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(e neuromuscular disorders are diagnosed using electromyographic (EMG) signals. Machine learning algorithms are employed
as a decision support system to diagnose neuromuscular disorders. (is paper compares bagging and boosting ensemble learning
methods to classify EMG signals automatically. Even though ensemble classifiers’ efficacy in relation to real-life issues has been
presented in numerous studies, there are almost no studies which focus on the feasibility of bagging and boosting ensemble
classifiers to diagnose the neuromuscular disorders. (erefore, the purpose of this paper is to assess the feasibility of bagging and
boosting ensemble classifiers to diagnose neuromuscular disorders through the use of EMG signals. It should be understood that
there are three steps to this method, where the step number one is to calculate the wavelet packed coefficients (WPC) for every type
of EMG signal. After this, it is necessary to calculate statistical values of WPC so that the distribution of wavelet coefficients could
be demonstrated. In the last step, an ensemble classifier used the extracted features as an input of the classifier to diagnose the
neuromuscular disorders. Experimental results showed the ensemble classifiers achieved better performance for diagnosis of
neuromuscular disorders. Results are promising and showed that the AdaBoost with random forest ensemble method achieved an
accuracy of 99.08%, F-measure 0.99, AUC 1, and kappa statistic 0.99.

1. Introduction

(eneuromuscular system consists of nervous andmuscular
systems, both of which then compose the human skeletal
muscular system. Muscles activities are controlled by the
electrical impulses produced by the nervous system. (ese
electrical impulses are identified as motor unit action po-
tential (MUAP). Neuromuscular disorders are caused by
different nerves or muscle fibers. (us, in order to be more
focused on the treatment, determination of disorder location
is crucial. Electromyography (EMG) is utilized for recording
and analyzing the skeletal muscle signals. EMG signals are
recorded by inserting electrodes at different location of the
muscles. EMG signals are generally employed in clinical
applications and human computer interfacing. EMG signals
are complex and nonstationary and contain several noises.
EMG signals deliver information about the functioning and

status of the muscles that can be utilized for the diagnosis of
neuromuscular disorders such as myopathy and neuropathy.
Neuropathy is a quickly progressive and fatal neuromuscular
disorder [1]. It strictly disturbs the functioning of motor
neurons. In this disorder, muscles may become smaller and
weaker, ultimately resulting in body paralysis [2]. Another
muscular disease that involves muscular cramp, stiffness,
spasm, and dysfunction is myopathy, which affects skeletal
muscles’ fiber. Myopathy generally stops muscles to work
properly but does not lead to the death of muscles [1, 3].
Diagnosis of neuropathy and myopathy at early phases is
difficult since indications of these disorders mimic with that
of other disorders. Early detection of these disorders may
diminish the suffering of patient and medical costs. It
motivates to develop new signal processing-based methods
for early detection of these diseases. Quantitative EMG
(QEMG) technique which utilizes the quantitative features
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of EMG signals is an effective method to identify several
neuromuscular disorders [1, 4–6]. Conventionally, neuro-
scientists evaluate neuromuscular disorders based on the
MUAP properties [7] and its audio characteristics [8].
Manual evaluation of the anomalies employing the char-
acteristics of MUAPs necessitates skilled and qualified
neuroscientists. But the detection of these anomalies by
neuroscientists might not be adequate for precise detection
of the small variations, and the diverse patterns of the
MUAPs cannot be detected easily with manual assessment.
Hence, it is essential to carry out analysis of MUAPs,
quantitatively, to detect these variabilities in the abnormal
patterns. (e wavelet transform mainly employed for the
analysis of the time series shows nonstationary character-
istics [9–11]. (e appropriate feature extraction technique is
needed for achieving a better classification performance.
Neuromuscular disorder detection based on the EMG signal
characteristics can be realized either directly [1, 4, 12] or by
usingMUAP-basedmethods [2]. In direct method, the EMG
signal classification is carried out by dividing the signal into
nonoverlapping frames. (en, every frame is employed to
extract the features, and eventually, the extracted features are
utilized for the classification [3].

Discrimination of EMG signals is crucial to diagnose the
neuromuscular disorders. Numerous attributes, such as the
quality of the signals, the efficiency of the feature extraction
methods and classifiers, and the training and testing data-
sets, may influence the accuracy of EMG signal classification.
Hence, eliminating those factors can enhance the capability
of an EMG signal classification system’s capability. Recently,
several techniques were utilized to obtain efficient features to
depict EMG signals for classification [4, 5, 9–11, 13–16].
However, the design of robust and practical computer-aided
decision support system is complicated. (e complication is
to create an accurate and effective decision support system
which keeps crucial discriminatory information to achieve
better classification accuracy. In this respect, it is necessary
to conduct a systematic analysis of EMG signals in order to
obtain an efficient classification of EMG. (erefore, some
EMG signal analysis algorithms, which are computer-aided,
have been developed [4–6, 11, 17–21].

Feature extraction is a technique to extract valuable
information that exists in the signals. To classify EMG
signals, discrete wavelet transform (DWT) [21] and wavelet
packet transform (WPT) [22] based feature extraction
methods have been utilized for extraction of features from
the EMG signals. In this study, wavelet packet de-
composition (WPD), which covers the whole time-fre-
quency plane to provide analysis for low- and high-
frequency bands, is used to extract features of EMG signals.
After WPD coefficients are extracted, statistical values are
calculated for every subbands of WPD. (e statistical values
of WPD coefficients are utilized as inputs to the classifier.
Furthermore, most of the single classifiers are not able to
deal with high-dimensional data. Some of the single clas-
sifiers can classify high-dimensional data but not working
efficiently if the data have a large number of irrelevant
variables. In order to eliminate these types of problems, there
is a need for EMG signal classification to introduce more

