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a b s t r a c t

We propose a malaria model involving the sensitive and resistant strains, which is
described by reaction-diffusion equations. The model reflects the scenario that the vector
and host populations disperse with distinct diffusion rates, susceptible individuals or
vectors cannot be infected by both strains simultaneously, and the vector population
satisfies the logistic growth. Our main purpose is to get a threshold type result on the
model, especially the interaction effect of the two strains in the presence of spatial
structure. To solve this issue, the basic reproduction number (BRN) Ri

0 and invasion
reproduction number (IRN) bRi

0 of each strain (i¼ 1 and 2 are for the sensitive and resistant
strains, respectively) are defined. Furthermore, we investigate the influence of the diffu-
sion rates of populations and vectors on BRNs and IRNs.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Malaria, a mosquito-borne epidemic arising from parasites of the genus plasmodium, still remains a fatal epidemic. Its
primary reservoirs are female anopheles mosquitoes. The malaria transmission generally involves a transmission cycle be-
tween humans and female mosquitoes (Forouzannia & Gumel, 2014), that is, infected mosquitoes can transmit malaria to
susceptible individuals through effective bites and susceptible mosquitoes can get infection from infected individuals by
biting. Plasmodium vivax leads to approximately 80% of malaria infections (Titus, 1990) and Plasmodium falciparum is the
most lethal. Once humans get infections from infected mosquitoes, some typical symptoms such as chills, fever, sweating will
occur. If patients can not receive timely treatment, malariawill cause serious complications even death. In 2019, as reported in
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(World Health Organization, 2019), there were approximately 228 million cases all over the world. Nowadays, malaria is still
prevalent in Africa, Asia and South America, which brings negative influences on the public health and local economies.

Mathematical models onmalaria spread have received a lot of attention in recent years as investigation of suchmodels can
give us better understanding of the mechanisms of malaria transmission and also provide guidance or suggestions on malaria
control. Since the study of (Macdonald, 1957) and (Ross, 1911), mathematical models onmalaria spread have been extensively
studied by many researchers, which incorporate various factors in malaria transmission. A typical factor is spatial hetero-
geneity in disease transmission. Indeed, spatial transmission of diseases subject to differences in social, cultural, economic,
demographic, and geographical factors may in turn give rise to the spatial patterns of diseases (Hagenaars et al., 2004). In
recent years, more and more malaria transmission models have been established to investigate the spatial spread of malaria
in the forms of reaction-diffusion equations. In a recent work (Ge et al., 2015), Ge et al. argued that the movement of
mosquitoes and individuals affects the geographic spread of malaria. Considering spatial heterogeneity, one often adopts
space-dependent functions instead of constants for parameters. On the other hand, the authors in (Lou & Zhao, 2011)
extended Macdonald's malaria model (Macdonald, 1957) to a nonlocal reaction-diffusion model by introducing the extrinsic
incubation period (EIP). They explored the threshold dynamics and investigated the impact of spatial heterogeneity on
malaria spread numerically. Chamchod et al. (Chamchod & Britton, 2011) proposed a vector-bias malaria model involving the
incubation time, diffusion term and chemotaxis term. They studied the phenomenon of transcritical bifurcation in a critical
case where the incubation time and diffusion term are ignored. They also performed numerical simulations on results of the
wave speed to verify the result on the minimum wave speed from qualitative analysis when the diffusion term and
chemotaxis term are included. It is confirmed that a large incubation time can reduce the prevalence of malaria. Further, Xu
and Zhao (Xu & Zhao, 2013) investigated the threshold-type result of a vector-bias malaria model with diffusion term in a
homogeneous case. Some conditions on the global attractivity of the positive steady state (PSS) are also obtained in a het-
erogeneous case. Subsequently, Bai et al. (Bai et al., 2018) extended theories proposed in (Chamchod & Britton, 2011), (Lou &
Zhao, 2011) and (Wang & Zhao, 2017) to a model involving seasonality, spatial heterogeneity, vector-bias, and EIP. They
concluded that spatial heterogeneity remarkably increases the epidemic burden and EIP would be helpful in controlling
malaria transmission.

