)

ER4 M 42 4VTD/HD Mel +
ASCT/2VTD 18

ER5 F 54 4VTD/HD Mel +
ASCT/Unknown3 24

ER6 F 50 4VTD/HD Mel +
ASCT/2VTD 12

ER7 F 61 4VTD/HD Mel +
ASCT/2VTD 12

ER8 F 59 xVTD/HD MEL +
ASCT/Unknown 15

ER9 F 64 4VTD/HD Mel +
ASCT/xVTD 19

Complete
Remission
at time of
analysis

CR1* M 54 xVTD/HD Mel +
ASCT/Unknown3 13

CR2 F 65 4VTD/Unknown 22

CR3 F 62 xVTD/HD Mel +
ASCT/Unknown 5

CR4 F 52 4VTD/HD Mel +
ASCT/xVTD 6

CR5* F 65 4VTD/HD Mel +
ASCT/Unknown 24

CR6 M 67 xVTD/HD Mel +
ASCT/Unknown 14

CR7 F 64 4VTD/HD Mel +
ASCT/xVTD 12

CR8 F 63 4VTD/HD Mel +
ASCT/Unknown 21

CR9 F 59 5VTD/HD Mel +
ASCT/2VTD 8

CR10 M 56 4VTD/HD Mel +
ASCT/Unknown 24

1 Velcade Thalidomide Dexamethasone, 2 High-Dose Melphalan + Autologous Stem Cell Transplantation, 3 Unknown
Number of cycles, * Patients relapsing 2 years post sampling. Healthy donors (6 males and 4 females) were from 20
to 34 years old. Patients at diagnosis (8 males and 4 females) were from 37 to 59 years old.

Freshly collected MSC were selected by their plastic adherence and maintained in standard
culture conditions, as described in the Material and Methods. Their identity was verified by flow
cytometry analysis (Figure S1). HD and MM BM-MSC (including ER, CR, and D BM-MSC) displayed
similar morphology with irregular shape and evidence of branching (data not shown). There were no
significant differences in the percent expression of the MSC defining markers, between the HD and
the MM BM-MSC, whatever the disease stage (Figure S1).

2.2. Transcriptomic Profile

To assess differences in gene expression between MSC isolated from the patients at early relapse (ER
BM-MSC) or in complete remission (CR BM-MSC), an unbiased transcriptomic analysis was performed
from the samples analyzed at passage 1 in culture. A heat map was generated, showing the raw-scaled
log fragments per kilobase of exon model per million reads mapped (FPKM) +1 expression values.
This process readily grouped the samples by type (ER vs. CR BM-MSC, Figure 1A). No gene was
significantly differentially expressed between the two groups (p < 0.05). Whether the patient was in
complete remission or at an early relapse stage had little impact on the MSC transcriptome.
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Figure 1. Transcriptional profile of ER and CR BM-MSC and clustering differences between HD and 
MM BM-MSC. (A) Unsupervised gene expression analysis of ER BM-MSC (n = 9) and CR BM-MSC (n 
= 10), representing a heatmap, with underexpression of green and overexpression of pink. No 
differences were observed between ER BM-MSC and CR BM-MSC, after the MM treatment. (B) 
Heatmap of 231 (108 upregulated in pink and 123 downregulated in green) differentially expressed 
genes in the MM BM-MSC (ER, CR and D BM-MSC) versus the HD BM-MSC. Expression data were 
filtered by the adjusted p-value < 0.05 and 2 < FC < 0.5. (C) Two-dimensional principal component 
analysis (PCA) of all MSC subtypes with representation of dimensions 1 and 3. There are three clusters 
based on the differences in their transcriptomic profiles. Expression data were filtered by the adjusted 
p-value < 0.05 and 2 < FC < 0.5. 