efficient machine learning techniques; particularly those can
achieve excellent performance. In this paper, to eliminate the
restrictions mentioned above, we employed an ensemble
classifier framework to classify the EMG signals for the
diagnosis of neuromuscular disorders. Furthermore, the
performances of ensemble learners have not been compared
yet with single classifier algorithms for the EMG signal
classification. Hence, this paper analyzes the effectiveness of
single classifiers with bagging and boosting ensemble
learning algorithms for the EMG signal classification. (e
main contribution of this paper is to improve general
(testing) classification performance by employing bagging
and boosting of ensemble classifiers. In order to accomplish
better performance, ensemble machine learning methods
combine multiple learners’ opinions. (us, better perfor-
mance could be achieved even by simple learners. In theory,
the performance of ensemble classifiers is better than the
performance of single classifiers [23–25]. (e majority of
learners create various feature subsets which is sampled from
the original feature data in a random way and utilize voting
for ensemble classifiers.(rough ensemble learning method,
it is possible to use robust classifiers which are used for
diagnosis of various disorders. In addition to this, it is
possible to conduct various experiments more rigorously by
estimating different ensemble classifiers through computer-
aided diagnosis (CAD) application. Recently, ensemble
classifiers have increasingly gained more attention in CAD
applications. Besides, ensemble classifiers have been used for
high-dimensional problems which contain extremely dif-
ferent features for instances [26], e.g., microarray data
analysis [27, 28] and diagnosis of valvular heart disease [29]
for fMRI image data [30]. Furthermore, ensemble classifiers
are inherently parallel, so they can be more effective at
training and test phases if they can approach multiple
processors [31].

(e remainder of the paper is organized as follows. In the
next section, the literature is reviewed. In Section 3, subjects,
feature extraction, dimension reduction techniques, and
description of machine learning tools applied for the EMG
signal classification are presented. Section 4 presents a
complete experimental work of the proposed EMG signal
classification system, in which the effect of feature data and
algorithmic matters are studied concerning classification
performance. Besides, classification performances of bag-
ging, AdaBoost, and MultiBoosting ensemble classifiers are
compared with each other as well as single classification
techniques. Finally, Section 5 concludes our work.

2. Literature Review

EMG presents comprehensive information to describe the
neuromuscular activity and muscular morphology. (e EMG
signals must be decomposed, classified, and analyzed in order
to describe a muscle using quantitative EMG (QEMG) data.
In order to diagnose neuromuscular disorders, EMG signals
must be classified for the detection of abnormalities [32].
Subasi et al. [33] compared wavelet neural networks (WNNs)
with feedforward error backpropagation artificial neural
networks (FEBANNs) according to their accuracy for EMG
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signal classification. Autoregressive (AR) model of EMG
signals is utilized as an input to the classifiers. A dataset
composed of normal, myopathic, and neurogenic disorder
was evaluated. (e accuracy of the WNN was 90.7% and that
of FEBANN method was 88%. Katsis et al. [34] utilized fuzzy
k-means forMUAP clustering and then classified the template
MUAPs into normal, neuropathic, and myopathic by
employing a support vector machine (SVM) classifier. (e
correct classification success rate is about 86.14%. Kaur et al.
[35] showed that SVM classifier achieved 95.90% accuracy for
normal, myopathic, and neuropathic EMG signals by iden-
tifying the peaks of MUAPs. Rasheed et al. [36] developed a
model to distinguish individual MUP waveforms from a raw
EMG signal for feature extraction. (e adaptive fuzzy k-NN
classifier achieved 93.5% accuracy with time domain features
and 92.6% accuracy with wavelet domain features.

Subasi [4] employed neurofuzzy computing techniques
with AR, DWT, and WPE feature extraction methods. (e
ANFIS classification method yields a classification accuracy
of 95% with AR+DWT features. Another study [11] sug-
gested the fuzzy support vector machine classifier united
with discrete wavelet transform (DWT) to achieve better
performance (97.67% accuracy). Another study [5] proposed
a PSO-SVM for the classification of EMG signals in which a
set of statistical features were obtained from discrete wavelet
transform (DWT) subbands to show the dispersion of
wavelet coefficients. Noteworthy improvements regarding
classification accuracy were achieved (97.41%). Further-
more, Subasi [10] used an evolutionary SVM classifier for
EMG signals classification using normal, myopathic, and
neurogenic dataset. In the designed framework, a set of
statistical features were obtained from the DWT subbands,
and evolutionary SVM achieved an accuracy of 97% using
10-fold cross-validation.

Gokgoz and Subasi [37] studied the effect of multiscale
principal component analysis (MSPCA) denoising method
in EMG signal classification. Multiple single classification
(MUSIC) feature extraction method was implemented on
EMG signals to classify into normal, myopathic, and ALS.
After denoising with MSPCA, accuracy is 92.55% for SVM,
90.02% for ANN, and 82.11% for k-NN. (e same re-
searchers [9] presented a framework for EMG signal clas-
sification by utilizingMSPCA for denoising, discrete wavelet
transforms (DWT) for feature extraction, and decision tree
algorithms for classification. (e suitable combination of
DWT and random forest achieved the best classification
accuracy of 96.67% utilizing k-fold cross-validation.

Bozkurt et al. [13] employed several parametric methods
and subspace-basedmethods for EMG recordings composed
of normal, neurogenic, and myopathic subjects. A combined
neural network (CNN) and FEBANN were employed for
classification, and the highest performance was achieved
with the eigenvector method. (e total classification accu-
racy was 94% for CNN and 93.3% for FEBANN. Khan et al.
[38] proposed a framework that utilizes both time domain
and time-frequency domain features of the EMG signals. K-
nearest neighbor (k-NN) and support vector machine
(SVM) are employed to predict class label (Normal, Neu-
ropathy, or Myopathy) for a given MUAP. DWT-based

feature extraction scheme with multiclassifier model
achieved 97% accuracy.

Sengur et al. [39] proposed a deep learning-based
method for efficient classification of normal and ALS sub-
jects.(ey used different time-frequency methods combined
with the convolutional neural network for EMG signal
classification. (ey employed ALS and normal EMG signals
and achieved 96.80% accuracy with CWT and CNN.
Hazarika et al. [40] presented a real-time feature extraction
and fusion model for automated classification of electro-
myographic signals with normal, myopathic, and amyo-
trophic lateral sclerosis using DWT and canonical
correlation analysis. (e extracted discriminant features are
fed to the k-NN classifier, and 98.80% accuracy is achieved
with two-fold cross-validation. Mishra et al. [41] employed
improved empirical mode decomposition (IEMD) in
combination with the least-squares support vector machine
(LS-SVM) classifier is utilized for the analysis of amyo-
trophic lateral sclerosis (ALS) and normal EMG signals. (e
proposed technique is achieved with 96.33% accuracy.

