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and host populations disperse with distinct diffusion rates, susceptible individuals or
vectors cannot be infected by both strains simultaneously, and the vector population
satisfies the logistic growth. Our main purpose is to get a threshold type result on the
model, especially the interaction effect of the two strains in the presence of spatial

ggg(;(l)\/lsc: structure. To solve this issue, the basic reproduction number (BRN) 9’%6 and invasion

35K57 reproduction number (IRN) 9 of each strain (i = 1 and 2 are for the sensitive and resistant

35840 strains, respectively) are defined. Furthermore, we investigate the influence of the diffu-
sion rates of populations and vectors on BRNs and IRNs.

Keywords: © 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi

Threshold dynamics
Two-strain malaria model
Competition and coexistence
Reproduction number

Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Malaria, a mosquito-borne epidemic arising from parasites of the genus plasmodium, still remains a fatal epidemic. Its
primary reservoirs are female anopheles mosquitoes. The malaria transmission generally involves a transmission cycle be-
tween humans and female mosquitoes (Forouzannia & Gumel, 2014), that is, infected mosquitoes can transmit malaria to
susceptible individuals through effective bites and susceptible mosquitoes can get infection from infected individuals by
biting. Plasmodium vivax leads to approximately 80% of malaria infections (Titus, 1990) and Plasmodium falciparum is the
most lethal. Once humans get infections from infected mosquitoes, some typical symptoms such as chills, fever, sweating will
occur. If patients can not receive timely treatment, malaria will cause serious complications even death. In 2019, as reported in
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(World Health Organization, 2019), there were approximately 228 million cases all over the world. Nowadays, malaria is still
prevalent in Africa, Asia and South America, which brings negative influences on the public health and local economies.

Mathematical models on malaria spread have received a lot of attention in recent years as investigation of such models can
give us better understanding of the mechanisms of malaria transmission and also provide guidance or suggestions on malaria
control. Since the study of (Macdonald, 1957) and (Ross, 1911), mathematical models on malaria spread have been extensively
studied by many researchers, which incorporate various factors in malaria transmission. A typical factor is spatial hetero-
geneity in disease transmission. Indeed, spatial transmission of diseases subject to differences in social, cultural, economic,
demographic, and geographical factors may in turn give rise to the spatial patterns of diseases (Hagenaars et al., 2004). In
recent years, more and more malaria transmission models have been established to investigate the spatial spread of malaria
in the forms of reaction-diffusion equations. In a recent work (Ge et al., 2015), Ge et al. argued that the movement of
mosquitoes and individuals affects the geographic spread of malaria. Considering spatial heterogeneity, one often adopts
space-dependent functions instead of constants for parameters. On the other hand, the authors in (Lou & Zhao, 2011)
extended Macdonald's malaria model (Macdonald, 1957) to a nonlocal reaction-diffusion model by introducing the extrinsic
incubation period (EIP). They explored the threshold dynamics and investigated the impact of spatial heterogeneity on
malaria spread numerically. Chamchod et al. (Chamchod & Britton, 2011) proposed a vector-bias malaria model involving the
incubation time, diffusion term and chemotaxis term. They studied the phenomenon of transcritical bifurcation in a critical
case where the incubation time and diffusion term are ignored. They also performed numerical simulations on results of the
wave speed to verify the result on the minimum wave speed from qualitative analysis when the diffusion term and
chemotaxis term are included. It is confirmed that a large incubation time can reduce the prevalence of malaria. Further, Xu
and Zhao (Xu & Zhao, 2013) investigated the threshold-type result of a vector-bias malaria model with diffusion term in a
homogeneous case. Some conditions on the global attractivity of the positive steady state (PSS) are also obtained in a het-
erogeneous case. Subsequently, Bai et al. (Bai et al., 2018) extended theories proposed in (Chamchod & Britton, 2011), (Lou &
Zhao, 2011) and (Wang & Zhao, 2017) to a model involving seasonality, spatial heterogeneity, vector-bias, and EIP. They
concluded that spatial heterogeneity remarkably increases the epidemic burden and EIP would be helpful in controlling
malaria transmission.

It is highlighted in (Laxminarayan et al., 2016) that the high use of antimalarial drugs has accelerated the evolution of
resistance to some plasmodium parasites during the treatment of malaria, which directly threatens the fight against malaria.
The drug resistance of Chloroquine (which was frequently used to control malaria in the 1950's) was found in Southeast Asia
and South America and spread to every country in the following decades (Talisuna et al., 2004). Generally speaking, anti-
malarial drugs will eliminate drug-sensitive parasites in hosts. But drug-resistant parasites survive and reproduce due to the
high use and long term treatment (Esteva et al., 2009). Sulfadoxine-pyrimethamine, as an alternative to Chloroquine, has also
been proved to have the phenomenon with the decline of efficacy. Recently, Artemisinin combination therapies are widely
used in the treatment for malaria. However, drug-resistance remains inevitable and brings difficulties in malaria control (see,
for example (Bushman et al., 2018; Tumwiine et al., 2014),). Further, Forouzannia and Gumel (Forouzannia & Gumel, 2015)
assessed the effect of antimalaria drugs on malaria control by an age-structured model. Very recently, Shi and Zhao (Shi &
Zhao, 2021) explored a diffusive two-strain (sensitive and resistant strain) malaria model, where the following biological
factors in malaria transmission are taken into account:

(i) The total human population stabilizes at H(x). Let t and x be the time and space variables, respectively. Assume that
the total population lives in a bounded spatial habitat Q with a smooth boundary Q. The total population H := H(t, x) is
divided into susceptible individuals H, := H,(t, x), individuals infected by the sensitive strain I :=I1(t, x) and individuals
infected by the resistant strain I,:=I(t, x), that is, H = H,, + I; + I>. Further, H satisfies the following equation,

%I:DhAHerthyH, (t,x)e(0,00) x Q,
oH (1.1)
=0, (t,X)€(0,00) x 60,

where Dp, > 0 is the diffusion rate of the population, by and v are the recruitment rate and mortality rate of the population,
respectively. Here £ represents the normal derivative along n on dQ. As in (Bai et al., 2018), the total population H(t, x) is
assumed to be H(x), i.e., H(t,x)=H(x) for (t, x) € [0, o) x Q.

(ii) The total of female adult mosquitoes remains constant. The total density of female adult mosquitoes M := M(t, x) is
divided into susceptible individuals S, := S,(t, x), mosquitoes infected by the sensitive strain I,;:=I,(t, x) and in-
dividuals infected by the resistant strain I,»:=1,,(t, x), that is, M=S, + I,1 + I,2. M is assumed to be governed by the
following system:
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‘Z_I\t/': D,AM + A —nM,  (t,x)€(0,00) x Q,
f’airf:o., (t,X)€(0, 00) x Q2

where A and 7 are the recruitment rate and mortality rate of female adult mosquitoes, respectively. D, > 0 stands for the
diffusion rate of all mosquitoes. According to the results in (Magal et al., 2018), (Cantrell & Cosner, 2003),

tlimM(t,x) =M== (1.2)

= >

(iii) Vector-bias mechanism. In view of the works (Chamchod & Britton, 2011) and (Bai et al., 2018), vector-bias mechanism
was introduced to characterize the distinct attractiveness of host population to mosquitoes. Infectious humans exhibit
greater attractiveness to female adult mosquitoes than susceptible humans. The constant p (respectively, [) is used for
the probability when a vector randomly bites a susceptible (respectively, infectious) host.

We use i =1 and 2 to differentiate the sensitive and resistant strains, respectively. The basic reproduction number (BRN)

5)?{) and the invasion reproduction number (IRN) 9‘{5 of the i strain are defined in (Shi & Zhao, 2021) as the threshold values to
investigate the competition and coexistence phenomena, that is, (i) if SRE) <1and SR% <1, then malaria vanishes; (ii) if SRE, >1,

-1 52 . c . . . cr . . . ceey s

Ro<1, M3 >1, Ry > 1, then malaria with i = 1 strain becomes extinct and malaria with i = 2 strain becomes epidemic; (iii) if
1 52 . s . . . . 1 s . .

E)?E) >1,Mp>1, SR% >1, Ny < 1, then malaria with i = 1 strain becomes epidemic and malaria with i = 2 strain becomes extinct;

(iv)if iy > 1, EWA%(], >1,M8>1, SY{?) > 1, then both strains coexist. Further, numerical simulations are performed to investigate the
impact of the vector-bias mechanism on epidemic spread.

This work intends to investigate the competition and coexistence phenomena in a diffusive two-strain (sensitive and
resistant strain) malaria model arising from high use of antimalarial drugs. Based on the two-strain malaria transmission
model proposed in (Shi & Zhao, 2021), we shall borrow the idea used in (Magal et al., 2018) to modify (1.1), i.e., the density for
susceptible populations stabilizes at the spatial location rather than the density for the total population stabilizes at the
spatial location as in (Lou & Zhao, 2011) and (Bai et al., 2018). Considering that the total number of mosquitoes is affected by
the maximum environmental capacity, we modify the linear growth rate of mosquitoes (Shi & Zhao, 2021) with a logistic
growth. To make things not too complicated (as competition and coexistence phenomena between the two strains have
already made the problem very challenging), we adopt the mass action for the interaction between humans and mosquitoes.
Furthermore, our analysis gives the influences of diffusion coefficients and shows the competition and coexistence of the two
strains while keeping the spatial heterogeneity (with all nonconstant coefficients except the diffusion rates of humans and
mosquitoes) in hosts and vectors.

In the next section, we introduce the diffusive two-strain malaria model in a heterogeneous environment. We rigorously
analyze the well-posedness in Section 3, which includes the existence and uniqueness of classical solutions, the ultimate
boundedness of solutions, and the existence of a global attractor. In Section 4, we first explore the subsystems of single strains.

The local basic reproduction number (LBRN) S}Ig(x) and the BRN Sﬁf) of each strain (i=1, 2) are introduced and the re-

lationships between 5)’%6(x) and ?)i{) are established. The local invasion reproduction number (LIRN) f)A't:)(x) and IRN 57%6 (i=1,2)
are analyzed in the same way. Furthermore, we identify the asymptotic consequences of BRNs and IRNs when the diffusion
coefficients of hosts and vectors tend to infinity or zero. In Section 5, we study the threshold dynamics determined by BRNs
and IRNs. The stabilities of the disease-free steady state (DFSS) and the boundary steady state (BSS), results of uniform
persistence, and the existence of a PSS are all addressed. Finally, we end the paper with a brief discussion.

2. The model

Based on the malaria models in (Shi & Zhao, 2021), (Fitzgibbon et al., 2017), (Magal et al., 2018), and (Magal et al., 2019), we
propose a diffusive two-strain malaria transmission model. As it is well-known, malaria, zika virus, and dengue fever are all
highly dangerous vector-borne infectious diseases. Thus they can be modeled with a similar mathematical framework. We
mentioned that (Fitzgibbon et al., 2017) highlighted the effect of susceptible hosts stabilizing at spatial location in zika
epidemic. Indeed, approximately 395 per hundred thousand residents of Rio de Janeiro were infected with zika during eight
and a half months, which means that infected residents are less than 1% of the total population (Villela et al., 2016). It is thus of
interest to analyze the effect of this factor on the transmission of malaria. Subsequently, Magal et al. (Magal et al., 2018)
revisited the model in (Fitzgibbon et al., 2017) to investigate the threshold dynamics according to BRN N (obtained via the
next generation operator method). Their results also revealed the relationship between %y — 1 and the principal eigenvalue
of the corresponding eigenvalue problem. Generally speaking, it is difficult to visualize N for reaction-diffusion systems with
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multiple infective compartments. Inspired by the dynamics of the associated ordinary differential equation model, but with
LBRN, Magal et al. (Magal et al., 2019) further explored the relationship between BRN and LBRN and investigated the
asymptotic consequences of BRN and LBRN when the diffusion coefficients of hosts and vectors tend to infinity or zero.