Figure 1. Transcriptional profile of ER and CR BM-MSC and clustering differences between HD and
MM BM-MSC. (A) Unsupervised gene expression analysis of ER BM-MSC (n = 9) and CR BM-MSC
(n = 10), representing a heatmap, with underexpression of green and overexpression of pink. No
differences were observed between ER BM-MSC and CR BM-MSC, after the MM treatment. (B)
Heatmap of 231 (108 upregulated in pink and 123 downregulated in green) differentially expressed
genes in the MM BM-MSC (ER, CR and D BM-MSC) versus the HD BM-MSC. Expression data were
filtered by the adjusted p-value < 0.05 and 2 < FC < 0.5. (C) Two-dimensional principal component
analysis (PCA) of all MSC subtypes with representation of dimensions 1 and 3. There are three clusters
based on the differences in their transcriptomic profiles. Expression data were filtered by the adjusted
p-value < 0.05 and 2 < FC < 0.5.
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Then, we compared the transcriptomic profile of MSC isolated from patients who had received their
treatment (patients at ER or CR) to the transcriptomic profile of MSC from newly diagnosed patients
or healthy donors. The objective was to determine whether MSC from the treated patients displayed
a “normalized” transcriptome (i.e., similar or close to HD BM-MSC) or whether it was identical to
the transcriptome of D BM-MSC. Figure 1B shows that two groups could be distinguished—HD
BM-MSC and MM BM-MSC (including ER, CR and D BM-MSC), whatever the disease stage. D
BM-MSC and MSC from the treated patients displayed a similar transcriptome and strongly differed
from that of the HD BM-MSC. A total of 2747 genes were differentially expressed between HD
BM-MSC and MM BM-MSC, at all stages, of which 440 had an adjusted p-value < 0.05 (lists of up- and
downregulated genes can be provided upon request). Principal component analysis (PCA) confirmed
the heatmap results 40.92% genes explained the differences between MM BM-MSC and HD BM-MSC
and 7.06% explained the differences between D BM-MSC and the other three groups (Figure 1C). This
suggests that the imprinting of the MSC transcriptome induced by MM cells persisted after intensive
treatment, even for patients in complete remission.

We performed volcanoplots in order to represent genes that are differentially expressed in
the four groups (Figure 2A, Figure 3A and Figure S2A). Three groups could be distinguished based on
the expression of 57% of the analyzed genes. The transcriptome of the treated patients’ MSC could
be distinguished from that of D BM-MSC, since 1121 genes were differentially expressed between
the two groups, with an adjusted p-value < 0.05 and 2 < Fold Change (FC) < 0.5. The transcriptome of
the treated patients’ MSC was slightly different from that of D BM-MSC and was very different from
that of HD BM-MSC. Therefore, there was no reversion of the MM BM-MSC phenotype after intensive
treatment, even when the patients were in complete remission. In addition, intensive treatment induced
an additional variation in the transcriptome of MM BM-MSC.
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Figure 2. Wnt pathways involved in the difference between MM BM-MSC and HD BM-MSC. Volcano 
plot of differentially expressed genes in MM vs. HD BM-MSC with the impact of genes on 
osteogenesis and the Wnt pathway (A). Representative Gene Set Enrichment Analysis (GSEA) of the 
MM vs. HD BM-MSC list of expressed genes with the pathway of Gene Set 256 (GO Wnt signaling 
pathway). Wnt signaling pathway was downregulated by MM vs. HD BM-MSC. The corresponding 
heatmap of the represented genes is also shown (B). 

Figure 2. Wnt pathways involved in the difference between MM BM-MSC and HD BM-MSC. Volcano
plot of differentially expressed genes in MM vs. HD BM-MSC with the impact of genes on osteogenesis
and the Wnt pathway (A). Representative Gene Set Enrichment Analysis (GSEA) of the MM vs. HD
BM-MSC list of expressed genes with the pathway of Gene Set 256 (GO Wnt signaling pathway). Wnt
signaling pathway was downregulated by MM vs. HD BM-MSC. The corresponding heatmap of
the represented genes is also shown (B).
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Figure 3. Immunity pathways involved in the difference between MM BM-MSC and HD BM-MSC. 
Volcano plot of the differentially expressed genes from MM vs. HD BM-MSC, with the impact of 
genes from the immunity pathway. (A) Representative GSEA of MM vs. the HD BM-MSC list of the 
expressed genes with the pathway of Gene Set 304 (GSE15659 non-suppressive T cell vs. activated T 
reg). Immunity pathway is downregulated by MM vs. HD BM-MSC. The corresponding heatmap of 
the represented genes is also shown (B). 