3. Materials and Methods

3.1. Subjects and Data Acquisition. All measurements of
patients and control group were performed by Gaziantep
University in Neurology Department. Based on clinical
findings, the diagnostic criteria of the selected subjects were
also performed by muscle biopsy if necessary. Normal,
neurogenic, and myopathic people were evaluated by spe-
cialist physicians. (e impedance of a concentric needle
electrode (0.45mm diameter with a recording surface area of
0.07mm2; impedance at 20Hz below 200 kHz) was used to
collect EMG signals from the biceps brachii muscle. All
signals were collected at 20 kHz for 5 seconds at 12-bit res-
olution and band-pass-filtered at 5Hz to 10 kHz. 20 different
MUPs were acquired from all muscles in the form of five to
seven muscle insertions. Needles between the regions were
pulled leastways 5mm. (e acoustic and visual control of the
EMG signal was directed close to the active muscle fibers.
EMG data were obtained from seven control subjects (three
males and four females) with ages in the range from 10 to 43
years (mean age± standard deviation: 30.2± 10.8 years), seven
myopathic subjects (four males and three females) with ages
in the range from 7 to 46 years (mean age± standard de-
viation: 21.5± 13.3 years), and thirteen neuropathic subjects
(eight males and five females) with ages in the range from 7 to
55 years (mean age± standard deviation (S.D.): 25.1± 17.2
years) as in [4, 5, 11, 15].

3.2. FeatureExtraction andDimensionReduction. One of the
imperative applications is the capacity to handle data-re-
duced parameters that are generally named features. Hence,
the EMG signals, which consist of numerous data points, can
be reduced into a smaller number of features by using
different feature extraction and dimension reduction
methods. (ese parameters describe the characteristics of
the EMG signals. (ese methods which use a reduced
number of parameters to characterize the EMG signal are

BioMed Research International 3



crucial to diagnose the neuromuscular disorders. (e di-
mension reduction and feature extraction process composed
of two stages:

Stage 1: decomposition of the EMG signals by using the
wavelet packet transform

Stage 2: calculation of the statistical values of WPD
coefficients

3.2.1. Wavelet Packet Decomposition (WPD). Wavelets are a
group of basic functions of a signal, which is transformed by
the wavelet transform. Wavelet achieves a better time and
frequency resolution by decomposing a given signal. On the
other hand, the wavelets were obtained by dilations and
translations from a single function ψ [42]. Classes of prime
function set between time and frequency are called wavelets.
(eir symbolization is as follows:

Ψ(t) �
ψ
�
S

√ ∗
t − u

s
􏼒 􏼓, (1)

where dilation is symbolized with “s” and interpretation
parameter is symbolized with “u”. During this application,
there may be an expansion in the midpoints and the in-
terpretation parameters can be accessed. Signal x(t) takes
correlation operations at discrete frequencies as shown in
the following formula:

Wx(u, s) �
1
�
S

√ 􏽚
+∞

− ∞
x(t)ψ

t − u

s
􏼒 􏼓dt. (2)

(ere are many applications that can be seen in literature
studies. It is possible to isolate dilation parameters and
interpretation parameters of wavelet in a dyadic way. In the
following formula, the family/group of wavelets can be seen:

ψmk(t) � 2− m/2 ∗ψ 2− m
t − k( 􏼁. (3)

(e wavelet family is represented as follows. (e “ψ(t)”
symbol is the main wavelet. “m” represents the dilation
parameter, while “k” represents translation parameters. (e
dilation parameter has some responsibilities, which include
specifying the wavelet position in the frequency domain, as
well as the scale and extent of the time-frequency limitation.
(e regulation of the wavelets in the third equation can show
that each wavelet is orthonormal to another one [43].

Moreover, the WPD uses both the low-frequency
components (approximations) and the high-frequency
components (details) for the signal decomposition [44–46].
(e WPD separates both approximations and details into
sublevels in order to realize a better frequency resolution for
the decomposed signal. It can be regarded that WPD is a
continuous time wavelet decomposition which is sampled at
different frequencies at each level or scale. Its advantage is to
combine various levels of decomposition for the construc-
tion of the original signal [47]. EMG signals are decomposed
up to level four in this paper.

3.2.2. Dimension Reduction. When talking about the sta-
tistical values, which consist of standard deviation, skewness,
and kurtosis, it can be estimated through the use of WPD in

order to decrease the signal’s dimension. For the signal
processing, the first- and second-order statistics are of utmost
importance. However, for many signals, especially the signals
like EMG, which are nonlinear, statistics of the second order
are insufficient. (erefore, for better characterization of
signals, statistics of higher order need to be employed as well.
Namely, while mean and variance are characterized by the
first- and second-order statistics, higher-order moments are
characterized by higher-order statistics [47, 48].

(us, if X(n) is a random process, one can define the
moments of X(n) as the coefficients in Taylor series ex-
pansion of the moment-producing function [47]:

φx � (w) � E[exp(jwx)]. (4)

If the discrete time signal has zero mean, then the
moments are defined as

m2 (i) � E[X(n), X(n + i)],

m3(i, j) � E[X(n), X(n + i)∗X(n + j)],

m4(i, j, k) � E[X(n), X(n + i)∗X(n + j)∗X(n + k)],

(5)

where E(·) is the expected value of the random process X(·)

[47].
Taking into account that tools for extraction feature

which is based on wavelets feature create the feature
vector, the size of which is too huge to be used as an input
for the classifier, it is possible to use these dimension
reduction techniques to derive a smaller number of fea-
tures out of the wavelet coefficients. Using the cumulants
of first, second, third, and fourth order from each level of
subbands, it is possible to calculate the new, reduced,
feature sets using the wavelet dissolution subbands. (e
possibility of translating the set of coefficients into a re-
duced feature set is one of the most important steps in any
classification task. (erefore, this reduced feature set is
capable of even better characterizing the behavior of the
EMG signal. Consequently, six statistical features are
implemented for the classification of EMG signal, and
they are as follows [49]:

(1) Coefficients’ mean absolute values in every subband:

μ �
1

M
􏽘

M

j�1
yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (6)

(2) Average power of the coefficients in each subband:

λ �

��
1

M

􏽲

􏽘

M

j�1
y
2
j . (7)

(3) Standard deviation of the coefficients in each
subband:

σ �

��
1

M

􏽲

􏽘

M

j�1
yj − µ􏼐 􏼑

2
. (8)