Inspired by the above works, we shall adopt the two-strain malaria model in (Shi & Zhao, 2021) based on the following
assumptions.

(i) During a relatively short-time epidemic, susceptible humans are not affected. Let Hy(x)eC(Q, R) be the stabilized
susceptible humans at location x, which is a continuous positive function on Q. Suppose that each susceptible indi-
vidual or vector cannot be infected by both strains simultaneously. We use

Ci(X)Hu(X)i(t,x), 1=1,2,

to represent the flux of newly infected humans with the i strain, where ¢;(x) €C(Q, R, ) denotes the transmission rate that an
infected mosquito of the i strain bites a susceptible individual. Similarly, we use

ai(x)sv(tvx)li(tvx)v 1= ]727

to represent the flux of newly infected mosquitoes with the i strain, where ¢;(x) €C(Q, R, ) denotes the transmission rate that
a susceptible mosquito bites an infected individual.

(ii) The total number of vectors is affected by the environmental carrying capacity in the sense that M =S, + I,,1 + I, obeys
a logistic type growth, that is,

a;\t/lfD AM + B(X)M — p(x)M?, (t,x)€(0,00) x Q,
M (2.1)
=-=0, (t,x)€(0, ) x 09,

M(0,x) = Mo(x) €C(Q; R.),

where ((x) denotes the breeding rate of mosquitoes and u(x):= 1< w1th K(x) denoting the environmental carrying capacity at

location x. According to the analysis in (Cantrell & Cosner, 2003), it is obvious that for any positive initial data Mg (x) €C(Q,R),
M satisfies
Jim [M—-Mx)|,=0 for (t,x) € (0,00)xQ, (2.2)
— 00

where M(x) is the unique positive solution of

“D,Aw(x) = BR)w) - prwrr),  XED

(2.3)
do) o x€dQ.
an

By incorporating the above assumptions, the model studied in this paper is

a1

5t = Drdl = v1 (0 + ¢ (0Hu (0L,
012

= DpAL — vo(X) + 2 (X)Hu(X),,

as
aTv = D,AS, — a1(X)S,I; — az(X)S,Iy + B(X)M — u(x)MS,, (24)
a;"tl =D)AL + a1 (X)Syly — u(x)Ml,q,
al,
ot = Dvblia +ax(X)Suly — p(X)Ml,

for (t, x) € (0, ) x Q, associated with
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W,
on

We further impose the following initial data on (2.4),

=0, Wh = 11712751/711/1a1v27 (t,X)E(O, oo) x 0Q. (25)

(1 (0, +), (0, +), S,(0, +), L1(0, =), 1,2(0, +)) = (19, 19, SO, 1, 1%). (2.6)

3. Well-posedness

This section mainly establishes the well-posedness of system (2.4) with (2.5) and (2.6). Let X:=C(Q, R®) be the Banach
space of all continuous functions from Q to R> equipped with the supremum norm || - ||y and X*:=C(Q, R3) be the positive

cone of X. For convenience, we let Y:=C(Q, R) and Y*:=C(Q, R, ). The supremum norm on Y is denoted as | +|y.
Following the standard arguments in [27, Section 7.1 and Corollary 7.2.3], we denote respectively T;(t), i=1,2,3: Y—>Y
the compact and strongly positive evolution operators associated with

O Dyl Wl =Ah, (£X)E(0,00) x Q.

92— Dyl — 12 00h=Aoy,  (£X)E(0,00) x 0,
and

aSy

S =DS,=AsS,,  (£0)€(0,0) x Q

subject to (2.5). Furthermore, T(t) = diag{T;(t),T>(t),T3(t),T3(t),T5(t)} : X=X, t > 0, generated by the operator .4 = diag{
A1,A3,A3,A3,A3}, is a strongly continuous semigroup. Here A is defined on D(A) = D(A1) x D(A3) x D(A3) x D(A3) x D(A3),
where

D(A;)=40eC(Q): lim (Ti(0) = 1) exists, i=1,2,3
t—0+ t

with [; denoting the identity operator.
For simplicity of notations, we denote

Xy={p=(¢1, P2, ¢3,bs,d5) € X+ :0<Mq(t,%) = ¢3+ Pa+ ¢s5 SM(X)~ (t,x) € [0, 00) Xﬁ}
Moreover, we define F = (Fy1, Fa, F3,F4,F5) : Xy— X by

F1()(x) = €1(X)Hu(X)$4(0, X),

F2(¢)(x) = c2(x)Hu(x)$5(0,%),

F3(0)(X) = a1 (X)$3(0,X)b1 (£, %) — a2 (X)¢3(0,%)$2(0,%) + B(x)M; (0, %) (3.1)
—(x)M;(0,X)¢3(0,%), '
F4(¢)(x) = a1(x)¢3(0,X)1 (0,%) — p(x)M;(0,X)¢4(0, %),

F5(6)(X) = a2(X)$3(0,X)$2(0, X) — u(x)M; (0,%)65(0, )

for ¢ = (¢1, 2, ¢3, da, ¢5) €Xy and xeQ. By letting u(t) = (I1(t, +), b (t, ), Su(t, ), L1 (t, ), La(t, *)) EXy, t>0 and

$0=($1(0, +),$2(0, +),$3(0, + ), b4(0, =), ¢5(0, +)) = (19,19,5%, 1%, 1%) e X,

we can rewrite (2.4) as

d
%z/lu(t)—i-}'(u(t)), £>0, 52)
U(O) = ¢gEXy.

Lemma 3.1. For any ¢g< Xy and Tpax < oo, system (2.4)-(2.5) admits a unique solution u(t, -, ¢o), on [0, Tmax) With u(0, +) = ¢o.
Moreover, u(t, -, ¢o) is a classical solution.

Proof. By appealing to [23, Corollary 4] and [40, Corollary 8.1.3], we know that a mild solution with ¢q € Xy can be viewed
as a continuous solution of
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{u(t) — T(6)o + /0 "It - s)Fu(s)ds, 0,
u(0) = ¢po EXp,

where F is locally Lipschitz continuous. Moreover, for all (t,¢)<[0, o) x Xy and positive k, one can easily check that

$1(0,x)
$2(0,x)
#(0,%) + kF(#)(x) > | #3(0,%)[1 — kM (@ +0a +31)] |,
$4(0,x)[1 — 3kpM]
$5(0,X)[1 — 3kpM]

where f = max, _of (x) for f=ay, ay, u, and M = maxxeﬁﬂ(x). Moreover,

M(x) — [¢3(0.x) + kF3(¢)(x)] > M(x) — ¢3(0,x) — kB(x)M; (0, x).
Similarly, we get

M(x) — [#4(0,%) + kF4()(x)] > M(x) — ¢4(0,x) — kay (x)¢p3(0, x)b1 (0, x)

and

M(x) — [#5(0,%) + kF5()(x)] > M(x) — ¢5(0,x) — kaz (x)¢p3(0, X)p2 (0, x).

As a result, for (t,¢) R, x Xy, we can obtain that
klirgl %dist((p(o,x) +kF($)(%), YT x YT x Xy x Xy x Xp) = 0.
-0+

Thus, by [27, Theorem 3.1], for 0 < Tpax < oo, a unique classical solution u(t, x) exists on [0, Tmax). O
The following result directly follows from [27, Corollary 7.3.2].

Theorem 3.2. For ¢g< Xy system (2.4) with (2.5) and (2.6) possesses a unique global classical solution u(t, «), t > 0, with u(0,
)= ¢o. Furthermore, u(t, +), t > 0, is ultimately bounded.

Proof. Recall that (2.1) has a unique global classical solution M(t, x) and

lim; o [ M(t, x) — M(x)]| ., =O.

lleo

By the comparison principle and arguments in (Smith, 1995), max;>¢||M(t, +)||y <N; for some N; > 0. More precisely, there
exist tp> 0 and a > 0 such that M(t, x) < N7 + a for (¢, x) € (tp, o) x Q, which in turn implies that

Sv(tax)a 11/1 (t,X), Ivz(t,X) <Nl +a for (t.,X)G(to,oo) x Q.

By the comparison principle and the first two equations of system (2.4), we know that (I;,15) < (hy,hy) on [ty,o0) x Q, where
(hy, hy) is the solution of

% =DpAhy — Y1 (X)hy + c;X)Hu(X)(N7 +a), (£, X)E(tg, ) x Q,
% = DpAhy — y5(X)hy + ¢ (x)Hy () (N7 + a), (t, %) E(tg, 00) x Q,
%:0, Wy = hy, hy, (t,X) E(ty, ) x IR,
hy(to.x) = 11 (£o.X). ha(fo. %) = b (£, %), XEQ.

Obviously, (Hl,ﬁz)a(ﬂ , Hz) uniformly on Q as t — oo, where (ﬁl , Hz) is the unique solution of
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—DrAw(x) = —v1(X)w1(X) + c1 (X)Hu(X)(Ny +a), x€Q,
—DpAw;(x) = —v,(X)wa(X) + 2 (X)Hu(X) (N1 + a),

xeQ,
0)/\;_?1()0:0’ W3(X) = w1 (), w2(X), xedQ.

Therefore, there exist t; >ty and Ny, N3>0 such that I;(t,x) < hy(x) <N, +a and I(t,x) < hy(x) <N3 +a for (t, x) € (t;,
o) x Q. Hence, by taking G =max{N; + a, N2 + a, N3 + a}, we have

0 < Il (t’ x)a 12(t7 X)a Sv(tv X), Ii/l (t7 X)a Ivz(t7 X) < G for (t7 X) = (tl’ 00) x Q. (33)
This proves Theorem 3.2. O
Motivated by [22, Theorem 2.9], the following result can be obtained directly.

Lemma 3.3. System (2.4) with (2.5) and (2.6) admits a continuous semiflow ®(t),.o : Xy — Xp with ®(t)po=u(t, ¢o), t > 0, for
each ¢o< Xy. Furthermore, ®(t) admits a compact attractor in Xg.

The following result provides the strict positivity of solutions to system (2.4).

Lemma 3.4. For ¢g<= Xy, let u(t, «, ¢o) be the solution of (2.4). Suppose that there exists t; > 0 such that I1(ty, +, ¢o) + La(ta, *,
d)O) >0, Iz(tzv * ¢0) + IVZ(tZ' % d)o) >0, and M(tz' ] ¢0) > 0. Then

W(t,x,¢9)>0  for (t,x)E(tp, ) x Q,
where W = Iy, I, Sy, Iy1, L.

Proof. First, we suppose that I,1(ty, «, ¢o) + La(t2, «, o) = 0. Then I1(ta, «, ¢o) # 0, Ix(t2, +, po) # 0, and Sy(t2, «, ¢o) # 0. By the
first three equations of (2.4), we have

ol

6_; > DpAlL —v1(®)4,

ol

GT? > DpAL — v (X3, (34)
as,

5 2 D,AS, + Sy(—a1 ()1 — aa(0)]; + B(x) — u(x)M)

for (t, x) € (t2, o) x Q. Due to the fact that I1(ty, +, ¢o) # O, Ix(ta, +, ¢o) #= 0, and Sy(t, «, po) # 0, we can use the maximum
principle to obtain

I (t,x) >0, (t,x) >0, and S,(t,x)> 0 for (t,x) € (ty,0) x Q.
Furthermore, it follows from the fourth and fifth equations of (2.4)-(2.5) that

alvl >DVAIvl - /‘L(X)Mlvla

ot (3.5)
aIvZ

ot >DUAIU2 - IU'(X)MIVZ

for (t, x) € (t3, o) x Q. Again, by the maximum principle,
L1 (t,%)>0 and I,5(t,x) >0 for (t,x)E(ty, ) x Q.