Figure 3. Immunity pathways involved in the difference between MM BM-MSC and HD BM-MSC.
Volcano plot of the differentially expressed genes from MM vs. HD BM-MSC, with the impact of
genes from the immunity pathway. (A) Representative GSEA of MM vs. the HD BM-MSC list of
the expressed genes with the pathway of Gene Set 304 (GSE15659 non-suppressive T cell vs. activated
T reg). Immunity pathway is downregulated by MM vs. HD BM-MSC. The corresponding heatmap of
the represented genes is also shown (B).
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2.3. Signaling Pathways Activated in Patients with a History of Multiple Myeloma

Since MSC are known to be involved in the pathogenesis of MM [10,11] and because even
patients achieving CR have a high probability of relapse, we focused on the common genes that were
differentially expressed between the HD and MM patients, whatever the disease stage. One hundred
seventy-four genes were differentially expressed between the HD BM-MSC and MM BM-MSC, and
were common between the D BM-MSC, ER BM-MSC, and CR BM-MSC. Differentially expressed genes
between HD BM-MSC and MM BM-MSC were analyzed with the Gene Set Enrichment Analysis
(GSEA). This predicted dysregulation of four canonical pathways in the MM BM-MSC as compared to
the HD BM-MSC. These included (1) the osteoblastogenesis pathway—reduced expression of RUNX2,
PDGFRL, WNT2B, and overexpression of DDK1 (Figure 2A); (2) the Wnt pathway—reduced expression
of WNT2B, WNT5A, WNT5B, SOX4, CD24, FZD3, RSPQ1, TCF7L2, and GPC4 and overexpression
of DKK1, ROR1, PCDH10, EDN1, CDH6, and CCND1 (Figure 2A,B); (3) the extracellular matrix
organization (integrins)-encoded genes with a reduced expression of ITGA11 and COL12A1 and
overexpression of ITGA2 and NTN4; and (4) the coagulation pathway with an increased expression of
DPP4, IRGA2, CFH, F2RL, PLAT, SERPINB2, and TFPI (Figure S2A,B). We also evidenced dysregulation
of several genes involved in the non-suppressive_T cell_versus_activated_T reg signaling pathway
(Figure 3A), with a reduced expression of ALX1, GFRA1, CXCL16, GPC4, GSTM4, and INHBE and
overexpression of BDNF and DOK5 in the MM BM-MSC compared with HD BM-MSC (Figure 3A,B).

2.4. Functional Characterization of MM-MSC

MSC are known to promote the survival and even the growth of malignant plasma cells. We,
therefore, compared the pro-survival activity of patient-derived MSC at different disease stages (D, ER,
and CR BM-MSC) by performing co-culture experiments. No difference in pro-survival activity was
observed between MSC groups.

Here, we have shown that the onset of the pathology induces a change in the MSC transcriptome
that persists even after the curative treatment. However, MSC after treatment had a slightly different
transcriptome than D BM-MSC. We aimed to determine whether this slight difference was towards
normalization of the MSC phenotype or whether the treatment turned MSC into an even more
pro-tumoral phenotype.