(4) Ratio of the absolute mean values of coefficients of
adjacent subbands:
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χ �
􏽐
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j�1 yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽐
M
j�1 zj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (9)

(5) Skewness of the coefficients in each subband:

φ �

��
1

M

􏽲

􏽘

M

j�1

yj − µ􏼐 􏼑
3

σ3
. (10)

(6) Kurtosis of the coefficients in each subband:

φ �

��
1

M

􏽲

􏽘

M

j�1

yj − µ􏼐 􏼑
4

σ4
. (11)

3.3. Classification Methods

3.3.1. Artificial Neural Networks (ANNs). A group of input
and output components which are connected creates
artificial neural networks. (e network acquires the in-
formation by adjusting the weights until it can have the
ability to anticipate the correct class label of the input
tuples. Neurons are connected by weighted links to form a
network. Although there are plenty of feasible network
structures, the most common one is the multilayer
feedforward network. (ey are interconnected as layers,
and it does not exist in either layer connections or cross-
layer connections. Each model has an input layer that
receives input feature vectors where each neuron generally
corresponds to an element of the feature vector. Usually
f(x) � x is built for the activation function of the input
neurons. (e layer which outputs labels is called as output
layer, where every neuron corresponds to a label, or a label
vector’s element. One or more layers can be between input
and output layers. (ese layers are called as hidden layers.
Sigmoid function can be used as activation function for
functional units like hidden neurons and output neurons
[61].

One of the advantages of neural networks is that they
have a high tolerance for noisy data. (e other advantage is
that they can categorize untrained patterns. (ey might be
useful if you do not have enough information about the
connections between attributes and classes. (ey are also
intrinsically parallel. So, parallelization techniques might be
useful to expedite the process of computation [50].

3.3.2. K-Nearest Neighbor (k-NN). (e K-nearest neighbor
classifier, which only stores the training set, is a lazy learning
approach because there is no clear training process. It learns
by analogy which means the comparison of a provided test
tuple with training tuples which are similar. (ese tuples
must be the closest ones to the unknown tuple. A distance
metric like Euclidean distance describes the “closeness”. In
order to classify k-nearest neighbor, the tuple that is not
known is selected as the most common class among its k-
nearest neighbors. (e rate of k can be determined exper-
imentally [50].

3.3.3. Support Vector Machine (SVM). SVM method clas-
sifies both linear and nonlinear data. A nonlinear mapping is
utilized by SVM for converting the primary training set into
an upper-level size. SVM examines for the linear optimal
separating hyperplane in this new size like a decision border
by which the tuples of one class from another are being split.
(e data from two classes can be separated by a hyperplane
which uses a proper nonlinear mapping to an upper di-
mension. (is hyperplane is used to form support vectors
that are important training vectors and margins. Contrary to
the othermethods, they are highly robust for overfitting [50].

3.3.4. Naı̈ve Bayes. Näıve Bayes is one of the probabilistic
approaches that utilize semantics in order to represent, use,
and learn knowledge. (e maximum aposterior (MAP) rule
is as follows: an approximation for classifying a test sample X
is to construct a probabilistic model to estimate the posterior
probability P(y | x) of the different y’s and to estimate the
one with the greatest background probability. In the fol-
lowing formula, Bayes theorem is represented:

P(y ∣ x) �
P(x ∣ y)P(y)

P(x)
. (12)

In the training set, by counting the proportion of class y,
P(y) can be estimated, and while we compare different y’s
on the same x, P(x) can be ignored. (us, we only need to
consider P(x | y). If we can get an accurate estimate of
P(x | y), we will get the best classifier in theory from the
given training data, that is, the Bayes optimal classifier with
the Bayes error rate, the smallest error rate in theory.
However, estimating P(x | y) is not straightforward since it
involves the estimation of exponential numbers of joint
probabilities of the features. To make the estimation trac-
table, some assumptions are needed [61].

Näıve Bayes can reach success levels, and it can compete
with more sophisticated classifiers. Näıve Bayes’ power to
detect is undermined because of the dependencies between
attributes [50].

3.3.5. REPTree. In a REPTree, a decision tree is made with
the help of gain/variance reduction, and the built tree is
pruned with reduced error pruning. As it is balanced for
speed, just the values for numeric attributes are classified for
one time.We are able to set the base number of examples per
leaf, maximum tree depth (helpful while tree boosting), least
extent of preparing set fluctuation for a splitting (numeric
classes), and fold numbers for pruning [50].

3.3.6. LADTree. (e LADTree is utilized for two types of
class issues through the use of boosting as an alternating
decision tree. It is possible to adjust the number of boosting
iterations in order to comply with the database and desired
complexity-accuracy trade-off. After each iteration, three
nodes are added to the tree. One of these nodes becomes a
split node, and, if nodes are not combined, the other two
become prediction nodes. Even though the alternative al-
gorithms are faster, the specified search algorithm is the
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most common algorithm. In addition to this, it is possible for
the LADTree to adjust the number of boosting iterations so
that they will conform to the data. Also, LADTree can adjust
the size of the produced tree [50].

3.3.7. C4.5 Decision Tree. C4.5 decision tree method tests for
which training examples have the same result are eliminated
as they are not very important. (erefore, they are not
contained in the decision tree if they do not have minimum
two outcomes which have a minimum number of instances.
Candidate splits are taken into consideration in the case that
they cut a specific number of instances. (ere is an MDL-
based adjustment for splits on numeric attributes. Quinlan
[51] designed heuristic in order to avoid overfitting. After
that subtraction, we might find out that the information gain
is negative. If we do not have attributes that have positive
information gain, which is a kind of prepruning, the tree will
stop growing. (is is indicated at this point since it could be
unexpected to get a pruned tree although postpruning is not
active [52].

C4.5 employs the gain ratio:

P D; D1, . . . , Dk( 􏼁 � G D; D1, . . . , Dk( 􏼁 · − 􏽘
k

i�1

Dk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

D
log

Dk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

D
⎛⎝ ⎞⎠

− 1

,

(13)

which is a variant of the information gain criterion, taking
normalization on the number of feature values. In practice,
the feature with the highest gain ratio, among features with
better than average information gains, is selected as the split
[61].