Now, suppose that Iy1(ty, *, ¢o) + L2(t2, *, ¢po) # 0. We distinguish three cases to finish the proof.
Case 1: [,1(t2, +, o) # 0and Ix(t2, +, ¢o) = 0. Then Ix(ta, +, po) # 0. By the first equation of (2.4), we have the first inequality
of (3.4). Further from the comparison principle and the fact that H,(x) is nontrivial, we know that the inequality is strict for

some x<Q, which means I1(t, x) > 0 for (t,x) € (t,, ) x Q. Similarly, we get directly from the second equation of (2.4), the
second inequality of (3.4), and the maximum principle that Ix(t, x) > 0 for (t,x) € (ty, ) x Q as Ix(t3, «, ¢o) # 0. Notice that

"> DALy — (oM,

3.6
al,» (36)
ot > DVAIUZ - M(X)MIVZ

for (t, x) € (t2, o) x Q. It follows immediately from the maximum principle that
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L1 (t,%)>0 and I,5(t,x) >0 for (t,x)€(ty, ) x Q.

By the S,-equation of (2.4), we have

aS,

W> D,AS, + Sv(_al (X)Il - 0(2(X)12 + 6(){) - :LL(X)M) for (t7 X) = (t27 00) x Q, (37)

which implies

S,(t,x) >0 for (t,x) € (ty, ) x Q.

Case 2: I,1(t, *, ¢o) =0 and Lx(t, *, ¢o) # 0. Then I1(to, +, ¢po) = 0. Consequently,
W(t,x, pg) >0 for (t,x)E(ty, 00) x Q,

where W = I, I, Sy, I1, I2. Clearly, the remaining proof is similar to that for case 1.
Case 3: I,1(t, «, po) # 0and I,x(t2, +, ¢o) # 0. By the first two equations of (2.4), we see that the first two inequalities of (3.4)
hold and each is strict for some x&Q. Then from the comparison principle, we get

I (t,x)>0 and Ly (t,x) > 0 for (t,x)E(tz,0) x Q.
By the fourth and the fifth equations of (2.4), we know that (3.6) is valid. Again it follows from the maximum principle that
L1 (t,%) >0 and I,5(t,x) >0 for (t,x)E(ty, ) x Q.
Finally, it yields from the third equation of (2.4) and (3.7) that
S,(t,x) >0 for (t,x)€(tz,0) x Q.
This completes the proof. [J
4. The reproduction numbers
This section is devoted to defining the BRNs and IRNs for our model. Generally speaking, the epidemic and extinction of
malaria according to reproduction numbers provide important implications to the exploration of the complicated impacts of
spatial heterogeneity on disease transmission. For the method used here, we refer to (Diekmann et al., 1990; Liang et al., 2017;
Magal et al., 2019; Thieme, 2009; Wang & Zhao, 2012) and references therein.

4.1. Basic reproduction numbers

We first define the BRNs by considering two subsystems, which contain only the sensitive strain and the resistant strain,
respectively. The subsystem that only contains the sensitive strain is

al

5t = Dhbli =1 () + €1 (OHu (X)L,

N

¢ = DeASy— a1 (X)Suly +B0(Sy + 1) — £O(Ss +1)Ss, (41)
al

a0 = Deblt + 1S, — p(0)(Sy + L)

for (t, x) € (0, o) x Q, associated with

s 0, Wa = 11,0k, (60 (0,00) 00 (42)

while the subsystem that only contains the resistant strain is
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al

3t = Dhldl2 =12 (X)lz + C2 (0 Hu(X)l2,

N

¢ = DSy — a2(X)Sulz + B0(Sy +12) — £O(S, +2)Ss, (43)
al,

St = Dblip + a2(0SLy — p(X)(Sy + L2l

for (t, x) € (0, ) x Q, associated with

(93;\;5 — 07 WS = IZaSmIvZ-, (t7 X)E(O, oo) x Q). (44)

Obviously, by (2.2), the DFSSs and the PSS of system (4.1) are
Ep = (0,0,0), Ej = (0.M(x),0) and Ef = (I} (x),5, (). 1,1 (x))
while those of system (4.3) are

E3 = (0,0,0), E2 = (0,M(x),0) and E2 = (I(x),S,(x),I,2(X)).

Each steady state of system (4.1) and system (4.3) can be viewed as a BSS of system (2.4), which allows us to give the steady
states of system (2.4) as follows.

(i) DFSSs of system (2.4):

Eo = (0,0,0,0,0) and E; = (0,0,M(x),0,0);

(ii) BSSs of system (2.4):

E} = (I1(x),0,,(x), ;1 (x),0) and E2 = (0,5(x),S,(x),0,1,2(x));

(iii) PSS of system (2.4):

o

EE = (I (%), 1(%), $,(%), 11 (%), Lo (%)).

Here E; is called the sensitive strain steady state as the I>- and I,,-components are zero. Similarly, Eg is called the resistant
strain steady state.

We first define BRNs for subsystems (4.1) and (4.3), denoted by §R5 and 93, respectively. Let E:=C(Q, R3) and its positive
cone is denoted by E*:=C(Q,R3). Let

Ep={(11,S,.1,1)T € E* : 0<S,(X)+1,1(x) <M(x) for x € Q}.

A simple calculation shows that the DFSS E} of subsystem (4.1) is always unstable. Linearize (4.1) around E} and consider only
the infectious compartments to get
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ol
6_; = DAl —v1(X)I1 + 1 (X)Hu(X)]1,
(4.5)
ol — —
a’? =DyAL + a1 ()M (x); — p(x)M(x)],1

for (t, x) € (0, ) x Q, and

W

28 =0, We =11, ly, (£:)€(0,00) x 3.

Let W:=C(Q, R?). We define the operator F; : W— W by

Fl(v)z(m(x?ﬂ(x) %)(gzg;) for 7 = (y,7,)T €W. (4.6)

Denote by W(t) = diag(Ty(t), T3(t)) the evolution operators of the system

dv . _
d—z: V52 DAT — W7, (4.7)
where
D(Vy) hi.hy)e ) WZ«P(QRZ)-%:@:OonaQandV(h hy)eWw
1 = 1,112 ) . an on 1\, 112 3

p>1

D
— diag(Dy. D,).
-W

(mx) q(x)Hu(x))
0 —uxM®x) )

In view of [31, Theorem 3.12], V; is resolvent positive and W(t)E" cE* for each t > 0.

Following the standard procedure, at t = 0, we assume that 75 = (D(]’, 17(2’)T = (I(l’, 181) is the spatial distribution of infectious

hosts and vectors with the sensitive strain near E1. Hence, as time evolves, W(t)vy(x) = (T ()79 (x), T3(t)59(x)) stands for the
distribution of remaining infective hosts and vectors. The distribution of total infective vectors can be calculated by

/0 " aqy (X)M(x) (T (£)9) (x)dt.

As a result, the following continuous and positive operator on Y defined by

LGo))= [ FrW(otod = Fy [~ w(io@ode
is called the next generation operator. We define the spectral radius of L; as the BRN for subsystem (4.1), i.e.,

Ro:=r(Ly). (48)
The BRN SR% for subsystem (4.3) can be obtained in the same way. Consequently, the BRN of system (2.4) is defined by

No = max{Ny, N3} (4.9)

The following observation indicates the relationship between S)t(l) and the principal eigenvalue of an associated linear
elliptic eigenvalue problem.

Lemma 4.1. Let 9{5 be defined by (4.8). Considering

{—DA</J+W1</JKF1¢, xeq, 410)

%:O, i=1,2, xE0Q,
on
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we have the following statements.

(i) Problem (4.10) admits a unique principal eigenvalue kg > 0. Futhermore, k¢ has a strictly positive eigenvector ((p;‘(x),
(x))-

(ii) ‘)21 KO.

Proof. We first prove (i). Let (k, ¢) be an eigenvalue pair of problem (4.10) with ¢ = (¢1, ¢2), that is,

“Dilon +71 (91 = (O (W, XEQ,
{-Dives + wle M0, = rar (OM(x)o

xeQ.

Recall that Ty(t), t> 0, is strongly positive and compact. Let T3(t) : Y=Y be the strictly positive and compact semigroup
generated by the operator As:=D,A — w(x)M(x). Due to [31, Theorem 3.12], for p €Y, we have

(=) o= [ e T 0ot K>s(Ar),
- o ~ (4.11)
(ki = Az lo = [ e Ta0pod. k> s(As).
0
Here s(A) = sup{ReA : A €c(A)} denotes the spectral bound of A, where a(A) denotes the spectral set of A. Due to
S(A1) = max{—y; (x)} <0 and s(A3) = max{—p(x)M(x)} <0,
xeQ xeQ
taking k =0 in (4.11) leads to
o0 ~=1 © __
Al — / Ty(t)pdt and —As ¢ — / Ts(t)pdt for pe V.
0 0
It follows that the operators —Al’l and —ﬁ; are compact and strongly positive. We rewrite system (4.10) as
~A191(X) = €1 () Hu(X)g2(x), XEQ,
{ —A302(X) = kay (X)M(X) g1 (%),
xeQ,
which allows us to obtain that ¢4 (x) = —cy (x)Hy (x)A{1<p2(x) and (k, @2(x)) satisfies
1 — ~-1
=7 = (M) ()Hu(0AT A3 G (4.12)

Note that a; (x)M(x)cq (X)Hy (x) > 0 for xe Q. Thus the operator a; (x)M(x)cq (X)Hy, (x)Al’lf\;] is strongly positive and compact on
Y. This combined with the Krein-Rutman Theorem implies that system (4.12) admits a unique principal eigenvalue o> 0,
corresponding to which, ¢3(x)>>0in Y. Let ¢} (x) = — ¢;(x)Hu(x)A7 ' ¢} (x). Then ] (x)>>0. This proves (i).

The assertion (ii) can be easily obtained according to [37, Theorem 3.2]. This completes the proof. OJ

It is noted that subsystem (4.5) is cooperative and irreducible. We substitute the solution (e1ty; (x), ety (x)) into (4.5) to
obtain

Ay (%) = DpAyy (%) + e (X)Hu(X)¥2 (X) — 71 (X)¥1 (%), xeQ,
Ii¥a) = DY () + s COMEY: () — (Y0, X<, (413)
PV 0, W) = 1 (), ¥ ), xeon.

Similarly, for (Ip,1,5) = (e’2ty5(x),e’2ty,(x)), we get
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a3 = Dy () + WH Va0 ~ 200300, xEQ
Jola(X) = DubVa(x) + o (IM(Y30) ~ HOMa(x), XD 14)
P _ 0, W(x) = Y300, ¥, xeon

The following result comes from [31, Theorem 3.5], which reveals that 5)1(1) — 1 (respectively, SR(Z) — 1) has the same sign as
the principal eigenvalue of (4.13) (respectively, (4.14)).

Lemma 4.2. Let Fy and V be defined in (4.6) and (4.7), respectively. Define

— 0 0 [ DyA — v, (%) ¢ (X)Hy(x)
F= <012(X)M(X) 0) and V; '_< ! 0 ? D,,AZ— ,U(X)M(x))’ xeQ.

Then 9%6 — 1 has the same sign as A? (M) =s(F; +Vy),i=1, 2.

4.2. The relationship between 9t} and 9} (x)

When the diffusion terms in subsystem (4.1) are ignored, we arrive at the following ODE system with respect to a specific
location x,

d
aTl =110 + c1(x)Hu(x)L1,
% = —a1(X)Suly + B()(Sy + 1) — p(X)(Sy + 1,1)Sv, 1
di,
arl = a1(X)Sly — pu(X)(Sy + L,1)L1.