It is highlighted in (Laxminarayan et al., 2016) that the high use of antimalarial drugs has accelerated the evolution of
resistance to some plasmodium parasites during the treatment of malaria, which directly threatens the fight against malaria.
The drug resistance of Chloroquine (which was frequently used to control malaria in the 1950's) was found in Southeast Asia
and South America and spread to every country in the following decades (Talisuna et al., 2004). Generally speaking, anti-
malarial drugs will eliminate drug-sensitive parasites in hosts. But drug-resistant parasites survive and reproduce due to the
high use and long term treatment (Esteva et al., 2009). Sulfadoxine-pyrimethamine, as an alternative to Chloroquine, has also
been proved to have the phenomenon with the decline of efficacy. Recently, Artemisinin combination therapies are widely
used in the treatment for malaria. However, drug-resistance remains inevitable and brings difficulties in malaria control (see,
for example (Bushman et al., 2018; Tumwiine et al., 2014),). Further, Forouzannia and Gumel (Forouzannia & Gumel, 2015)
assessed the effect of antimalaria drugs on malaria control by an age-structured model. Very recently, Shi and Zhao (Shi &
Zhao, 2021) explored a diffusive two-strain (sensitive and resistant strain) malaria model, where the following biological
factors in malaria transmission are taken into account:

(i) The total human population stabilizes at HðxÞ. Let t and x be the time and space variables, respectively. Assume that
the total population lives in a bounded spatial habitatUwith a smooth boundary vU. The total population HdH(t, x) is
divided into susceptible individualsHudHu(t, x), individuals infected by the sensitive strain I1dI1(t, x) and individuals
infected by the resistant strain I2dI2(t, x), that is, H ¼ Hu þ I1 þ I2. Further, H satisfies the following equation,

8>><>>:
vH
vt

¼ DhDH þ bhH � gH; ðt; xÞ2ð0;∞Þ � U;

vH
vn

¼ 0; ðt; xÞ2ð0;∞Þ � vU;

(1.1)
where Dh> 0 is the diffusion rate of the population, bh and g are the recruitment rate and mortality rate of the population,
respectively. Here v

vn represents the normal derivative along n on vU. As in (Bai et al., 2018), the total population H(t, x) is

assumed to be HðxÞ, i.e., Hðt; xÞ≡HðxÞ for (t, x)2 [0, ∞)�U.

(ii) The total of female adult mosquitoes remains constant. The total density of female adult mosquitoesMdM(t, x) is
divided into susceptible individuals Svd Sv(t, x), mosquitoes infected by the sensitive strain Iv1dIv1(t, x) and in-
dividuals infected by the resistant strain Iv2dIv2(t, x), that is, M¼ Sv þ Iv1 þ Iv2. M is assumed to be governed by the
following system:
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8>><>>:
vM
vt

¼ DvDM þL� hM; ðt; xÞ2ð0;∞Þ � U;

vM
vn

¼ 0; ðt; xÞ2ð0;∞Þ � vU;

where L and h are the recruitment rate and mortality rate of female adult mosquitoes, respectively. Dv> 0 stands for the

diffusion rate of all mosquitoes. According to the results in (Magal et al., 2018), (Cantrell & Cosner, 2003),

lim
t/∞

Mðt; xÞ ¼ Md
L

h
: (1.2)
(iii) Vector-biasmechanism. In viewof theworks (Chamchod& Britton, 2011) and (Bai et al., 2018), vector-biasmechanism
was introduced to characterize the distinct attractiveness of host population to mosquitoes. Infectious humans exhibit
greater attractiveness to female adult mosquitoes than susceptible humans. The constant p (respectively, l) is used for
the probability when a vector randomly bites a susceptible (respectively, infectious) host.

We use i¼ 1 and 2 to differentiate the sensitive and resistant strains, respectively. The basic reproduction number (BRN)

Ri
0 and the invasion reproduction number (IRN) bRi

0 of the i strain are defined in (Shi & Zhao, 2021) as the threshold values to

investigate the competition and coexistence phenomena, that is, (i) if R1
0 <1 and R2

0 <1, then malaria vanishes; (ii) if R1
0 >1,bR1

0 <1, R2
0 >1, bR2

0 >1, then malaria with i¼ 1 strain becomes extinct and malaria with i¼ 2 strain becomes epidemic; (iii) if

R1
0 >1, bR1

0 >1,R2
0 >1, bR2

0 <1, thenmalaria with i¼ 1 strain becomes epidemic and malaria with i¼ 2 strain becomes extinct;

(iv) ifR1
0 >1, bR1

0 >1,R2
0 >1, bR2

0 >1, then both strains coexist. Further, numerical simulations are performed to investigate the
impact of the vector-bias mechanism on epidemic spread.