3.3.8. Random Forests (RF). (e random forest is an en-
semble decision tree classifier which has different types of
trees. An individual decision tree is produced by using an
arbitrary array of features at every node for determining the
division. Every tree is based on the values of a random vector
taken individually. (ey have the identical distribution al-
located for all trees in the forest. We can form an RF by
making use of bagging together with random attribute se-
lection. In order to raise the trees, the CART approach is
used. (e tree size can be increased to a maximum possible
size, and they are not pruned. Random forests make use of
random linear combinations from the input attributes. It
does not randomly choose a subcluster of the features, but it
forms novel attributes which are a linear combination of the
existing features [53].

3.3.9. Bagging. Decisions taken from different learners can
be combined into one prediction only. Simply combining
those decisions in the case of classification is voting. (is
approach is used by both bagging and boosting. However,
the individual models are derived by bagging and boosting in
different ways. (e same weights are taken by the models in
bagging while weighting is given to more successful models
in boosting as an executive may put alternative results on a
variety of experts’ advice relying on their previous correct

estimations. (e experts are individual decision trees which
are made united by making them vote on every test. For a
case that one gets more votes than other classes, it is con-
sidered as correct. When predictions are made by more
number of votes, they are more reliable since there are more
voters [52]. Bagging algorithm is shown in Algorithm 1.

3.3.10. Boosting. (e boosting is used for combining mul-
tiple models to make use of this idea by trying to findmodels
that complete each other. It is similar to bagging in that it
exploits voting for the purposes to classify or to average the
numeric estimation to single individual model’s output.
Another similarity is that it brings together models that are
of the same type, such as decision trees. On the other hand, it
is iterative. While bagging makes use of individual models
that are made separately, boosting employs new models that
are influenced by the performance of models that were made
before. Boosting reinforces new models so that they become
experts for instances which are controlled in a wrong way by
previous ones. Finally, a model’s contribution is assessed by
boosting through its confidence not by allocating equal
weight to all models [52]. Boosting algorithm is shown in
Algorithm 2.

3.3.11. AdaBoost. AdaBoost is a learning algorithm which
assumes an instance’s weight as a positive number. (e
existence of instance weights depends on how an error of
classifier is measured. It is the total of the weights of the
wrongly classified instances separated by the total weight of
all instances, instead of the fraction of instances which are
wrongly classified. When we weight instances, we may push
the learning algorithm to focus on a specific group of in-
stances, which have large weight. (ere is high importance
on such instances since it is vital to classify them correctly.
All instances in the training data assigned an equal weight by
the boosting algorithm. (en, each instance is reweighted in
respect to the classifier’s output by the learning method to
create a classifier. (e weight of misclassified instances is
increased, and that of the correctly classified instances is
reduced. Hence, easy instances have low weight, and hard
instances have a high weight. For the reweighted data, a
classifier is created in all subsequent iterations, and that
helps correctly classify the hard instances. Depending on the
output of this new classifier, the weights of the instances are
reduced or increased. So, while hard instances may become
harder, easy instances may become easier. However, there
are some hard ones which may become easier and vice versa.
All of these can be observed in one try. (e weights show
how frequently the instances have been wrongly classified by
the classifiers made till now. At each instance, we form a
measure of hardness, and this gives us a good way of
producing experts which complete each other. Boosting is
better than bagging in producing classifiers which perform
better on new data. On the other hand, sometimes it fails in
practical situations by producing a classifier that can have
smaller success percentage than an individual classifier
established from the same database. AdaBoost implies that
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the combined classifiers fully correspond to the data [52].
AdaBoost algorithm is shown in Algorithm 3.

3.3.12. MultiBoosting. Decision committee learning has
shown amazing accomplishment in diminishing arrange-
ment error from learned classifiers. (ese methods build up
a classifier as an advisory group of backup classifiers. (e
committee individuals are connected to a characterization
assignment and their individual yields joined to make a
solitary order from committee all in all. (is blend of yields
is regularly performed by dominant part vote. Since learning
aims at building a classifier which is having minimum
inaccuracy rate, and if there is no existing information about
the data, AdaBoost is an excellent option in standard de-
cision tree learners [54].

AdaBoost and bagging are competent in different
mechanisms; if we combine them, we can reach even
much better results. Making use of different kinds of
approaches in producing committee members is supposed
to increase variety in the committee members that may
also raise disagreement between predictions. In the case
that this could be realized by not considerably increase the
error in the individual predictions, it might lower the
error in the resulting committee’s predictions. Since each
type’s earlier members have the most significant effect, it
could be a good idea to give up on the second members of
one type of committee for members that have the effi-
ciency of the initial members of the other type. In Mul-
tiBoosting, AdaBoost is combined with wagging, a variant

of bagging which fits more to the task than bagging di-
rectly. Wagging [55] is a type of bagging which needs a
base learning algorithm which can make use of training
cases with a variety of weights. Wagging allocates weights
randomly to the cases that are present in each training set
instead of making use of bootstrap samples in order to
establish successive training sets. Gaussian noise was used
in Bauer and Kohavi’s [55] original formulation of
wagging to change the instance weights. (at might cause
some weights to be lowered to zero, efficiently taking them
out from the training set. Aside from the bias and variance
reduction features which that algorithm can get each of its
constituent committee learning algorithm from, Multi-
Boosting stands in a better position compared to Ada-
Boost regarding computation, even though this would
demand an alteration to the control of early abortion of
learning a subcommittee. (e AdaBoost is naturally se-
quential, which prevents the parallel computation,
whereas MultiBoosting in which the classifiers are learned
with wagging is independent of the others and makes
parallel computation possible for MultiBoosting [56].

4. Results and Discussion

In this study, for every subband of WPD, the statistical
values (first-, second-, third-, and fourth-order moments)
were obtained and used for the purpose of classifying EMG
signals for diagnosing disorders in the neuromuscular
system. Since the number of subjects is limited in this study,
the EMG signals are divided into frames with a length of

Input: dataset D � (x1, y1), (x2, y2), . . . , (xm, ym)􏼈 􏼉;
Base learning algorithm £;
Number of base learners T.

Process:
(1) for t� 1, . . . ,T;
(2) ht � E(D, Dbs) % Dbsis the bootstrap distribution
(3) End

Output: H(x) � argy∈Y max ΣTt�1‖(ht(x) � y)

ALGORITHM 1: Bagging algorithm.

Input: sample distribution D;
Base learning algorithm £;
Number of base learners T.