At a specific location x, we define
Ry x) = R x), (4.16)

where

R (x) = % and R} (x) = 0:((;))'

Here 9%} (x) (respectively, é)t;(x)) measures the impact of one infected mosquito (respectively, infectious human) on sus-

ceptible humans (respectively, susceptible mosquitoes) for the sensitive strain. Note that SRB(X) is a multiplication operator,
termed as the LBRN for the sensitive strain (when i=1) and resistant strain (when i=2). This subsection is devoted to

studying the relationship between 5)’%6 and ?)ié,(x). The main idea comes from (Magal et al., 2019).
By (4.8), the BRN i} for (4.1) is defined as

Ny = r(—=FVH.
Following the approach developed in [21, Theorem 3.1], we get

Ne = rLIR] LR (%)) (4.17)
with

L} = (y1(x) = DpA) " 1yq(x) and L} = (u(x)M(x) — D,A) " u(x)M(x).
Similarly, we get

N3 (x) = RE(ONR3 (%), (4.18)
where
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N3 = r(2RI(N)L3R2 (x)) (4.19)
with

L3 = (v2(%) = Dyd) '7(x) and L3 = (sx)M(x) — D,A) ' p(x)M(x).
From [21, Theorem 3.6], we directly obtain the following result.
Lemma 4.3. IffﬁéJ (x)>1 (i=1, 2) (respectively, 9{6 (x) <1) for x& Q, then SRB > 1 (respectively, SRE <1).

The main contribution of (Magal et al., 2019) is the characterization of the limit behavior of 51%6 (i=1, 2) as the diffusion
rates approach infinity or zero. The following first main result of this subsection in the case where the diffusion rates approach
infinity can be viewed as a direct consequence of [21, Theorem 3.6 and Remark 4.8]. Thus the proof is omitted here.

Lemma 4.4. Let SRE) and 5)‘%% be defined by (4.17) and (4.19), respectively. Then the following statements are valid.
(i) Fori=1,2, lim lim %) = lim lim R} = Jtl‘ﬁz
(i) Fori=1, 2, I(J ;’l?fn( )‘RO DRyl o
hs v — (00, 00

Here

/y xR (x /Qc,»(x)Hu(x)dx
Lo [ i

and

, / ()9 () dx /ai(x)dx
ﬁ;;:ﬂ i _JQ

Q,u(x)dx /Q w(x)dx

The next main result of this subsection in the case where diffusion rates approach zero can be viewed as a direct
consequence of [21, Theorem 4.10 and Theorem 4.11]. Again, we omit the proof.

Lemma 4.5. Let 0t} and N3 be defined by (4.17) and (4.19), respectively.

(i) Fori=1,2, llm 11m ‘R = lim lim <)‘t _max{ﬂt X)}.
(ii) Fori—1,2,” D)m( S)" Pt i (x)
Dy, Dy)—

Here SRO(X) and m%(x) are defined by (4.16) and (4.18), respectively.
Lemma 4.4 and Lemma 4.5 demonstrate the effect of large or small diffusion rates on 9{6 (i=1,2)for a single-strain system.

4.3. Invasion reproduction numbers

Recall that for i = 1, 2, E} is the BSS of system (2.4), where the non-zero infected components are I; (x) and I’; (x) when i = 1

while they are I, (x) and 1o (x) when i = 2. In this subsection, we define the IRNs for the two strains, denoted by E)Ailo (i=1,2).
Here the IRN means the average number of secondary infections by introducing one infective into a susceptible component
for one strain, but with the presence of the other strain.

Note that the PSS EZ of system (4.3) satisfies
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X)L (X) + X Hu(X),(x), xeQ,

0 = D,AS, (%) — a2 (X)S, (0L (%) + B(X) (Su(%) +1,2(x)
—(x)(Su(%) +1,2(%))S, (%),
xeQ, (4.20)
0 = DyAlp (%) + 2 (X)Sy(X) 2 (X) — 1(X)(Sy(X) + L2 (x)),2(x), xeQ,
WL _ 0, Wo() = 1o, 5,00 a0, xeoQ
By letting
L=w, hb=h+wy, S,=5,+ws3,,; =wg and I, = I, + ws, (4.21)

we linearize system (2.4) around E% and consider only infective components w; and w4 to obtain

0w1

i DpAwy — v1(X)wq + ¢1(X)Hu(X) w4, (t,x)(0,00) x Q,
v, = <

5t = Dubos — u(X)(S)(x) +L2(0)wa + a1 (S, (w1, (t,X)€(0,00) x Q,
P10~ 0, Wig = 0n, 04, (£,3)€(0, 00) x 00,

whose associated eigenvalue problem containing w; and w4 reads as

Aw1(x) = DpAwq (x) — v1(X)w1 (%) + €1 (X)Hu(x) 04(x), x€Q,
2034(X) = DyAD4(x) — w(x)(Sy(X) + L2 (X)) D4 (X) + a1 (X)S, (X) @1 (x), xeQ, (422)
VU _ 0, s (06) = 0130, Da(x), xeo0,

As in (Magal et al., 2019; Thieme, 2009; Wang & Zhao, 2012), the IRN &)At; of the sensitive strain for (2.4) is defined as
~1
Nog=r(-F1V{ ), (4.23)

where V; : D(V;)CW—W and F; : W— W are linear operators defined respectively by

o (DA 1 ()Hu(x) i
Vl”’( 0 DA — p(x)(S(x) + Tp(x )))"

and

Fio= ( 0 0)5
a1(X)Sy(x) 0
with D(\71) = D(V). The following lemma can be obtained in a similar way as Lemma 4.2.

Lemma 4.6. Let S)Ai(]) be defined by (4.23). The following two statements hold.

(i) 91 — 1 has the same sign as /11, Where 1 is the principal eigenvalue of (4.22).
(ii) ‘ho — 1 has the same sign as Az, where *)io is the IRN of the resistant strain for (2.4) and Az is the principal eigenvalue of

A2 (X) = DpAwy(X) — v2(X) 02 (X) + 2 (X)Hu(X) 05 (x), xeQ,
Nos(0x) = DyADS() — W) (S50 + [y (0)s() + 005, 000, xe (424)
awal—;("):o, Wia(X) = 0 (X), 5 (), X0,
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4.4. The relationship between % and S)Aii,(x)

As for E)if) (i=1,2), t?ﬂ](i = 1,2) is also difficult to visualize. We thus turn our attention to the relationship between Eﬁlo and
fﬁlo(x) with the help of (Magal et al., 2019), where Eﬁlo(x) is the LIRN for the i strain and is defined below.

We first consider the sensitive strain. In this case, (I5,S,,I,2) — (I2(x),S,(x),I,2 (x)). We consider the following system with no
diffusion terms and containing only the infective compartments for the sensitive strain,

dl
St = O+ aE@HE)L,
I (4.25)
a0 = 100N — RO G0 + it + 201
Then
No(x) = N1 ()N, (x), (4.26)
where
ﬁ}(x) _ AW g ﬁ;(x) LS
11(%) 1(X)(Sy(x) + L2 (X))
Following the approach in [21, Theorem 3.1], we directly have
~1 ISP BISS P |
To = r(L, 7y ()L, (x) (4.27)
with
~1 B
Ly = (y1(%) = D) 11 (%)
and
~1 ~ ~ _ ~ ~
Ly = (X)(Sy(%) + Lo (%)) — Dy8) " u(x)(Sy(X) +T,2(x)).
Similarly, for the resistant strain,
~2 ~2 2
Nox) = R x)N,(x), (4.28)
where
5200 = QM) G2 @RSE)
Y2(X) 1(X)(S, (%) + 12(x))
Furthermore,
g = r(Ly 9 (0 1335(0) (429)
with
2 _
LY = (v2(x) = D) 'r2(x)
and

L5 = (uX)(S) (0 + [5(0)) ~ D) B(x) (S50 + I35 ().

From (4.26) and (4.28), compared with (4.16) and (4.18), respectively, we know that ﬁg(x) < .‘)i{) (x) (i=1,2) (see also (Zhao
et al., 2020) and (Tuncer & Martcheva, 2012)).
The following result is a direct consequence of [21, Theorem 3.6].

Lemma4.7. Fori=1,2, if‘ﬁé,(x) > 1 (respectively, *JATIO(X) <1) for xe Q, then ‘JA?B > 1 (respectively, Sﬁg <1).

In the following, we investigate the limiting behaviors of STAtIO (i=1, 2) when the diffusion rates approach infinity or zero.
According to [15, Proposition 2.5],
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Jim (5,00, T2(9) = )00, 1p0). Jim (8,00 L) 5. T)
and

5

lim (5,(x). 1 (00) = (S,° (X)), L1 (0), Jim (S,(x),11(x) = (5, 1),

~0, -0 . . . .
where S, (x), I, (x), S,,O(x), I'9(x) =C(Q, R) are positive functions of position x while S ,,2, S'e, I's° are positive constants. The
following two result are counterparts of Lemma 4.4 and Lemma 4.5, respectively.

~o0

~1 ~2 ~1 ~1
Lemma 4.8. Let N, and N, be defined by (4.27) and (4.29), respectively. Denote N, . (x) :Dlim Ny () = aWS _ gnd

2 2 (05 , H((S, +,)
Ny (X)) = Dllm NyH(x) = ”2—&“, Then the following two statements hold.

(S, +LT)
. . =1 =11
(i) Dilrllethm SRO = Dllinool)}linoc ‘7?0 _s E)‘tz and o, Dl)lgl(m o No = R NR,, where

~-]1 :/S;.’Y] (X)E)/,\t}(x)dxz/()C1(X)Hu(x)dx

nwi [ v
0 0
and
[aof s e [apod
fis =0 ’ _ msu Q
/u(x)dx S, +1) /,u(x)dx
Q Q
2 2.2
1 ) — ) 1 < — M. K
(ii) yinooDlanm )io Dllianilinw S)io = ‘)i1 )iz and (Dh.D,}>1Ln(w‘w) Ny = NyN,, where
/\‘2
[ raeoRTeod / X)Hu(x)dx
.
/72(X)dx /72
0
and

9y = S

/M(X)dx ST LT /u(X)dx.
Q Q

- [pe0ft by g [ armd

~1 ~2
Lemma 4.9. Let %y and N, be defined by (4.27) and (4.29), respectively. Then the following two statements are true.

(i) Fori=1, 2, llm 11m W{ :l lim lim (Ro 7max{9i (x)}.
()Forl_lZ D)m( o o ’i max{ $io (0.
Dy, D,)— (0

Here Eﬁo(x) and Eﬁo(x) are defined by (4.26) and (4.28), respectively.
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5. Threshold dynamics
. . . . i SUT .
In this section, we study the threshold dynamics of system (2.4) in terms of % and R, (i=1, 2). These results will
characterize the competition and coexistence phenomena between the sensitive strain and the resistant strain.

By the standard result in [20, Theorem 2.4 and Theorem 3.12], we first give the following lemma on the global dynamics of
subsystems (4.1) and (4.3).

Lemma5.1. Fori=1,2,

(i) if R, <1 then E! is globally asymptomatically stable;
0 1 .
(ii) if My > 1 then E} is unstable and subsystem for the strain i possesses a positive global asymptotic stable steady state Ef.

Recall that Ef, (i=1, 2) is the BSS of system (2.4). In what follows, combining with the BRN ?th) and the IRN ??t;), we
determine the invasion behaviors by investigating the stability of the BSS Efa.