This work intends to investigate the competition and coexistence phenomena in a diffusive two-strain (sensitive and
resistant strain) malaria model arising from high use of antimalarial drugs. Based on the two-strain malaria transmission
model proposed in (Shi& Zhao, 2021), we shall borrow the idea used in (Magal et al., 2018) tomodify (1.1), i.e., the density for
susceptible populations stabilizes at the spatial location rather than the density for the total population stabilizes at the
spatial location as in (Lou & Zhao, 2011) and (Bai et al., 2018). Considering that the total number of mosquitoes is affected by
the maximum environmental capacity, we modify the linear growth rate of mosquitoes (Shi & Zhao, 2021) with a logistic
growth. To make things not too complicated (as competition and coexistence phenomena between the two strains have
already made the problem very challenging), we adopt the mass action for the interaction between humans and mosquitoes.
Furthermore, our analysis gives the influences of diffusion coefficients and shows the competition and coexistence of the two
strains while keeping the spatial heterogeneity (with all nonconstant coefficients except the diffusion rates of humans and
mosquitoes) in hosts and vectors.

In the next section, we introduce the diffusive two-strain malaria model in a heterogeneous environment. We rigorously
analyze the well-posedness in Section 3, which includes the existence and uniqueness of classical solutions, the ultimate
boundedness of solutions, and the existence of a global attractor. In Section 4, we first explore the subsystems of single strains.

The local basic reproduction number (LBRN) Ri
0ðxÞ and the BRN Ri

0 of each strain (i¼ 1, 2) are introduced and the re-

lationships betweenRi
0ðxÞ andRi

0 are established. The local invasion reproduction number (LIRN) bRi
0ðxÞ and IRN bRi

0 (i¼ 1, 2)
are analyzed in the same way. Furthermore, we identify the asymptotic consequences of BRNs and IRNs when the diffusion
coefficients of hosts and vectors tend to infinity or zero. In Section 5, we study the threshold dynamics determined by BRNs
and IRNs. The stabilities of the disease-free steady state (DFSS) and the boundary steady state (BSS), results of uniform
persistence, and the existence of a PSS are all addressed. Finally, we end the paper with a brief discussion.

2. The model

Based on themalaria models in (Shi& Zhao, 2021), (Fitzgibbon et al., 2017), (Magal et al., 2018), and (Magal et al., 2019), we
propose a diffusive two-strain malaria transmission model. As it is well-known, malaria, zika virus, and dengue fever are all
highly dangerous vector-borne infectious diseases. Thus they can be modeled with a similar mathematical framework. We
mentioned that (Fitzgibbon et al., 2017) highlighted the effect of susceptible hosts stabilizing at spatial location in zika
epidemic. Indeed, approximately 395 per hundred thousand residents of Rio de Janeiro were infected with zika during eight
and a half months, whichmeans that infected residents are less than 1% of the total population (Villela et al., 2016). It is thus of
interest to analyze the effect of this factor on the transmission of malaria. Subsequently, Magal et al. (Magal et al., 2018)
revisited the model in (Fitzgibbon et al., 2017) to investigate the threshold dynamics according to BRN R0 (obtained via the
next generation operator method). Their results also revealed the relationship between R0 � 1 and the principal eigenvalue
of the corresponding eigenvalue problem. Generally speaking, it is difficult to visualizeR0 for reaction-diffusion systemswith
933
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multiple infective compartments. Inspired by the dynamics of the associated ordinary differential equation model, but with
LBRN, Magal et al. (Magal et al., 2019) further explored the relationship between BRN and LBRN and investigated the
asymptotic consequences of BRN and LBRN when the diffusion coefficients of hosts and vectors tend to infinity or zero.