Process:
(1) D1 � D. % Initialize distribution
(2) for t� 1, . . . ,T:
(3) ht � E(Dt); % Train a weak learner from distribution Dt

(4) ∈t � Px∼Dt
ht((x)≠f(x)); % Evaluate the error of ht

(5) Dt+1 �Adjust_Distribution (Dt, ∈t)
(6) end

Output: H(x) �Combine_Outputs ( h1(x), . . . , ht(x)􏼈 􏼉)

ALGORITHM 2: Boosting algorithm.
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2048 samples by using rectangular windows. Hence, for each
signal class (Normal, Myopathy, and Neuropathy), we have
800 instances, and as a total 2400 instances. (e feature of
the EMG signal model is described by the derived charac-
teristics from every signal frame. Considering the charac-
teristics of the EMG signal, one can expect the magnitude of
a particular feature to vary significantly from person to
person. (erefore, it is important to use appropriate clas-
sification algorithm which has to tolerate these predicted
variations. For this reason, the first step is to acquire a group
of features from the EMG signal patterns, and after this,
different bagging and boosting ensemble classification al-
gorithms are used for more specified EMG signal recogni-
tion as shown in Figure 1.

4.1. Performance Evaluation Metrics. Performance on an
independent test data does not give a certain scale about
the performance of classifiers on the training data. When
using a limited number of samples, the classification
performance of an algorithm is interesting, and still
controversial, one. Hence, in this study, repeated cross-
validation which is the option in many applied restricted-
data cases is encountered. In cross-validation, a fixed
number of folds which are actually partitions of the data
are used. Usually, tenfold cross-validation is employed to
predict the error rate of a classification method in which a
sole, constant example of data is used. Generally, the
database is randomly split into ten folds which are called
10-fold cross-validation. Each fold is possessed of almost
the same characteristic as the whole database. In the end, a
general error prediction is achieved by the average cal-
culation of the ten error predictions [52].

(e correct classification results for every class are the
true positives (TP) and true negatives (TN), while the false
positive (FP) is the result which is incorrectly classified as
positive when it is actually negative. Accordingly, the false
negative (FN) is the result which is incorrectly classified as
negative when, in essence, it is positive [49].

(ere are parameters are used to calculate the efficiency
of the classifier which is recall and precision which can be
calculated by using the following formulas:

recall �
TP

TP + FN
,

precision �
TP

TP + FP
.

(14)

(e formula of F-measure which is one of the mea-
surement parameters is as follows:

F-measure � 2∗
precision∗ recall
precision + recall

�
2∗TP

2∗TP + FP + FN
.

(15)

Finally, of course, the total classification accuracy is as
follows:

accuracy �
TP + TN

TP + FN + TN + FP
∗ 100%. (16)

In addition to the above stated, receiver operating
characteristic (ROC) curves are a graphical method which
is used for the purpose of assessing data mining tech-
niques. (is graphical method represents the efficiency of
the classifier; however, it does not take into account the
class distribution or error costs. [49]. In fact, it is the
common way for assessing the area under the ROC curve
(AUC) [54–56].

Kappa statistics measure considers this normal figure
by deducting it from the indicator’s triumphs and com-
municating the outcome as an extent of the aggregate for
an immaculate indicator. (e most extreme estimation of
Kappa is 100%, and the normal incentive for an irregular
indicator with a similar section sum is 0. Kappa mea-
surement is utilized to gauge the understanding amongst
anticipated and watched classifications of a dataset while
adjusting for an assertion that happens by a shot. In any
case, similar to the plain achievement rate, it does not
consider the costs [52]. When talking about the statistic

Input: dataset D � (x1, y1), (x2, y2), . . . , (xm, ym)􏼈 􏼉;
Base learning algorithm £;
Number of base learners T.

Process:
(1) D1(x) � 1/m. % Initialize the weight distribution
(2) for t� 1, . . . ,T:
(3) ht � E(D, Dt); % Train a classifier ht from D under distribution Dt

(4) ∈t � Px∼Dt
(ht(x)≠f(x)); % Evaluate the error of ht

(5) if∈t > 0.5 then break
(6) ∝ t � 1/2 ln(1 − ∈t/∈t); % Determine the weight oh ht

(7) Dt+1(x) � (Dt(x)/Zt)x
exp(− ∝ t) if ht(x) � f(x)

exp(∝ t) if ht(x)≠f(x)
􏼨 � (Dt(x)exp(− ∝ tf(x)ht(x))/Zt)

where % Update the distribution, % Zt is a normalization factor which % enables Dt+1 to be a distribution
(8) end

Output: H(x) � sign(􏽐
T
t�1∝ tht(x))

ALGORITHM 3: AdaBoost algorithm.
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which is most often used for evaluation of categorical data
in cases where the independent means of assessing the
probability of chance agreement between two or more
observers are not available, this is the kappa statistic.
Namely, a kappa value of 0 represents agreement
equivalent to chance, while the kappa value of 1 shows
perfect agreement [57, 58]. Cohen [59] defined the kappa
statistic as an agreement index and is defined as the
following:

K �
P0 − Pe

1 − Pe

, (17)

where P0 is accepted as an agreement and Pe processes the
agreement estimated by chance [60].

4.2. Experimental Results. Total classification accuracy, F-
measure, AUC, and kappa statistics are criteria which are
used to assess the accuracy of the single and ensemble
learning algorithms. As a result, the outcome of this study
has proved that four moments of statistical characteristics
obtained for every subband ofWPD increase the success rate
of classification. (e performance of every algorithm was
assessed by utilizing the 10-fold cross-validation technique
[60]. Classifiers performances for the EMG data are sum-
marized in Tables 1–4. All methods performed reasonably
well according to total classification success rate, F-measure,
AUC, and kappa statistics. Table 1 shows that LADTree
achieved the minimum success rate out of single classifiers’
accuracy which is 88.67%. When we checked classification
accuracies of ensemble methods, LADTree gave minimum
performance with 88.33% (Table 2) in bagging ensemble
learning method, and for all of other ensemble learning
methods, minimum performance is achieved by NB, 89.54%
in AdaBoost method (Table 3) and 88.54% in MultiBoosting
method (Table 4). (e best performance is achieved by RF
with 98.54% classification accuracy from single classifiers.
When we used ensemble learning methods, the best

performance is achieved by RF with 98.92% in bagging, RF
with 99.08% in AdaBoost, and C4.5 with 98.83% in Mul-
tiBoosting, respectively.