5.1. The stability of Eg and E;

Obviously, Eg is always unstable. We linearize (2.4) around E; and then only consider equations for Iy, I, I,; and I, to obtain

aly

3t = Dnbli =71 (0h + () Hu(x)],1, (t,x)€(0,00) x Q,

% = DAL — v ()] + 2 (X)Hu(X)],2, (t,x)€(0, 00) x Q,

0(;,21 =DyALy + a1 (X)MX)]; — u(X)M(X)L,1,  (£,%)€(0,00) x Q, (5.1)
a(;léz =D, ALy + ay (MK, — u(x)M(x)L,  (t,x)€(0,00) x Q,

61;\’/113 =0, Wiz =1,k 11,12, (t,X)€(0, ) x IQ.

Substituting (Iy, Iz, Iy1, Iy2) = e“(t//l(x), Ya(x), ¥3(x), Ya(x)) into (5.1), we get

W1 = DAy + 1 ()Hu(X)¥3 — 11 ()Y, xeQ,
M = DpAyy + ¢ (X)Hu(X)¥4 — 72 (X)¥2, xeQ,
W3 = Dibds + My — M@y, xEQ, 52)
Wq=DAY4 + aeaMX)Y — p(X)M(X)Yy,  XEQ,
6?24207 Wl4:‘//l7¢27¢/37¢4a X€0Q.

Due to the fact that the eigenpairs of (4.13) and (4.14) satisfy (5.2) in the form of

(’L 1//1 (X), 07 ‘//2 (X), O) or (Av 07 W3(X)7 07 W4(X))

and Lemma 4.2, we know that E; is stable if %{; <1 and ﬂt(z) <1, thatis, if Ry < 1. In fact, it is also globally stable from the result
below.

Theorem 5.2. IfERE, <1and &Yt% <1, then Eq is globally attractive, that is,

tlLrg||(I]11275V7IUl7IV2) _E1||X:0 (5‘3)

Proof. By Lemma 4.2, we know that A: (M) <0 as S)'i(l) < 1. Hence there is a small enough number ¢ > 0 such that A} (M) <0.
Due to M(0, -) = 0 and (2.2), M(t, -)—M(+) uniformly on Q as t — . Therefore, there exists a t3 > 0 such that M(x) — ¢; <
M(t,x) <M(x) + € for (t,x) € (t3,0) x Q. Then

947



J. Wang, W. Wu and Y. Chen Infectious Disease Modelling 9 (2024) 931-962

aly

3t = Dnbli =71 (0h + ¢ () Hu(x)L1, (t,x)E(t3, 00) x Q,

ol — —

1 DALy + o (M) + el — EOMR) — el (LX) (E3,00) x

a);\;lS:O Wl5 :Ilvlv]’(tvx)e(t37°°) x 0Q.

Denote the positive eigenvector corresponding to Ay(M) by ¢ = (¥{, ¥5). By the continuity of Ay (M), we have
lim,, oAy (M) = 2;(M) <0 when %} < 1. Moreover, let £; > 0 such that (I9,1%) < £, (y5',¢%). Then £;e%' (-5)y/ is the solution of

oy

ot = Dbl =71 (0L + c1()Hu(X)L,1., (t,x)E(t3, 00) x Q,

ol — —

avtl = DyALy + a1 (X)(M(X) + €1)[1 — u(x)(M(X) — €1)L11, (t,x)E(t3, 00) x Q,

3);\1/115 —0, Wis = I, L, (t,X) E(t3, 00) x IQ.

According to the comparison principle, we get
(I 1) < 1€ 095 for (6x)€(t3,00) x Q.
Hence

JlimI3(£,x) =0 and lim I,; (t,x) =0 for xeQ.

Similarly, when 93 < 1, we can obtain

JlimI(t,x) = 0 and lim,5(t,x) =0 for xeQ.

These together with (2.2) imply that S,(t, x) —M(x) for all x€Q as t — oo. Thus the proof is completed. [J

5.2. Uniform persistence

We first give a result on non-coexistence, that is, under suitable conditions, one strain can be uniformly persistent while
the other one vanishes.

Theorem 5.3. Assume that, fori, j=1, 2 with i # j, we have ERB >1> &R{). Then there exists ¢; > 0 such that
lim¢ - oo [j(t, %, ¢o) = 0, lime— ol (E,X, o) =0
and
lim inf [;(£,X, ¢o) > <, lim infl,;(,x, do) > s
forxeQ, where u(t, «, ¢o) = (I1(t, «, ¢o), Ia(t, =, do), Sula(t, +, o), Iila(t, =, do), Ialo(t, +, ¢o)) is any solution of (2.4) through po with
9(x) +1%(x) >0 and S2(x) + I%(x) > 0 for xeQ.
Proof. By virtue of EH{) <1 and (i) of Lemma 5.1, we know that
lim¢— oo Jj(t, +, dg) = 0 and lim¢— o 1,5(t, +,¢) = 0.

Arguing similarly as for [20, Lemma 3.11], we see that there exists ¢; > 0 such that liminf;_,  [i(t, «, ¢o) > ¢; and lim inf;_, L Iyi(t, -,
$0) > ¢i. O

We now investigate the stability ong (i=1,2)0f (2.4) in terms of IRN S)A%:) (i=1, 2). Firstly, we linearize (2.4) around Eg and
consider the associated eigenvalue problem,
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W1 = DpAy; — y1(x)¥1 + 1 () Hu(X)¥3, xeQ,
Mo = DpAygy — v (X5 + C2(X)Hu(X)Yy, xeQ,
Ws = Duys — a1 (X)S,(X)¥1 — a2(0S,(0¥ — (X)L (W)Y
HB(X) (Vs + V3 + V) — (X)(2S,(X) + L2 (X)W — 1(X)Sy(X) (Y3 + Vi),
xeQ,
W3 = DyAYs — u(x)(Su(x) +1,2(%))¥3 + a1 (X)S,(X)¥1, xeQ, (5.4)
Wa = DAYy + 0 (X)S,(X)¥; + o (L ()5
~ ()L (X) (s + V3 + 294) — R(X)Sy(X)¥a,
xeQ,
012::6:07 W16:v/17¢2a‘j/57¢37¢47 XEaQ

Note that the first and second equations of (5.4) are decoupled from the others. Let A be an eigenvalue of (5.4). Then it satisfies

M1 = DpAyy — v1 (%)Y + c1(X)Hu(X)¥3, xeQ,
23 = Dulys — p(x)(Su(%) + Ta(X)¥3 + a1 (XS, (X1, xEQ, (5.5)
a);\;”:(), Wiz =1, Y3, XE0Q,
or
W = DplY = 12(00¥; + C(X)Hu(X)Ya, xEQ,

W5 = DubYs — 2 (X)S,(X)Y, — (WL (X)Ys
B (W5 + V) — 1O (2S0(X) + 12(X)¥5 — w(X)Su(X)¥4,

xeQ,
WWa = DbV + a2(05,(X)¥ + 02 (WL (X)Ys (56)
()T (X) (Y5 + 20) — 1(X)S, (00,

xeQ,
M8 _ 0, Wi = ¥, ¥, Ya, xea0.

\

Due to the stability of the associated E% [20, Theorem 3.12], we know that the principal eigenvalue of (5.6) is negative.

Furthermore, problem (5.5) is cooperative, which implies that (5.5) admits a principal eigenvalue il with a positive eigen-
— — ~ ~1

vector (Y (x),¥3(x)) according to (Lam & Lou, 2016). We conclude from this and (i) of Lemma 4.6 that A, <0 if 91y <1 while

% >0 if .‘)At(]) > 1. Similarly, by (ii) of Lemma 4.6, we know that ﬁz <0if ?)Aié <1 while Xz >0 if .‘7{3 > 1. Hence we immediately
have the following result.

Lemma 5.4. Let SRE), SR(Z), 5?{2), and S)At(z) be defined by (4.17), (4.19), (4.27), and (4.29), respectively.

~1 ~1
(i) If R >1, then E% is locally asymptomatically stable when 3ig <1 while it is unstable when Hg> 1.
(i) If M) > 1, then E} is locally asymptomatically stable when 9%, <1 while it is unstable when 9%, > 1.
0 3 0 0

We next confirm that Ey, E;, E},, and E% are uniform weak repellers with respect to solutions of (2.4) under the condition
that Sﬁé >1 and SR% > 1. Recall that ®(t) : Xy — Xy is the continuous solution semiflow of (2.4). We define

Xpo={d € Xp : ¢1(t, )+ ¢a(t, +) > 0and ¢,(t, «)+¢s(t, - ) > 0 and My(t, - ) > 0}

and
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OXpo=1{¢ € Xy : ¢1(t, +) +¢4(t, - )=00r ¢5(t, «) +¢5(t, - ) =0 or My(t, - )=0}.

Then Xy = XpoudXyo and the boundary dXpo = Xy — Xy is closed in Xy.

~1 ~2
Lemma 5.5. Suppose that .‘H(]) >1, SR% >1, Ny >1,and Ny > 1. Then Ey, E, Eg, and E% are uniform weak repellers for ®(t), that is,
forUe{E; ,EO,E;,Eg }, there is 6 > 0 (may depend on U) such that

lim sup||®(t)pg —Ul|x >0  for ¢g € Xpg. (5.7)
t— o

Proof. We first prove the result for the case where U = E1. Assume, for the contrary, that for any ¢, > 0 there exists a solution
of (2.4) such that

lirtn sup||®(t)pg — E1llx < €. (5.8)

Then for some t4 > 0 we have

M(X) — & <SU<M(X) +eand 0<1q, I, Iq,lp <6 for (t,x)e(ty,0) x Q.

Due to
ol
St = Pl =71 (0)h + c1 (OHu(X)L1, (£,X) E(tg, 00) x Q,
al, — _
o = Dby + e ()(M(x) — e)h —u(x) (M) +3e)l1, (LX) E(ta,00) x 2,
W19 _

on ’ Wig = I] 711117 (t7x)€(t47 00) X aQ,

when SR(l) > 1, Lemma 4.2 implies that A’; (M) >0, where /ﬁ (M) is the principal eigenvalue of (4.5). Form Lemma 3.4, one has
Ii(t4, X)>0 and I,1(ts, x)> 0 for all x€Q. In view of limgzﬁox2 = X; (M) >0, there exists & > 0 such that the principal

eigenvalue E;Z >0 and it has a positive eigenfunction 32 = (97,93 ). Choose Cg, >0 small enough such that (I; (t4,x), I1(ts,X)

— )
) > Cg, (9, ¢3) for all xeQ. Obviously, Cg, ! (=452 is a solution of

al

3t = Dhbl =1 () + €1 (OHu ()l (£.X) € (ta,00) x Q.

O~ DAl + @ (M) — )l ~ O +3e)ke,  (EX)E (g 00) x O,

3);\;19 =0, Wig = I1, L1, (t, X) E(ts, 00) x 0Q.