Since the osteoblast differentiation pathway and the Wnt pathway seemed to alternate (Figure 2A,B)
and because many authors have reported the impaired osteoblastic potential of D BM-MSC [21–24], we
compared the potential for adipocyte and osteoblast differentiation of MSC in the groups of patients,
using RT-PCR analysis of specific gene expression, as described in the Materials and Methods section.
Prior to this analysis, we used colorimetric tests to verify that post-treatment BM-MSC (ER and CR
BM-MSC) were able to differentiate into adipocytes and osteoblasts [21]. Both post-treatment and HD
BM-MSC differentiated into adipocytes (Figure 4A) and osteoblasts (Figure 4B,C), after 21 days of
culture with the differentiation media. Post-treatment BM-MSC exhibited a significant increase in lipid
accumulation between D0 and D21 of adipocyte differentiation (Figure 4A) and seemed to differentiate
more likely into adipocytes than HD BM-MSC. On the other hand, the capacity for osteoblastic
differentiation was impaired in post-treatment BM-MSC, including MSC from patients in complete
remission (Figure 4B). Hence, post-treatment BM-MSC differentiated preferentially into adipocytes
rather than osteoblasts, whatever the disease stage, thus, confirming the transcriptomic profile. To
confirm this observation, we analyzed the expression of several genes involved in the multipotency of
the MSC. Post-treatment BM-MSC overexpressed the genes implicated in adipocyte differentiation
(PPARγ and adiponectin) (Figure 4D), while the expression of osterix, alkaline phosphatase, and
Runx2 (involved in osteoblast differentiation) were down-regulated (Figure 4E). Of note, the increase
in the expression of genes involved in adipogenesis was three-fold higher in post-treatment BM-MSC
than in HD BM-MSC.
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Figure 4. Colorimetric tests in adipocyte or osteoblast differentiation medium (A–C) or for 14 days 
before RT-qPCR analysis. (D-E) Colorimetric test was performed with Nile red for adipocyte (A) 
(magnification X5) and alizarin red for osteoblast (B-C). Alizarin Red Staining quantification using 
the assay. Data are expressed as the mean +/- SEM (HD BM-MSC n = 10; D BM-MSC n = 9, post 
treatment BM-MSC n = 17) with the error bars representing the standard deviations (C). RT-PCR of 
PPARgamma (PPARγ) and adiponectin were up regulated after adipocyte differentiation of post-
treatment BM-MSC, compared to HD BM-MSC (D); and Osterix, Runx2, and Alkaline phosphatase 
were down regulated after osteoblast differentiation of post-treatment BM-MSC compared to HD BM-
MSC (E). Data are mean ± SEM of the relative expression from seven independent experiments. * p < 
0.05, ** p < 0.01, *** p < 0.001. 

Figure 4. Colorimetric tests in adipocyte or osteoblast differentiation medium (A–C) or for 14 days before
RT-qPCR analysis. (D,E) Colorimetric test was performed with Nile red for adipocyte (A) (magnification
X5) and alizarin red for osteoblast (B,C). Alizarin Red Staining quantification using the assay. Data are
expressed as the mean +/− SEM (HD BM-MSC n = 10; D BM-MSC n = 9, post treatment BM-MSC n =

17) with the error bars representing the standard deviations (C). RT-PCR of PPARgamma (PPARγ) and
adiponectin were up regulated after adipocyte differentiation of post-treatment BM-MSC, compared to
HD BM-MSC (D); and Osterix, Runx2, and Alkaline phosphatase were down regulated after osteoblast
differentiation of post-treatment BM-MSC compared to HD BM-MSC (E). Data are mean ± SEM of
the relative expression from seven independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001.
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By analyzing the differentially activated signaling pathways between the transcriptome of the MSC
groups, we also observed differences in the expression of the genes involved in the activation of
the immune response (Figure 3A,B). PTGS2 (COX2) expression was significantly upregulated in MM as
compared to HD BM-MSC (FC = 2.03 and adj p-value = 0.12), in post-treatment BM-MSC (FC = 2.52 and
adj p-value = 0.03), and was higher in ER BM-MSC compared to HD BM-MSC (FC = 2.95 and adj p-value
= 0.03) (Figure 5A). We therefore compared the immunosuppressive potential of MM to HD BM-MSC.
To address this question, MSC from the four groups were placed in contact with Peripheral Blood
Mononuclear Cells (PBMC) at different ratios, and CD8 T-cell proliferation was analyzed (Figure 5B).
The inhibitory effect of MSC on the T-cell proliferation occurred in a ratio-dependent manner. D
BM-MSC tended to have a more immunosuppressive effect than those from HD, although the difference
did not reach significance. The proliferation of CD8 T cells at 1/5 ratio (MSC to PBMC) was significantly
inhibited by 57%, with ER BM-MSC, while proliferation at the same ratio was only inhibited by 23%,
with CR BM-MSC. This immunosuppressive effect was also observed in ER BM-MSC but to a lesser
extent than CR BM-MSC. The proliferation of T cells at 1/5 ratio (MSC to PBMC) was inhibited by 59%
with D BM-MSC, while proliferation at the same ratio was inhibited only by 38% with HD BM-MSC
(Figure 5C). Hence, the immunosuppressive effect was similar for D or ER BM-MSC, whereas it was
similar for CR and HD BM-MSC.
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BM-MSC, or a combination of all MM (D, ER, and CR) BM-MSC, from red for upregulation to blue
for downregulation. Groups on the left were compared to the bottom ones (A). Inhibitory effect of
MSC from HD and MM BM-MSC on PBMC proliferation. Effect of MSC on cytotoxic CD8 T-cell
proliferation. HD BM-MSC (n = 4), D BM-MSC (n = 2), CR BM-MSC (n = 6), and ER BM-MSC (n =