(e F-measures of ANN, k-NN, SVM, RF, C4.5, Random
Tree, REPTree, LADTree, and NB were 0.983, 0.917, 0.978,
0.985, 0.965, 0.951, 0.962, 0.886, and 0.894, respectively, for
single classifiers. After using bagging and boosting ensemble
learning methods, almost all results are increased until 0.99.
(e complete performance of these models is demonstrated
in Tables 1 to 4.

(eAUCs of ANN, k-NN, SVM, RF, C4.5, RandomTree,
REPTree, LADTree, and NB were 0.997, 0.982, 0.986, 0.999,
0.973, 0.963, 0.983, 0.892, and 0.96, respectively. RF achieves

Table 1: EMG signal classification results for single classifier.

Accuracy (%) F-measure ROC area Kappa
ANN 98.33 0.983 0.997 0.975
k-NN 91.71 0.917 0.982 0.8756
SVM 97.83 0.978 0.986 0.9675
RF 98.54 0.985 0.999 0.9769
C4.5 96.50 96.5 0.973 0.9475
Random Tree 95.13 0.951 0.963 0.9269
REPTree 96.25 0.962 0.983 0.9437
LADTree 88.67 0.886 0.892 0.83
NB 89.54 0.894 0.96 0.8431

Data
acquisition

EMG Data
segmentation

Raw signal
in segments

Feature
extraction

using WPD

Extracted
feature
vectors

Dimension
reductionClassificationCategories

Control
myopathy

neuropathy

Statistical
features

Figure 1: Presentation of the proposed framework.

Table 2: EMG signal classification results for bagging.

Accuracy (%) F-measure ROC area Kappa
ANN 83.33 0.83 0.89 0.81
k-NN 91.42 0.914 0.986 0.8712
SVM 98.00 0.980 0.994 0.97
RF 98.92 0.989 1 0.9837
C4.5 98.08 0.981 0.998 0.9712
Random Tree 97.54 0.975 0.997 0.9631
REPTree 97.54 0.975 0.997 0.9631
LADTree 88.33 0.883 0.912 0.825
NB 89.71 0.895 0.968 0.8456
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the best AUC performance with 1 in bagging and AdaBoost.
REPTree achieves the best AUC result with 0.99 in
MultiBoosting.

Kappa results for single classifiers ANN, k-NN, SVM,
RF, C4.5, Random Tree, REPTree, LADTree, and NB were
0.975, 0.875, 0.967, 0.976, 0.947, 0.926, 0.943, 0.83, and 0.843,
respectively. After using ensemble learning methods, almost
all results are increased until 0.99.

(e selection of input variables and classificationmethod
choice are the most important considerations for the per-
formance of EMG signal classification. Signal processing
method and selection of features are other significant criteria
to derive the most valuable parameters from EMG.(e best-
suited parameters must be used as the inputs of the model
for EMG signal classification. For this reason, statistical
features extracted for each subband of WPD are chosen and
each subband must be relevant to classify the nonlinear
dynamics underlying muscle actions and permit foresight
into the growth of complication and regularity of the EMG.
Diagnosis and treatment of many types of muscle disease are
only possible with the exact identification of the EMG signal.
Bagging, AdaBoost, and MultiBoosting ensemble learning
algorithms were applied to increase the accuracy of single
classifiers. As result tables demonstrate, the ensemble
classifiers increase the single methods’ accuracy in the
classification of EMG signals.

4.3. Comparison with Previous Studies. Now it is important
to compare the efficiency of previous studies with the
proposed technique. Accordingly, the accuracy of classifi-
cation for all studies which were compared is presented in
Table 5 which serves to show that the success rate for the
technique which we have proposed is higher than the success

rate of previous works. It was a challenge to compare the
classifiers which were created in this study to those from
similar studies, and it was also challenging to compare the
diversity of classification methods, MUAP forms which are
categorized in systems and the number of MUAP forms
classified, and the techniques for EMG signal processing as
well as their features. Nonetheless, the results which we have
received from this study have a success rate of 99% and are
found to perform adequately in comparison with the ex-
amples from the literature. Actually, we must compare our
results in two ways: one which uses the same dataset and the
other which uses different dataset.

A framework formed on the basis of feedforward error
backpropagation artificial neural networks (FEBANNs) and
wavelet neural networks (WNNs) using the same dataset was
suggested by Subasi et al. [15]. For the purposes of EMG
signal classification, they also compared the accuracies, and
using WNN, they reached the maximum success rate of
90.7%. In [4], 95% of classification accuracy was achieved
using the same dataset when ANFIS classifier was utilized
with AR andDWTmethods for feature retrieval, while in [5],
97% of precision was recorded when DWT feature retrieval
and PSO-SVM classifiers were utilized. On the other hand,
in [11] DWTwas used for the purposes of feature extraction
and FSVM for classification, and they reached an accuracy of
97% by using the same dataset. Finally, in [10], the classi-
fication accuracy improved to 97.67% due to the use of DWT
method for feature extraction and evolutionary SVM for
classification. Furthermore, after several years, Bozkurt et al.
[13] suggested a model for classifying EMG signal through
the use of MUSIC method for feature extraction, combined
neural network for classification, and the same dataset. (is
model was proposed in 2016 and it achieved 94% accuracy.
In [21], bagging ensemble with SVM achieved 99% classi-
fication accuracy using DWT for feature extraction and the
same dataset.

On the other hand, somemethods used different datasets
as in the study of Katsis et al. [34] who grouped three types of
class signal (normal, myopathic, and neuropathic) while
utilizing SVM. (ey achieved 86.14% precision. Addition-
ally, Rasheed et al. [36] introduced an interactive application
which serves to implement a classification task during EMG
signal decomposition through the use of a fuzzy k-NN
classifier. Accordingly, they recorded a classification accu-
racy of 93.5 %. It should also be mentioned that Sengur et al.
[39] classified only two class data (normal vs. ALS) through
the use of wavelet transform for the purposes of feature
extraction and convolutional neural networks (CNNs). (e
success rate of this study is 96.80%.

When we compare the related studies in the literature
with the system we have developed, we see our system
performing more successfully than the others. Namely, our
proposed technique has the best overall accuracy of 99.08%.

4.4. Discussion. In this study, EMG data are applied to
design a model to diagnose and cure the neuromuscular
diseases. When the dimensions of the EMG signals are very
large, it is difficult to work with the data at this size.