It follows from the comparison principle that

(hhy) = G0 0 (pi2,08)  for (6. (t4,00) x O
Since Xiz >0 when SRE) > 1, this implies that

tli_)rgh(t, X) = 0, tlLrEolvl(t, x) = oo uniformly for xe Q. (5.9)
Similarly, if )13 > 1, then

tlLTOIZ(t, X) = oo, tlLTolvz(t, x) = oo uniformly for xeQ. (5.10)

These results contradict with the boundedness of (I, I, Iy1, I2). This proves the result in the case where U= E1.
Secondly, we prove the result in the case where U = Ey. If (5.7) does not hold, then for any 3 > 0 there is a solution of (2.4)
satisfies
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lim sup|[@(¢)go —Eollx < e3 (5.11)
— 00

and hence there is t5 > 0 such that
Sv(ta * )a Ivl (t7 * )7 Il/ (ta ¢ )<E3 for (t7X)€(t57 00) X Q

However, from (2.2), we have M(t, x) — M(x) uniformly on Q as t — oo, a contradiction. This proves the result in the case where
U=Ey.
~2 ~ —~
Thirdly, we consider the case where U = E}. Since 9, > 1, we know that A, >0 by Lemma 4.6. Due to the continuity of 1,

we can find a small enough €4 such that i; > 0. We show that (5.7) holds with ¢ = ¢4 by contradictory arguments. Otherwise,
there is a solution of (2.4) satisfying

lim sup|®(t)po — Ej |l < ea- (5.12)

t— o0
It follows that, for some tg > 0,

[1(x) — eg <11 (£,X) <I7(x) + eq, 0<Ly(t,X) <eg, S (X) — €4 <Sy(£,X) <S,(X) + €4,

[1(x) — eg <l,1 (6,x) <[1(X) + ¢4 and 0<L(t,X) <eq  for (£,x)E(tg,0) x Q,

which lead to

ol

52 = Dhlhy = 12 (0l + () Hu(X)l2, (£.X) € (tg, o0) x Q,
al . . .

6122 > DALy + ap(X)(S, (%) — eq)lp — w(X)(S, (X) + 1,1 (X) + 3eq)l,2, (t,%) € (tg, ) x O,
a);\;zo =0, Wy(t,x) =1y, 15, (t,x) € (tg, 00) x 0Q.

Denote by ¢“ = (¢, ¢5') the eigenfunction corresponding to ﬁ;". Choose CE; >0 small enough such that
(I2(t6, %), La(te, X)) > Cpr (03, 05).

By the comparison principle, we have
(I, L) > Cy (fﬂi“?w;’)ej‘;(t_ts) for t> t.

Clearly,
lim (I, 1,2) = (00, 00),

which contradicts with the boundedness of (I, I,2). Thus the result holds in the case where U = E},. Similarly, we can show

that the result holds in the case where U = EJ.
This completes the proof. [J
With the above preparation, we are ready to show the persistence.

~1 ~2
Theorem 5.6. Suppose that m(]) >1, R5>1, Ny >1, and Ry > 1. Then there is a 6* >0 such that, for any ¢og < Xyo,

lim inf W(t.x) > 0, (5.13)

where W = I, I, Sy, Iy, 2. Furthermore, system (2.4) has at least one PSS in Xgg.

Proof. We complete the proof in the following four steps.
Step 1. For ¢g € Xyg, show ®(t)¢pge Xy for £ >0, that is, Xyg is invariant under ®(t).
The proof has been given in the proof of Lemma 3.4.
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Step 2. For any ¢o € IXpo, prove that ®(t)pg = dXyq for t > 0 (that is, dXyg is invariant under O(t)) and w(¢o) is either {E1} or
{Ea} or {E } or {Ep}, where w(¢o) is the w-limit set of ¢g.

If po €9Xpo, then 19 + 1% = 0 or I9(x) + 1% = 0 or %+ 1% + 1% = 0. We distinguish four cases to finish the discussion for
this step.

Case 1: 9+ 1% = 0,19+ 1% =0, and S20. It then follows from the equations on I, Iy, Iy, Iy2 of (2.4) that

Lit, ) =Ia(t, «) =Dt ) =I(t -)=0 fort=>0,

which means that ®(t)¢g € dXpq for t > 0. As the equation on S, of (2.4) satisfies (2.1), we have from (2.2) that S, (t,x) > M(x)
uniformly on Q as t — co. This tells us that w(¢o) = {E1}.

Case 2: 1(1) + I‘VJ] +0, I + qu =0, and S0 #0. It then follows from the equations on I and I, of (2.4) that I(¢, <) =IL,o(t, ») =

for t > 0 and hence ®(t)¢o €IXpo for t > 0. Note that either (i) I$ 0 and I% = 0; or (ii) IY = 0 and I% #0; or(iii) I9 %0 and
1%, 0. In either case, due to the maximum principle, we have

I;(t,X)>0, L (t,x)>0 and S,(t,x)>0  for (t,x)€(0,0) x Q.
Then by Theorem 5.3, w(¢g) = {E}}.
Case 3: I? + I,,1 =0, I + I +0, and S°¢O It then follows from the equations of I; and I, of (2.4) that I1(t, «) =I,1(t, *) =
for all t > 0, which also 1mplles that ®(t)¢pg €9dXpyp for t > 0. Similar arguments as those in case 2 yield w(¢g) = {E 1.

Case 4: 59 + I + I,,2 = 0. It then follows from the equations on S,, I3, and I, of (2.4) that S,(t, ) = Iy1(t, <) = L»(t, -) =0 for
all t>0 and hence d(t)po=9dXyp for t > 0. Then the equation on I of (2.4) becomes

ol

o
g = DhAI] - "1 (X)I1 with on 0,

which implies that I(t, -) — 0 uniformly on Q as t — co. Similarly, we have I (t, -) — 0 uniformly on Q as t — oo. As a result,
w(¢o) = {Eo}.
Denote by @, the restriction of ®(t) on dXpq. Result in Step 2 implies that ®; has a global compact attractor By and

By:=uy,ep,0(do) = {Eo, E1, E}, E3}.

Step 3. Show that B, has an acyclic covering @ = {E1 YU{E}}U{E2 U{Ey ).
It is suffices to show that
{E3}+{Ex}, {E5}+{E1}, {Eo}»{E},

{Ej} {Eo}. {E5}+{Eo} and {Ej} = {E]},

W (Ej : INWS(Eq) = @, WH(Eo)nWS(E;) = 0,
WY (EHNWS(Eg) = @, WH(E2)nW*(Ey) = @ and WY (ED)nWS(E3) = @,

where WY(x) and W(x) are the unstable and stable manifold of », respectively. In what follows, we only verify
WU (E})nW*(E;) = @ as the others can be dealt with similarity.
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For any ¢9 € W%(E7), denote by (I4, Iz, Sy, L1, I2) the complete orbit of ¢. It follows that I?(-) = 131 (+) = 0 and further I4(t,
<)=1Iy(t, »)=0 for t € (—oo, o). Therefore, I; —/I;(x) and I,; —/I’; (x) as t — —oo, a contradiction with ¢y € W!(E}). Conse-
quently, there exists an acyclic covering Q for B,.

Step 4. Prove that W5(E;)nXyg = @, WS(E})nXyo = @, WS(E2)nXpo = @, and WS(Eg)nXyo = @.
Set
Ma:= {¢0 [ GXHO : (I)(t)¢0 (= 6XH0 for t > 0}

Clearly, in M, there are only four steady states Ej, E;, Eg and Ep. By Lemma 5.5, they are isolated invariants of ®(t) in Xyq. The
result follows immediately.
With the help of [43, Theorem 1.3.1 and Remark 1.3.1], ®(t) is uniformly persistent in regard to (Xyg,dXyg). Further, ®(t) is

point dissipative (see Theorem 3.2). According to [22, Theorem 3.7 and Remark 3.10], ®(t) has a global attractor Ain XHo-
Furthermore, for ¢q €A, we have

$1(0, +)>0, ¢2(0, +)>0, ¢4(0, -)>0and ¢5(0, - )>0.

By a similar argument as that in (Shi & Zhao, 2021), we define a continuous function m(-) : Xyo— Ry by:

m<¢o>==min{mm¢1<o,x>, ming;(0,x), mings(0,x), mms(ax)} for o € Xso-
xeQ xeQ xeQ xeQ

Then m(-) is a generalized distance function for ®(t) (Smith & Zhao, 2001). Therefore, with the help of Lemma 3.4 and [13,
Theorem 4.1], (5.13) holds. Moreover, system (2.4) has at least one PSS in Xyq due to [22, Theorem 4.7]. O

5.3. The limiting problem

This subsection analyzes the limiting system associated with system (2.4). Note that M(t, ) >M(x) as t — o if 53 + 191+
122 #0 (see (2.2)). Inspired by (Magal et al., 2018) and (Zhao, 2012), we consider the following limiting system:

ol

a_tl = DpAly —v1(X)l1 + 1 (X)Hu(X)]1,

ol

5t = Pl = 12 (0 + () Hu(X)L2,

al (5.14)
a"tl =DyAlLy + a1 (X)O(t, X)l; — u(X)M(X)l,1,

ol —

50 = Dublia + a2(00(t. )k — k(X)M(x)l2

for (t, x) € (0, o) x Q, associated with

Wo1 _
- 0, Wa1 =11, 13,11, 12, (£,X)€(0, 00) x 9Q, (5.15)

(1(0,x),1,(0,%),1,1(0,x),1,2(0,x)) = ¢ = (13,19,1%,1%), x€Q,

where O(t,x) = (M(x) —I,; — I,;)" = max{M(x) — I,; — I,5,0}. The steady states of (5.14)-(5.15) satisfies
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(—DplAl (%) = —y1 ()1 (x) + c1 () Hu ()1 (%),  x€Q,
—DpAL(x) = =72 ()2 (%) + c2(X)Hu(X)],2 (%),
_xE€Q,
—DyAL; (x) = a4 (X)O X1 (x) — w(X)M(x)L,1 (%),
_xeQ, (5.16)
—DyAlLy (%) = aa(X)O(X)lx (x) — w(x)M(x)L,2(x),
xeQ,
M2 _ 0 W) = b0, (0, ha (0 ha0),  x<a,

where O(x) = (M(x) — I, (x) — Lx(x))*" = max{M(x) — I,;(x) — I,5(x),0}. We define
Hi={¢ € C(Q,R*) : B(x) +1% (x) # 0, 3(x) + 1% (x) = 0}. (5.17)

In what follows, we prove that the PSS of (5.14) is globally attractive in H whenever it exists. Before going into details, we
utilize the theory developed by (Amann, 1976) and (Zhao, 2017) to confirm that the PSS of (5.14) is unique if it exists.
Lemma 5.7. Ifi](x) = (I°1 (), fz(x), i,,l (%), ivz(x)) is a nontrivial nonnegative steady state of (5.14)-(5.15) with fi(x) + Io,,i(x)qt o,
i =1,2, then

(i) h®), B9, ©a (0, Lo(x)>0 for all x<©;

(ii) L1 (x0) + L2 (x0) <M(xg) for some xo Q.

Proof. We first prove (i). From the equations on I and I, of (5.16), one has

(%) = DpA)i(%) = i () Hu (%)l (x) fori=1,2.

Since i](x) is nontrivial and ii(x) + i,,i(x) +#0, we know that i,-(x) #0 and iui(x) #0 for i=1, 2. An application of the maximum
principle gives

o o o

LX), Lx), [1(x), [a()>0  for xeQ.

We next prove (ii). If i,,l (%) + I:,z (x) > M(x) for all xeQ, then from the equations on I,; and I, of (5.16) we obtain that
—DyALi(%) = (O X)Ij(x) — pXMX)L,i(X) = —p(X)MX)],;(x)

for x€Q, i =1, 2. This implies that i,,i(x) =0,i=1, 2, which is a contradiction. (I

Lemma 5.7 tells us that every nontrivial nonnegative steady state f_l(x) is strictly positive if it exists and In,»(x) + Ii(x)#= 0,
i = 1,2. With this in mind, for any C; >0, we define

s= {(i’“ ®), Ta0) €C@R2): |10 + Lol <1

(5.18)
and I,q(xp) + I,5(xg) < M(xp) for some xg eﬁ}.