3) were cultured in the presence of increasing number of cell trace violet (CTV)-labeled PBMC for 5
days at the concentration of 1/5 or 1/10 MSC/PBMC, respectively. Then, all cells were harvested and
analyzed by flow cytometry. Representative figure of different CD8 T-cell proliferation is shown with
CTV. Non-stimulated PBMC in red represent the control of non-proliferation and was CTV-positive.
1MSC/5PBMC (green) and 1MSC/10PBMC (pink) show the CD8 proliferation inversely correlated
with MSC quantity (B). Percentage of inhibition was calculated as follows: 100 − (percentage of CD8
T-cell proliferation with MSC/percentage of CD8 T-cell proliferation without MSC) ×100. Significant
difference was observed between ER and CR BM-MSC. HD BM-MSC are representing in blue (�) D
BM-MSC in brown (•), CR BM-MSC in salmon (H) and ER BM-MSC in orange (N). Data are expressed
as mean ± SEM of the inhibition percentage of CD8 T lymphocytes. Each experiment was performed in
triplicates from three independent experiments; (C). * p < 0.05.

3. Discussion

The issue of whether MSC are involved in the development of MM is now resolved. Several studies
have reported the pro-tumoral role of MSC, whether through the growth factors or the exosomes they
secrete, or by direct contact [6–8], but also through the recruitment of the immune system cells [25]. It is
also known that D BM-MSC display an abnormal phenotype, when compared to HD BM-MSC [11,26].
However, whether the change in MSC phenotype involved the development of MM or whether it was
solely a consequence of the disease remains to be determined. For this reason, several groups, including
ours, have investigated the monoclonal gammopathy of undetermined significance (MGUS), bearing
patients’ MSC. Indeed, all MM patients previously presented an MGUS, while 10 percent of people over
65-years old displayed an MGUS. We showed in a small cohort that some MGUS subjects displayed an
MM BM-MSC phenotype and others displayed an HD BM-MSC phenotype [11]. Unfortunately, we
were unable to conclude whether the abnormal phenotype was predictive of malignant progression.

Another important unsolved question was whether MSC played a role in the relapse process of MM.
To address this issue, we compared CR BM-MSC to ER BM-MSC. We showed that the transcriptome of
MSC from patients who had completed their treatment presented only very small differences from that
of patients in apparent complete response and those relapsing. Two of the patients in the CR BM-MSC
group relapsed a few months after the analysis, but no specificity in their transcriptome was detected.
This suggests that the MSC phenotype cannot predict whether a patient will relapse.