Table 3: EMG signal classification results for AdaBoost.

Accuracy (%) F-measure ROC area Kappa
ANN 98.33 0.98 0.99 0.98
k-NN 90.50 0.91 0.97 0.86
SVM 97.83 0.98 1.00 0.97
RF 99.08 0.99 1.00 0.99
C4.5 98.88 0.99 1.00 0.98
Random Tree 0.93 0.96 0.95 95.13
REPTree 96.25 0.96 0.98 0.94
LADTree 96.00 0.96 1.00 0.94
NB 89.54 0.89 0.93 0.84

Table 4: EMG signal classification results for MultiBoosting.

Accuracy (%) F-measure ROC area Kappa
ANN 98.33 0.983 0.988 0.975
k-NN 91.33 0.913 0.976 0.87
SVM 95.88 0.959 0.979 0.9381
RF 98.79 0.988 0.998 0.9819
C4.5 98.83 0.980 0.999 0.999
Random Tree 93.75 0.937 0.953 0.9063
REPTree 98.04 0.980 0.999 0.9706
LADTree 93.92 0.939 0.993 0.9088
NB 89.54 0.894 0.932 0.8431
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(erefore, first, the WPD feature extraction technique was
applied to extract valuable and informative features. (en,
the distribution of wavelet factors is presented by the
computing of WPC’s statistical numbers. Finally, classifiers
utilize the detected feature as entry data. Obtained features
were classified with single classifiers firstly. After that, they
were classified with bagging, AdaBoost, and MultiBoosting
ensemble classifiers, and the results were compared with
each other. (is study shows that using ensemble learning
techniques has improved the success rate significantly. (e
study of the classification of EMG signals in the literature
will reveal that there is almost no study on ensemble
techniques in this regard.

In addition to everything above mentioned, it is im-
portant to bear in mind that each classification method
uses different logic for parameter adjustment. For in-
stance, RF adjusts only one key parameter and that is the
number of trees. However, it should be mentioned that the
exact meaning of some parameters is still unknown to
clinicians. Moreover, since it is difficult to develop a
suitable algorithm in clinical practice, scientists have
developed numerous machine learning methods. (e
criteria that are of utmost importance for choosing the
suitable algorithm are definitely eased of use, output, and
interpretation. Since there is almost no study which
employs a method of ensemble learning for establishing a
diagnosis of the neuromuscular disorders, this study
serves to show the potential that methods of ensemble
learning have in establishing a diagnosis of disorders in
the neuromuscular system through the use of EMG data.

It was challenging to compare the classifiers which were
made in this paper with similar frameworks, diversity of
classification methods, the number of MUAP types classified
and those classified in the systems, techniques for EMG
signal processing, and the characteristics thereof. When
compared with examples from the literature, this study has a
satisfactory achievement rate of 99.08%. Best result was
achieved by the combination of AdaBoost with random
forest ensemble method. Random forest is already an en-
semble method, the idea is very similar to bagging, it does
not use just one algorithm, and it takes decisions from
several trees and decides according to mostly voted class.
Because of that, it is very strong algorithm. AdaBoost is the

most influential boosting algorithm because it minimizes
classification error of the combined classifiers. Combination
of these two methods gave the best result in our study
because of powers of both methods.

When it comes to classifier creation, choice of input variable
is crucial. (erefore, as a classifier input, this work utilizes
statistic values for each subband of WPC. What enables the
smallest subset’s usage consistent with the full feature set is the
power of statistic features to decrease the number of features in a
subcluster. (us, features linked to signal statistics of diverse
frequency bands are the oneswhich have to be selected formodel
construction. Consequently, it is of utmost importance that
clinicians comprehend the model conditions prior to using it.

5. Conclusion

Since the classification of different MUAPs and correct
recognition is an important prerequisite for accurate
treatment of patients, detection of neuromuscular disorders
through the use of electromyography (EMG) recordings has
taken a popular and significant place in the area of bio-
medical research. (is study proposes a new framework for
characterizing MUAP through the use of statistical values of
subband components after wavelet packets (WPD) have
been decomposed. In order to remove needless parameters
from the main dataset, a simple feature selection method has
been suggested. (e result of this study serves to show
exactly which pathological modifications on EMG signals to
the four moments of statistical features are acquired for
every subband of WPD shown. It is also important to say
that, when compared to similar cases in the area, the sug-
gested method is more exact in distinguishing various
MUAP models. Due to the new combination of wavelet
packet decomposition with the statistical values, MUAP
detection algorithm efficiency indexes are quite satisfactory.
Even though there are numerous papers on problems with
classification of ensemble learning methods, the number of
studies which focus on diagnosing neuromuscular disorders
is almost nonexistent. Nevertheless, the results of the study
show that the proposed method defeats single classifiers that
are most frequently utilized and that the suggested method
can be executed in any monitoring application which is
computer-based. Best result was achieved by the

Table 5: Comparison of the classification accuracies achieved by different studies using different datasets.

(e study reference Feature extraction method Classifier Classification accuracy (%)
[4] AR+DWT ANFIS 95
[5] DWT PSO-SVM 97.41
[13] MUSIC Combined neural network (CNN) 94
[11] DWT FSVM 97.67
[10] DWT Evolutionary SVM 97
[15] AR WNN 90.7
[21] DWT Bagging ensemble with SVM 99
[34] Fuzzy k-means SVM 86.14.
[35] Peaks of MUAPs. SVM 95.90
[36] Time domain features Adaptive fuzzy k-NN 93.5
[39] CWT Convolutional neural network 96.80
Proposed method WPD AdaBoost with RF 99.08
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combination of AdaBoost with random forest ensemble
method with 99.08% accuracy. Random forest is already an
ensemble method, the idea is very similar to bagging, it does
not use just one algorithm, and it takes decisions from
several trees and decides according to mostly voted class.
Because of that, it is very strong algorithm. AdaBoost is the
most influential boosting algorithm because it minimizes
classification error of the combined classifiers. Combination
of these two methods gave the best result in our study
because of powers of both methods. (e suggested model
uses a small number of parameters representing EMG sig-
nals instead of using all EMG records, so using a smaller
dataset has given the advantage of performance. Results
showed that the AdaBoost with random forest ensemble
method achieved an accuracy of 99.08%, F-measure 0.99,
AUC 1, and kappa statistic 0.99.
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