Further, for C, >0 and C3 >0, we define F : ScC(Q)—C(Q) by

~ ©° °

F(Ia(x), Lax)h)

( (C2 — D) Va1 (x)O(x) (71 (%) — DpA) "1 () Hu(X)1 (X) + (C2 — w(x)M(x))L,1 (x)] )
(C3 = DyA) Mo (X)O(X) (72(%) — DpA) T er (X)Hu (X2 (x) + (C3 — w(X)M (X))l (x)]

for (I,1 (%), Lo(x)" €S.
Lemma 5.8. Suppose thatii(x) + i,,i(x) #0,i=1,2. Let i](x) be a PSS of (5.16). Then there is C] > 0 such that for all ¢; > Cj, C2 > 0,
and C3>0, (qu] (x),f,,z (x))T is a nontrivial fixed point (NFP) of .
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Proof. The equations on il and IDZ of (5.16) give

o o

I1(%) = (71(X) — Dpdd) " e1 () Hu(X)L1 (x)
and

o

I (%) = (v2(x) = Dpd) " 2 () Hu ()2 (),
respectively. Combining them with the equations on Io,,1 and Io,,z of (5.16) gives
~DyAla(x) )\ a2(0@(x)(75(x) — Dyh) ®)a(¥)

By Lemma 5.7, (1,1 (x), L,2(x))T is a NFP of Z if ¢; is large. O

(—DVA{}] <x>) _ (al (9O (9 = Dyd) 1 (0Hu(9n () — MWy (x))_
- M

" ~ N . ol o1 T
Lemma 5.9. For fixed C;>0, there exists C, >0 such that F is monotone for all C,, C3>C,, that is, for (I,,(x),I,(x)) ,

2 2 T o ol T 2 2 T
(B0, 1500) €5 with (I (0, 15(0) < (05309, Fy(x) , we have

o ol T 2 2 T
F((Ly(x),I5(x) ) < F (L1 (%), 12(X)) ).

Proof. Denote

S1={(h1.hy)" € CEUR2) : 0<hy by <M(x) ~[,1 (X) ~ 2 (0)}.
It suffices to show F((I,; (%), L,,(x))7) < F (1,1 (%) + hy,1,5(x) + hy)T) for any (I,1(x),1,,(x))T €S and (hy,h,)T €S,. Define

(F)((n (%), Lo )T = (F1p [F])T

(m (X)OX)(71(%) — DpA) ey ) Hu(X)1 (X) + (C2 — wX)M(x))I,1 (x) )

2 (X)O(X)(12(X) ~ DyA) " 2 () Hu ()2 (%) + (C3 — X)M(x))],2(%)
A direct calculation gives

[F)(r () + iy, () + E>2>T> — [FU(Fn ). T2 0)T)

(m (X)(0; (x) = ©0))(71(x) ~ Dyd) e (YHu (X)d1 (1) + (C2 — WMy )

@ (x)(®; (1) = O(0)(v2(X) ~ Dpd) ™" c2(X)Hu (0,2 () + (€3 — w(x)M(x))h

>

(Hl [—a1 (0)(71 (%) = DpA) ™ c1 ®)Hu ()1 (%) + C2 — pEOM(X)] )

b [=a3 (%) (72 (%) — Dpd) ™ 2 () Hu (02 (%) + C3 — p(0)M(x)]

where @H (x) = (M(x) — Iy (x) — I,5(x) — hy)" and @H (x) = (M(x) — L1 () — I,5(x) — hy)". Here we have used the inequalities
0 (x) = O(x)| < hy and 0, (1) ~ O(x)| < hy.

With the help of the elliptic estimate, we note that the following set

(71(X)—DhA)1C1(X)Hu(X)I:V1(x)> ; o S}
{<(72(X)_DhA)_]CZ(X)Hu(X)I,,z(X) ’(Ul(x)v UZ(X)) S

is bounded, which implies that

o o

[F) (I (%) + Ry, Lp (%) + ho)T) = [F)((In (%), L2 (%))T) = 0
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if C; and C3 are large. Hence

o o

F((a () +hy, L) + b)) = F((In (%), 12 (%)) > 0,
i.e., 7 is monotone if C, and C5 are large. O
In the coming discussion, for ¢, 9 €C(Q, R), we say ¢ < ¢ if (x) < ¢(x) for xeQ.

Lemma 510. For any 7<(0, 1) and (i,,l (%), in(x))TES with (iﬂ (x), I:,z(x))T>>O, we  have
ol T T

~ ol

7 (T (), Ly (%)) )< F (g (%), 75 (%)) ).

Proof. From the definition of S, we know that ID,,1 (X0) + ivz (%0) <M(xp) for some xy €Q. Then

(M(x0) — 11 (X0) — Lo (x0)) " < (M(x0) — Tl (x0) — Tl (%0))"

and

o o

M(x) — L1 (%) — Lp ()" < (M(x) - 7l,3(x) — 71,(x))"

for xeQ. Hence

T T . T T

HEN(E (o). I (%0)) ) < [F)((7hy (%0). 7Ly (%0)) ) and 7[Z](Tny (0. Iy () ) < [F) (g (00, 715 (30 ).

Recall that

F = ((C2 = D,A) M [Fly, (€3 = DA [FL)".
By the strong positivity of (C; — D,A)™! and (C3 — D,A)”!, the assertion follows. OJ
Lemma 5.11. The PSS of (5.14), if exists, is unique.

Proof. If (I} (x), 13 (x), 131 (x),I,],2 (x)) and (I3 (x), 3 (x), 151 (%), Ifz (x)) are two distinct PSSs. Then (131 (%), 132 (%)) # (131 (%), Ifz (x)) by
the first and second equations of (5.16). Assume that (I}, (x), I}, (x)) > (I, (), I%(x)) and define

7= max{7>0: 7L (%), 15 (%) < (P (x).Bx)' ).

It follows that 7 € (0, 1),

T T

T (%), (X)) < (12 (%), I5 (%))

and
(I (x0), T (%)) = (12 (X0), % (x0))"

for some xo €. We can choose Cj, C, and C; such that (I, (x), %, (x))" and (I (x),1%(x)) are NEPs of 7, i.e.

FUIL00,1500) ) = (11 (00, 1)

and

FB X, %)) = (13(),%5x)

On the other hand, by Lemma 5.9 and Lemma 5.10, we have
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(I (0, (%)
=T (I (0,15 (%))
<<
<<
Frhx,150))
<

T T

F((4(x).15(x) ) = (% x),15(x)

T

that is, 7(I'; (x), I, (x)) <(I, (), 1%, (x)) ", which contradicts with

7(I (x0), T (%0))| = (2 (o), I3 (X0)) -

This completes the proof. O
Denote by ¥(t) : C(Q, R%)— C(Q, R%) the semiflow generated by (5.14). Recall that system (5.14) is cooperative. By the
standard theory developed in (Smith, 1995), we know that lf‘(t) is monotone.

Lemma 5.12. Let H be defined by (5.17). For any ¢ €H, the solution of (5.14) satisfies

I;>0, >0, I,;>0and I, >0 for (t,x)€(0, ) x Q.

Proof. Since II’(t) is monotone, by the comparison principle, we directly have
I[>0,1;>0,1; >0and I,; >0 for (t,x)€[0, ) x Q.

Under the condition ¢ € H, that is, 19 (x) + 191 (x)#0 and I§(x) + 182 (x)#0, we distinguish the following four cases to finish the
proof.

Case 1. % (x)#0 and 1% (x) 0.

Notice that

O DAy MLy, (£X)E(0,00) x ©,
M2 > Dy~ ML, (6X)€(0,00) x (5.19)
6);\1/122 =0, Wy =1,1,12, (t,X)€(0, 00) x 0Q.

By the comparison principle,
I;>0and ;>0  for (t,x)€(0,00) x Q.

Then, by the first two equations of (5.14), together with the first two inequalities of (3.4) and the fact that Hy(x) is nontrivial,
we have

[>0and L >0  for (t,x)€(0,00) x Q.

Case 2. 1% (x)=0 and I%(x) = 0.

In this case, we have 13(x)¢o. By the third equation of (5.14), we have the first inequality of (5.19). Again from the
comparison principle, we get

Li(t,x)>0  for (t,x)€(0, ) x Q.
Then, similarly as in case 1, we have
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I(t,x)>0 and L(t,x)>0 for (t,x)=(0,00) x Q.

Due to (5.18) and the continuity of I,5(t, x) and I,,(0, x) = 0, we obtain O(t, x) > 0 for (t,x) (0, t;] x Q for some t; > 0. Then by
the comparison principle and

al,n

22> DAl — p(OM )Lz, (£.)€(0,t7) x Q. (5.20)

we get Ix(t, x)> 0 for (t,x) (0, t7] x Q. Finally, by the second inequality of (5.19), we have I,5(t, x) > 0 for (t,x)(0,00) x Q.

Case 3. 1% (x) = 0 and 1% (x) #0.

In this case, we have I?(x) #+0. Similar to case 2, we have

L(t,x)>0, L(t,x)>0, I,;(t,x)>0 and I5(t,x)>0  for (t,x)€(0,00) x Q.

Case 4. 1% (x) + I%(x) = 0.

In this case, 1‘1) (x)#0 and 13 (x) #=0. By the first two equations of (5.14), together with the first two inequalities of (3.4) and
the fact that Hy(x) is nontrivial, we have

I(t,x)>0 and L(t,x)>0 for (0,x)e(t, 0) x Q.

By the continuity of I(t, x), Ia(t, X), and I,,1(0, x) = I,2(0, x) = 0 for xeQ, we obtain O(t, x) > 0 for (t,x) € (0, tg] x Q for some
tg>0. Then by

al,q

a5 > Dbl — p(OM (X)L, (£,%) € (0, tg] < Q, (5.21)

(5.20), and the comparison principle, we have I,1(t, x) > 0, Lx(t, x) > 0 for (t,x) € (0, tg] x Q. Finally, by (5.19), we have

L1 (t,x)>0and I,(t,x)>0  for (t,x)€(0, ) x Q.

In conclusion, we have completed the proof. O

Lemma 5.13. Let H be defined by (5.17). For any ¢ €H, the solution of (5.14) satisfies

0 <Ii(t,x), I(t,x), Ly(t,x), Ix(t,x) <B for (t,x)=(0,0) x Q,

where B is large enough.
Proof.Let B; = max{HM(x)HY +1,
comparison principle give

1%,y +1, ||I%x)]y + 1}.The third and fourth equations of (5.14) together with the

Li(t,x) < By and I5(t,x) < By  for (£,x)€(0,0) x Q.

Then by the first two equations of (5.14), for i =1, 2, we have

al;

St < Dhl = (0l + GOHu(X)Br,  (£2)€(0,0) x Q,
Ay (t,x)€ (0, 00) x IQ
an - Y ’ ) N

So Ii(t, x) is a lower solution of
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o DyAu T+ OB, (£X)€(0,00) x ©,

Z—Z =0, (t,X)€(0, ) x 0Q,
<(0,x) = I°(x), xeQ.

Let By = max{([lc;(x)[ly + D(IHu()[ly + 1)B1 /7, I?(X)HY + 1}, where y; = min{y;(x) : x €Q}. Then we have 0 < v(t,x) <

B, for (t,x) € (0,00) x Q. Again from the comparison principle, 0 < I; < v < B,. Consequently, we have got the desired result by
letting B = max{Bq,B,}. O

Lemma 5.14. Assume that lo_l(x) = (fl (x), fz (%), i“ (%), Io,,z (x)) is a PSS of (5.14). Then i](x) is globally asymptomatically stable.

Proof. With the help of [43, Lemma 2.2.1], in the following, we show that for each ¢ =H,
limlye, -) = Ii(+) and lim(c, ) = L), i=1,2.