MSC from patients who had completed treatment had a transcriptome that was essentially identical
to that of D BM-MSC. Once modification of the MSC was achieved, the change was permanent, even
when the patient was in remission after achieving a CR. This suggests persistent printing, whatever
the disease stage. However, as significant progress was recently made for response evaluation in MM
with the development of high-sensitivity minimal residual disease [27], it would be of interest to compare
MSC from patients in CR with Minimal residual disease (MRD) < 10−6 and MSC from patients in CR
with positive MRD. We wish we could have used a paired samples cohort (diagnosis-remission-relapse)
from the same patients for this study, but this purpose was not realistic, given the current median
progression free survival of the MM patients. We only studied one patient with two time points
(diagnosis and remission); as shown in Figure S3, transcriptomes were almost identical, with no
significant differences, according to the heatmap.

By analyzing genes that were differently expressed between the MSC of patients with a history
of MM and those of HD, we highlight the activation of five signaling pathways in the MM
microenvironment. These pathways were already mentioned by several authors as being involved
in cancer [26,28–31]. We were first interested in those already involved in MM pathogenesis,
namely the osteoblastogenesis and Wnt signaling pathways [28]. Modulation of the Wnt/βcathenin
signaling pathway in MSC was shown to induce a decrease in the expression of RUNX2, leading to
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osteoblastogenesis inhibition [24]. Liu et al. notably showed the involvement of adipocyte-secreted
adipokines in MM progression and chemoresistance acquisition, via the upregulation of the expression
of autophagic proteins in MM cells, leading to a suppression of the caspase cleavage and apoptosis
in MM cells [9]. This was also observed in acute myeloid leukemia [32] and in solid tumors, such
as prostate cancer [33]. We now showed that post-treatment BM-MSC did indeed differentiate more
easily into adipocytes than into osteoblasts. We notably observed that expression of leptin was
down-regulated in post-treatment BM-MSC, which was also in favor of the defect in osteogenesis [34].
The ability to better differentiate into adipocytes appeared as soon as MM was diagnosed. It persisted
after treatment with variation in gene expression (Figure 4). The expression of adiponectin and PPARγ
was significantly increased in MSC from the treated patients. This variation could be related to the effect
of treatment [35]. Indeed, a change in the MSC phenotype, after chemotherapy, related to the entry of
MSC into senescence was already reported [36].

On the one hand, the fact that MSCs differentiate more easily into adipocytes is in favor of a greater
pro-tumoral effect [33]. Indeed, several studies have demonstrated the involvement of adipocytes
in the progression of cancer, including MM [35–37]. The fact that MSC from patients are better
differentiated into adipocytes is certainly in keeping with the pro-tumoral effect of MSC, although it is
still too early to establish the link between this ability and relapse. The impairment of the osteoblastic
defect that persists after treatment, even in patients in CR, could explain why osteoblastic lesions never
heal [38].

It was also shown that the immunomodulatory effect of MSC might play a role in their pro-tumoral
effect, by decreasing the anti-tumoral immune response mediated by CD8+ T-lymphocytes [39,40].
Kanamura et al. showed that MM is characterized by a defect in the recruitment and activation of
CD8+ T-lymphocytes [41]. We therefore analyzed the immunosuppressive ability of MSC in the four
groups and assessed the expression of genes involved in the LT activation. We found a difference
in expression between HD and MM BM-MSC, with a significant MM overexpression of BDNF and
underexpression of ALX1, GFRA1, CXCL16, GSTM4, INHBE, and GPC4 (Figure 3B). Interestingly,
the expression of CXCL16 was different between early relapsed patients and those in CR BM-MSC.
Concerning the immune checkpoint involved genes, we did not observe any significant difference
between the different groups of samples. However, we did find a tendency of a higher expression of
CD274 (PD-L1) in the MSC samples from CR BM-MSC, as compared to D and ER BM-MSC. These
patients had a higher expression of CD86, CD48, and HLADPB1. The expression of CD40, HLADRB1,
and PDL-2 (PDCD1LG2) showed no variation across the samples (Figure S4). Together with this
transcriptome’s modification, we found a functional difference between the CR and ER BM-MSC,
according to their immunosuppressive ability. CR BM-MSC behaved like HD BM-MSC, whereas
ER BM-MSC behaved like D BM-MSC, i.e., with an increased immunosuppressive ability. However,
we are unable at present to establish whether this functional transformation of MSC was a cause or
a consequence of the growth of MM plasma cells. Overall, the presence of MM plasma cells in the BM
induced changes, maybe epigenetic reprogramming, which switched the MSC towards a persistent
pro-tumoral phenotype. These data suggest that MSC could play a role in the MM relapse, possibly by
promoting the growth of the minimal residual cells.