Inspired by the above works, we shall adopt the two-strain malaria model in (Shi & Zhao, 2021) based on the following
assumptions.

(i) During a relatively short-time epidemic, susceptible humans are not affected. Let HuðxÞ2CðU;RÞ be the stabilized
susceptible humans at location x, which is a continuous positive function on U. Suppose that each susceptible indi-
vidual or vector cannot be infected by both strains simultaneously. We use

ciðxÞHuðxÞIviðt; xÞ; i ¼ 1;2;

to represent the flux of newly infected humans with the i strain, where ciðxÞ2CðU;RþÞ denotes the transmission rate that an

infected mosquito of the i strain bites a susceptible individual. Similarly, we use

aiðxÞSvðt; xÞIiðt; xÞ; i ¼ 1;2;

to represent the flux of newly infected mosquitoes with the i strain, where aiðxÞ2CðU;RþÞ denotes the transmission rate that

a susceptible mosquito bites an infected individual.

(ii) The total number of vectors is affected by the environmental carrying capacity in the sense thatM¼ Sv þ Iv1 þ Iv2 obeys
a logistic type growth, that is,

8>>>>><>>>>>:

vM
vt

¼ DvDM þ bðxÞM � mðxÞM2; ðt; xÞ2ð0;∞Þ � U;

vM
vn

¼ 0; ðt; xÞ2ð0;∞Þ � vU;

Mð0; xÞ ¼ M0ðxÞ2CðU;RþÞ;

(2.1)

where b(x) denotes the breeding rate of mosquitoes and mðxÞdbðxÞ with K(x) denoting the environmental carrying capacity at
KðxÞ
location x. According to the analysis in (Cantrell & Cosner, 2003), it is obvious that for any positive initial dataM0ðxÞ2CðU;RÞ,
M satisfies

lim
t/∞

kM�MðxÞk∞ ¼0 for ðt; xÞ2 ð0;∞Þ�U; (2.2)

where MðxÞ is the unique positive solution of
8><>:
�DvDuðxÞ ¼ bðxÞuðxÞ � mðxÞu2ðxÞ; x2U;

vuðxÞ
vn

¼ 0; x2vU:
(2.3)
By incorporating the above assumptions, the model studied in this paper is8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

vI1
vt

¼ DhDI1 � g1ðxÞI1 þ c1ðxÞHuðxÞIv1;
vI2
vt

¼ DhDI2 � g2ðxÞI2 þ c2ðxÞHuðxÞIv2;
vSv
vt

¼ DvDSv � a1ðxÞSvI1 � a2ðxÞSvI2 þ bðxÞM � mðxÞMSv;

vIv1
vt

¼ DvDIv1 þ a1ðxÞSvI1 � mðxÞMIv1;

vIv2
vt

¼ DvDIv2 þ a2ðxÞSvI2 � mðxÞMIv2

(2.4)

for (t, x)2 (0, ∞)�U, associated with
934
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vW1

vn
¼ 0; W1 ¼ I1; I2; Sv; Iv1; Iv2; ðt; xÞ2ð0;∞Þ � vU: (2.5)

We further impose the following initial data on (2.4),
ðI1ð0; , Þ; I2ð0; , Þ; Svð0; , Þ; Iv1ð0; , Þ; Iv2ð0; , ÞÞ ¼ ðI01; I02; S0v ; I0v1; I0v2Þ: (2.6)
3. Well-posedness

This section mainly establishes the well-posedness of system (2.4) with (2.5) and (2.6). Let XdCðU;R5Þ be the Banach
space of all continuous functions from U to R5 equipped with the supremum norm k ,kX and XþdCðU;R5