By Lemma 5.12, we have I1(t, x) > 0 I, > 0(t, x), I,1(t, x) > 0, and I;»(t, x) > 0 for (t,x) €(0,c0) x Q, which allow us to assume that
Bx) >0, 19(x)>0, 1% (x) >0, and 1% (x) > 0 for x€Q. Choose s small enough and let

U= (I}, I, L1, Lp) = (esl1(X), esl2(X), ecly1(X), eslia(X))

which satisfies

~DyAL (x) = =71 (01 (%) + €1 (Hu (W)L, (X),  XEQ,
~DyAL (x) = =75 ()5 (%) + C2(X)Hu(X),5(X),
xeQ, - -
~DyALy (%) < a1 (x)(M(X) — Ly (%) — Lp(%) " [ (%) — px)M X)L (%),
xeQ,
~DyAlLy(X) < aa(x)(M(X) — Ly (X) — Ly (%)) Lo (%) — k()M X)L5(x), (5:22)
xeQ,
WS _ 0, W) = 1 (30, Lo 0), Ly (0, L ), xea,
LX) <, Lx) <1, Lix) <1, Lp(x) <19, XEQ.

Recall that &)(t)g(a X) is monotone increasing in t and converges to a PSS of (5.14) (see [27, Corollary 7.3.6]). As i](x) is the
unique PSS of (5.14), it follows that

W(U(x) - U(x) as t— co.

Similarly, for sufficiently large number G, we define

o o o

U= (I, I, Iy, L) = (Gl (x), Gly(x), Gl (x), Glp(x))
and then W (t)TU(t,x)— U(x) as t — co. By the definitions of U and U, we get
U(t,x) < ¢ <U(t,x).

As W(t) is monotone, we directly have

W()U(t,x) < B(t)p < T(H)U(L,x), t > 0.

Clearly, ¥ (t)p— i](x) as t— oo. This completes the proof. [J

5.4. Global dynamics of EE
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~1 ~2

As stated in Theorem 5.6, if 9§ > 1, %3 > 1, Ry > 1, and Ry > 1, then system (2.4) has at least a PSS, denoted by EE. From
(2.2), we know that §,, + I°V1 + IDUZ — M. Hence U is the unique PPS of (5.14), which in turn implies that EE is the unique PSS of
(2.4).

In what follows, we study the global attractivity of EE. The method used here is the theory of asymptotically autonomous
semiflows developed in [30, Theorem 4.1].

- ~2
Theorem 5.15. Suppose that SRE) >1, m% >1, SR(]J >1,and Ny > 1. Then the EE of (2.4) is globally attractive, that is, for any (IO,IO,SS,
19,,1%) € Xy, the solution of (2.4) satisfies
tanczo”u(t’ ¢ ) - (Ila 127 SU7 Ivl*, IIIZ)HX =0

uniformly on Q, where u(t, x) = (I1(t, x), Ia(t, x), Sy(t, X), Ln(t, x), L2(t, X)) for (£, x) € (0, 0o0) x Q.

Proof. We only need to pay attention to the infection compartments of (2.4), which satisfy

ol

6_2 = DpAlL — v1(x)I1 + 1 (X)Hu(X)1,1,

al,

5t = Dnbh = 12 (0)h + 2 () Hu (X)L,

al (5.23)
6Utl = DyAlLy + ay (X)O(t, X)I; + g1 (t,X) — pX)M (X)L,

al, _

6t2 = DyAl + az(X)O(t, X)I5 + @2 (t, X) — px)M(X)],2

for (t, x) € (0, ) x Q, associated with

Was _ _
P 0, Way =11, 1,11, L2, (£,X)€(0,00) x 0Q (524)

(11(0,%),15(0,x),1,1(0,%),1,2(0.x)) = (I9(x), 13(x), 1% (x), 1% (x)), x€Q,

where

ai(t,X) = a;(x)(S, (t, ) — O(t, X));(t, X) — w(x) (M — M(x))Li(t,x), i =1,2.
It follows from

[Su(t,%) = O(t,X)| < [M(x) — M(x)|

that g;(t,x) — 0 uniformly on Q as t — oo, i = 1, 2. According to the theory developed in [24, Proposition 1.1], system (5.23) is
asymptomatically autonomous with the limiting system (5.14). From Theorem 5.6, the w-limit set of (5.23) is contained in H

defined by (5.17). Further from Lemma 5.14 and the definition of H, we know that H is the stable set of i](x). An application of
the result of asymptomatically autonomous semiflows in [30, Theorem 4.1] gives that

(Il(ta ° )712(t7 °)7Ii/1(ta ')aII/Z(tv '))—>i] as t—oo.

Further, from S,(t, +) + L1 (¢, *) + I,»(t, -) > M and §,, + i,,1 —+ I°v2 = M, we have S,(t, -) —>§,, ast — oo. This completes the proof.
|

6. Conclusion

This paper concentrated on the threshold dynamics of a diffusive malaria model with the sensitive and resistant strains.
Taking into account the heterogeneous environment, the vector population growing with a logistic term and the susceptible
hosts at space x remaining at Hy(x), we have formulated and analyzed the model to explore the competition and coexistence
phenomena between the two strains.

Mathematically, we first investigated the well-posedness of system (2.4). According to the theory developed in (Smith,
1995), we confirmed the existence and uniqueness of classical solutions for system (2.4) on [0, Tpax) With 0 < Tpax < co.
We then proved the ultimate boundedness of the unique global solution, which is verified by using the comparison principle
(see Theorem 3.2). Further, thanks to [27, Theorem 2.1 and Theorem 7.3.1] and [22, Theorem 2.9], the existence of a global
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attractor is ensured (see Lemma 3.3). Based on the maximum principle, we proved the strict positivity of solutions (see
Lemma 3.4).

Due to the complexity of the model (the spatial heterogeneity and two-strain structure), we first analyzed the associated
single-strain subsystems (4.1) and (4.3). Subsystem (4.1) with the sensitive strain possesses three steady states: DFSSs EE) and
E} and PSS EL; while subsystem (4.3) for the resistant strain possesses three steady states: DFSSs E3 and E? and PSS E2. The
DFSSs and the PSSs of subsystem (4.1) and (4.3) can be viewed as DFSSs and the BSSs of system (2.4), respectively. That is,
model (2.4) has five steady states: DFSSs Eg and Ej, BSSs E}, and Eg, and the PSS EE.

By the approach developed in (Diekmann et al., 1990; Liang et al., 2017; Magal et al., 2019; Thieme, 2009; Wang & Zhao,
2012), we introduced the BRN SHB of each strain (i=1, 2) for system (2.4) by using the next generation operator. Then we
defined the BRN i of system (2.4) as the maximum of 5)1(1) and .‘Tt% (see (4.9)). We also built up the relationship between .‘% -
1 (i=1, 2) and the principal eigenvalue of the associated eigenvalue problem (see Lemma 4.2). The main difficulty we
overcame is to characterize the BRN of the diffusive malaria model with multiple diffusive infection compartments. With this
in mind, we established the connection between the BRN S)tf) (i=1, 2) and the LBRN mf)(x) (i=1, 2). By appealing to the
approach developed in (Magal et al., 2019), we defined the BRN as the spectral radius of a product of LBRN and the strongly
positive compact linear operators with spectral radius one (see (4.17) and (4.19)). As described in Lemma 4.3, ER{) >1 when
§)i6(x) >1 for all x€Q, and é)i{, <1 when §)i6(x) <1 for all x€Q. We further investigated the effect of large or small diffusion
rates on SRB (i=1, 2) for a single-strain system (see Lemma 4.4 and Lemma 4.5).

We also investigated the competition and exclusion phenomena between the sensitive and resistant strains. To this end,

the IRN S)Atg of each strain (i = 1, 2) for system (2.4) is depicted rigorously (see (4.27) and (4.29)). In these circumstances, we
aimed to investigate the possibility of the coexistence of the sensitive and resistant strains. We also established the rela-

tionship between Sﬁg —1 (i=1, 2) and the principal eigenvalue of the corresponding eigenvalue problem (see Lemma 4.6).

With the BRN ﬂtb (i=1,2)and the IRN 5?%6 (i=1, 2), we carried out the stability analysis of the steady states to understand the
interaction between the sensitive and resistant strains. Using the results obtained in (Magal et al., 2018), the threshold dy-

namics about single-strain models are clearly characterized: The malaria with strain i becomes extinct in the case where 5)%6 <
1(i=1,2), E’i is globally asymptotically stable (see (i) of Lemma 5.1); The malaria with strain i becomes epidemic in the case
where 9{6 >1(i=1,2), EE is a unique PSS (see (ii) of Lemma 5.1). As to our model (2.4), we obtained the following results:

(i) Eg is always unstable. If SR}) <1 and 9?% <1, E; is globally attractive (see Theorem 5.2), which biologically means that
malaria becomes extinct.

(ii) If Ry > 1> R o (Lj=12withi = j), El is globally attractive (see Theorem 5.3), which biologically means that malaria
with strain i becomes epidemic, Whlle the malaria with strain j becomes extinct (see Theorem 5.3). Combined with the
linearized system and the associated eigenvalue problem, we studied the stability of Ei (i=1, 2) when another strain
invades: malarla with strain j will not invade in the case where ‘)t]o <1 and the strain j becomes established in the case
where ‘RO >1forj=1,2 and i # j, both of which are based on the condition that the i strain becomes endemic (see
Lemma 5.4). 1 )

(iii) Eo, Eq,Ej, E5 are uniform weak repellers in the case where 9} > 1, #2 > 1, %t > 1 and 0y > 1, which are proved with by
way of contradiction (see Lemma 5.5). The existence of a PSS EE for system (2.4) is also confirmed in Theorem 5.6.

However, it is not easy to get the global dynamics of EE. With the total density of female adult mosquitoes M(t, x) satisfying
(2.1), it is natural to consider the dynamics of (2.4) dominated by the corresponding limiting system (5.14). By confirming the
existence and uniqueness of the PSS of the limiting system (5.14), we have verified the positivity of solutions to (5.14) (see

Lemma 5.7), the well-posedness of NFP by defining an explicitly function 7; (see Lemma 5.8), the monotonicity of 7; (see

Lemma 5.9), and the sublinear property for 7; (see Lemma 5.10). As a result, the PSS of the limiting system is unique if it exists
(see Lemma 5.11).

Applying the comparison principle for cooperative systems, we proved the positivity (see Lemma 5.12) and boundedness
of solutions of the limiting system (see Lemma 5.13), and then obtained the global stability of PSS with the theory of
monotone dynamical systems (see Lemma 5.14). Finally, with the help of the theory of asymptotically autonomous semiflows
(Thieme, 1992), we confirmed that system (5.23) is asymptomatically autonomous with the limiting system (5.14) and the -

limit set of (5.23) is contained in the stable set of f](x). We obtained the global asymptotic stability of EE (see Theorem 5.15).

. . . . . . s i i
With regard to biological meanings, we analyzed the relationship between the two strains in terms of %y and 9, and then
we summarized four phenomena of competition of the sensitive strain and the resistant strain, i.e., if ig <1 and i <1, then

. . . . . 1 &2 . . - . .
malaria epidemic vanishes; if %) >1, %o <1, MF>1, Ro> 1, then malaria with the sensitive strain becomes extinct and
. . . . . S a1 ' &2 . . - .
malaria with the resistant strain becomes epidemic; if %t} > 1, 9y >1, %3 >1, R <1, then malaria with the sensitive strain

. . S . . . . 1 o2 .
becomes epidemic and malaria with the resistant strain becomes extinct; if R} > 1, %y > 1, W2 > 1, Ry > 1, then the two strains
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become epidemic and prevalent in the habitat. Recently, Wang et al. (Wang et al., 2023) considered the spreading speeds and
traveling wave solutions for a diffusive vector-borne disease model, we leave these problems for our model in a future study.
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