4. Materials and Methods

4.1. Human Samples

4.1.1. MSC Samples

Fresh BM aspirates from 31 patients with MM were collected at diagnosis (D BM-MSC),
post-treatment, in complete response (CR BM-MSC) or at early relapse (ER BM-MSC), at the Institut
Universitaire du Cancer de Toulouse-Oncopole through the Intergroupe Francophone du Myélome
network. All patients gave written informed consent and collection was approved by the French
Committee for the Protection of Persons (CPP; DC-2012-1654) on April 2012, as well as by the local
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IUCT-Oncopole review boards. Primary BM MM cells were purified by using magnetic anti-human
CD138 microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). MM BM-MSC were obtained from
the CD138-negative fraction and prepared, as previously described [11]. For the HD BM-MSC, the BM
aspirations were harvested from healthy donors who gave their written informed consent, according
to the recommendations of the Ethics Committee of the Toulouse University Hospital.

4.1.2. PBMC Samples

Peripheral blood mononuclear cells (PBMC) obtained from the Establissement Français du Sang
(Toulouse, France) were isolated by Ficoll-Hypaque 5GE (Healthcare) density centrifugation.

4.2. Isolation of BM MSC

Freshly collected MSC were selected by their plastic adherence and were maintained in standard
culture conditions. After 21 days, MSC were analyzed through flow cytometry for surface antigen
expression—monocyte markers (CD11b and CD14), plasma cell markers (CD138 and CD38), and MSC
markers (CD73+ CD90+ CD105+ and CD45-). There were no significant differences in the percent
expression of the MSC-defining markers between the HD and the MM BM-MSC, whatever, the disease
stage (Supplementary Figure S1). BM-MSC were separated into two groups, one of 2.105 cells collected
and frozen with 350 µL RLT (RNeasy Minikit Qiagen, Hilden, Germany) + 10% βmercaptoethanol
(Sigma-aldrich, Missouri, USA) for transcriptomic analysis, and another which was expanded at 1000
cell/cm2 as P1 for functional analysis.

4.3. Transcriptomic Analysis

RNA from sorted MM and HD BM-MSC was extracted using the RNeasy Minikit (Ref: 74106,
Qiagen, Hilden, Germany), according to the manufacturer’s instructions. Then, cDNA synthesis,
in vitro transcription and fragmentation of cRNA were performed using the GeneChip 3′IVT PLUS
Reagent kit, (Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s instructions. After
assessment of RNA integrity (Agilent Small RNA Analysis kits, Agilent 2100 Bioanalyser, Agilent,
Santa Clara, CA, USA), biotinylated RNA was hybridized with the Affymetrix HG-U133 plus 2.0
GeneChip microarrays (Affymetrix, Santa Clara, CA, USA), and analysis was performed as described
previously. Raw Affymetrix cell intensity files (.CEL) were used for the differential expression analysis.

4.4. Statistical Analysis

4.4.1. PCA

Raw intensities were processed and normalized by functional robust multi-array average (RMA),
using the Affy package from the R/Bioconductor. From the raw expression values, we performed
a principal component analysis (PCA). The first dimension dissociated the samples left to right. HD
BM-MSC clustered on the right and MM BM-MSC clustered on the left. The third dimension separated
the diagnostics at the bottom and the ER and CR BM-MSC at the top.

4.4.2. Heatmap

From these data, we retrieved the significant genes differentially expressed between the HD
and the patients with a fold change between 2 and 0.5. We then plotted them as a heatmap to see
the clustering between the four groups, using these differentially expressed genes, but also between
the genes.

4.4.3. GSEA

We performed Gene Set Enrichment Analysis (GSEA) to identify the enriched gene sets (FDR
< 0.25, nominal p-value cutoff < 0.05). Enriched gene sets from (Gene Set 256: GO Wnt signaling
pathway, Gene Set 28: Hallmark coagulation, and Gene Set 304: GSE15659 non-suppressive T-cell vs.
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activated T-reg) were plotted as a heatmap and enrichment plot, using the GSEA1.0 Broad institute
software for R. Gene set hallmarks used for this analysis can be found in the GSEA MSig database
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Here, we used the H, Hallmark gene sets, C2,
the curated gene sets, C5, the GO gene sets, C6, the oncogenic gene sets, and C7, the immunological
gene set.

4.4.4. MSC Differentiation Assay

2.104 cells/well were cultured in 24- or 6-well culture plates, with complete Minimum Essential
Medium α (MEMα) (Thermofisher, Waltham, MA, USA) or with StemMACS AdipoDiff Media or
StemMACS OsteoDiff Media (Miltenyi Biotec, Bergisch Gladbach, Germany), for adipocyte and
osteoblast differentiation, respectively. The medium was changed twice a week. All 24-well cultures
were stopped after 21 days, for colorimetric testing. Alizarin red staining—the cells were fixed
with 70% ethanol, stained with 2% Alizarin Red for 10 min, washed with H2O, and analyzed. For
quantification, the plates were thawed, distained by the addition of 800 µL of 10% acetic acid chloride
monohydrate. The optical density was then measured at OD405 and the relative ratio of the cells
cultured in the osteogenic conditions were determined, relative to the cells cultured in the stromal
medium. [21]. For adipocyte differentiation, the Nile red (Sigma-aldrich, Missouri, USA) stain was
assessed according to the manufacturer’s guidelines. Cultures in the 6-well plates were stopped after 14
days for the RT-PCR tests and the cells were harvested using trypsin with EDTA (Invitrogen, Carlsbad,
CA, USA).

4.4.5. Quantitative RT-PCR

The cells were lysed using the RNeasy Minikit (Qiagen, Hilden, Germany), followed by direct
reverse transcription, using the SuperScriptTM VILOTM Master Mix (Invitrogen, Carlsbad, CA, USA).
Quantitative PCR (qPCR) was performed using the LightCycler® 480 Probes Master on a LightCycler®

(Roche, Bâle, Swiss), using the Taqman probes (Thermofisher, Waltham, MA, USA) (Table S1).
The expression of individual genes was normalized to GAPDH, through the ∆∆Ct method.

4.4.6. Co-Culture of MSC and T-Lymphocytes

PBMC from HD were stained with the Cell Trace Violet (CTV) (Thermofisher, Waltham, MA,
USA), prior to stimulation, followed by CTV dilution assessment, 5 days later. At day 0, they were
mixed with MSC in a 50/50 MEMα and Rosewell’s Park Memorial Institute-1640 (RPMI) (Thermofisher,
Waltham, MA, USA) supplemented with 10% FBS and 0.5% of ciprofloxacin complete medium. PBMC
were seeded in triplicates at the concentration of 1.105 cells/100µL RPMI/well, with various MSC
concentrations (20 103, 10 103, 5 103, or 0 MSC/100µL MEMα/well), and were stimulated with or
without anti-CD2/CD3/CD28 microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). After 5 days
in co-culture, all cells were harvested and the CD8 T-cells were analyzed by flow cytometry. CD8 T-cells
were selected with a combination of different markers (viable cell, CD90-, CD73-, CD45+, CD3+, CD4-,
CD8+) and CTV-negative was quantified to express cell proliferation. The percentage of inhibition was
calculated as follows: 100 − (percentage of CD8 T-cell proliferation with MSC/percentage of CD8 T-cell
proliferation without MSC) × 100.

5. Conclusions

The presence of MM plasma cells was already known to lead to a change in the phenotype of MSC.
Here, we show for the first time that this change is perennial, since it lasts throughout the course of
the disease, including complete remission and early relapse. Further analyses are required to identify
new therapeutic targets from these pro-tumoral MSC.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/11/
3854/s1.
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