þÞ be the positive

cone of X. For convenience, we let YdCðU;RÞ and YþdCðU;RþÞ. The supremum norm on Y is denoted as k ,jY.
Following the standard arguments in [27, Section 7.1 and Corollary 7.2.3], we denote respectively TiðtÞ; i ¼ 1;2;3 : Y/Y

the compact and strongly positive evolution operators associated with

vI1
vt

¼ DhDI1 � g1ðxÞI1dA1I1; ðt; xÞ2ð0;∞Þ � U;

vI2
vt

¼ DhDI2 � g2ðxÞI2dA2I2; ðt; xÞ2ð0;∞Þ � U;

and

vSv
vt

¼ DvDSvdA3Sv; ðt; xÞ2ð0;∞Þ � U

subject to (2.5). Furthermore, TðtÞ ¼ diagfT1ðtÞ;T2ðtÞ;T3ðtÞ;T3ðtÞ;T3ðtÞg : X/X; t � 0, generated by the operator A ¼ diagf
A1;A2;A3;A3;A3g, is a strongly continuous semigroup. Here A is defined on DðAÞ ¼ DðA1Þ� DðA2Þ� DðA3Þ� DðA3Þ� DðA3Þ,
where

DðAiÞd
�
q2CðUÞ : lim

t/0þ

ðTiðtÞ � IdÞq
t

exists; i ¼ 1;2;3
�

with Id denoting the identity operator.
For simplicity of notations, we denote

XHdff¼ðf1;f2;f3;f4;f5Þ2Xþ : 0�M1ðt; xÞbf3 þf4 þf5 �MðxÞ; ðt; xÞ2 ½0;∞Þ�Ug:
Moreover, we define F ¼ ðF1;F2;F3;F4;F5Þ : XH/X by
F1ðfÞðxÞ ¼ c1ðxÞHuðxÞf4ð0; xÞ;
F2ðfÞðxÞ ¼ c2ðxÞHuðxÞf5ð0; xÞ;
F3ðfÞðxÞ ¼ �a1ðxÞf3ð0; xÞf1ðt; xÞ � a2ðxÞf3ð0; xÞf2ð0; xÞ þ bðxÞM1ð0; xÞ
�mðxÞM1ð0; xÞf3ð0; xÞ;
F4ðfÞðxÞ ¼ a1ðxÞf3ð0; xÞf1ð0; xÞ � mðxÞM1ð0; xÞf4ð0; xÞ;
F5ðfÞðxÞ ¼ a2ðxÞf3ð0; xÞf2ð0; xÞ � mðxÞM1ð0; xÞf5ð0; xÞ

8>>>>><>>>>>:
(3.1)

for f ¼ ðf1;f2;f3;f4;f5Þ2XH and x2U. By letting uðtÞ ¼ ðI1ðt; ,Þ; I2ðt; ,Þ; Svðt; ,Þ; Iv1ðt; ,Þ; Iv2ðt; ,ÞÞ2XH; t >0 and
f0dðf1ð0; , Þ;f2ð0; , Þ;f3ð0; , Þ;f4ð0; , Þ;f5ð0; , ÞÞ ¼ ðI01; I02; S0v ; I0v1; I0v2Þ2XH;

we can rewrite (2.4) as
8><>:
duðtÞ
dt

¼ AuðtÞ þ FðuðtÞÞ; t >0;

uð0Þ ¼ f02XH:

(3.2)
Lemma 3.1. For any f02XH and Tmax �∞, system (2.4)-(2.5) admits a unique solution u(t, ,, f0), on [0, Tmax) with u(0, ,)¼ f0.
Moreover, u(t, ,, f0) is a classical solution.

Proof. By appealing to [23, Corollary 4] and [40, Corollary 8.1.3], we know that a mild solution with f02XH can be viewed
as a continuous solution of
935
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(
uðtÞ ¼ TðtÞf0 þ

Z t

0
Tðt � sÞFðuðsÞÞds; t >0;

uð0Þ ¼ f02XH ;

where F is locally Lipschitz continuous. Moreover, for all ðt;fÞ2½0;∞Þ �XH and positive k, one can easily check that

fð0; xÞ þ kFðfÞðxÞ �

0BBBB@
f1ð0; xÞ
f2ð0; xÞ

f3ð0; xÞ½1� kMða1 þ a2 þ 3mÞ�
f4ð0; xÞ½1� 3kmM�
f5ð0; xÞ½1� 3kmM�

1CCCCA;

where f ¼ maxx2U
f ðxÞ for f¼ a1, a2, m, and M ¼ maxx2U

MðxÞ. Moreover,

MðxÞ � ½f3ð0; xÞþ kF3ðfÞðxÞ� � MðxÞ � f3ð0; xÞ � kbðxÞM1ð0; xÞ:

Similarly, we get

MðxÞ � ½f4ð0; xÞþ kF4ðfÞðxÞ� � MðxÞ � f4ð0; xÞ � ka1ðxÞf3ð0; xÞf1ð0; xÞ

and

MðxÞ � ½f5ð0; xÞþ kF5ðfÞðxÞ� � MðxÞ � f5ð0; xÞ � ka2ðxÞf3ð0; xÞf2ð0; xÞ:

As a result, for ðt;fÞ2Rþ � XH, we can obtain that

lim
k/0þ

1
k
distðfð0; xÞþ kFðfÞðxÞ;Yþ �Yþ �XH �XH �XHÞ ¼ 0:

Thus, by [27, Theorem 3.1], for 0< Tmax � ∞, a unique classical solution u(t, x) exists on [0, Tmax). ,
The following result directly follows from [27, Corollary 7.3.2].

Theorem 3.2. For f02XH system (2.4) with (2.5) and (2.6) possesses a unique global classical solution u(t, ,), t� 0, with u(0,
,)¼ f0. Furthermore, u(t, ,), t� 0, is ultimately bounded.

Proof. Recall that (2.1) has a unique global classical solution M(t, x) and

limt/∞kMðt; xÞ�MðxÞk∞ ¼0:

By the comparison principle and arguments in (Smith, 1995), maxt�0kMðt; ,ÞkY <N1 for some N1> 0. More precisely, there
exist t0> 0 and a > 0 such that M(t, x)�N1 þ a for (t, x)2 (t0, ∞)�U, which in turn implies that

Svðt; xÞ; Iv1ðt; xÞ; Iv2ðt; xÞ<N1 þ a for ðt; xÞ2ðt0;∞Þ � U:

By the comparison principle and the first two equations of system (2.4), we know that ðI1; I2Þ � ðh1;h2Þ on ½t0;∞Þ� U, where

ðh1;h2Þ is the solution of8>>>>>>>>>><>>>>>>>>>>:

vh1
vt

¼ DhDh1 � g1ðxÞh1 þ c1ðxÞHuðxÞðN1 þ aÞ; ðt; xÞ2ðt0;∞Þ � U;

vh2
vt

¼ DhDh2 � g2ðxÞh2 þ c2ðxÞHuðxÞðN1 þ aÞ; ðt; xÞ2ðt0;∞Þ � U;

vW2

vn
¼ 0; W2 ¼ h1; h2; ðt; xÞ2ðt0;∞Þ � vU;

h1ðt0; xÞ ¼ I1ðt0; xÞ;h2ðt0; xÞ ¼ I2ðt0; xÞ; x2U:

Obviously, ðh1;h2Þ/ðbh1;
bh2Þ uniformly on U as t / ∞, where ðbh1;

bh2Þ is the unique solution of
936
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8>>>><>>>>:
�DhDu1ðxÞ ¼ �g1ðxÞu1ðxÞ þ c1ðxÞHuðxÞðN1 þ aÞ; x2U;
�DhDu2ðxÞ ¼ �g2ðxÞu2ðxÞ þ c2ðxÞHuðxÞðN1 þ aÞ;

x2U;

vW3ðxÞ
vn

¼ 0; W3ðxÞ ¼ u1ðxÞ;u2ðxÞ; x2vU:

Therefore, there exist t1> t0 and N2, N3> 0 such that I1ðt; xÞ � h1ðxÞ<N2 þ a and I2ðt; xÞ � h2ðxÞ<N3 þ a for (t, x)2 (t1,
∞)�U. Hence, by taking G¼max{N1 þ a, N2 þ a, N3 þ a}, we have

0 � I1ðt; xÞ; I2ðt; xÞ; Svðt; xÞ; Iv1ðt; xÞ; Iv2ðt; xÞ � G for ðt; xÞ2ðt1;∞Þ � U: (3.3)

This proves Theorem 3.2. ,
Motivated by [22, Theorem 2.9], the following result can be obtained directly.

Lemma 3.3. System (2.4) with (2.5) and (2.6) admits a continuous semiflow FðtÞt�0 : XH/XH with F(t)f0du(t, f0), t� 0, for
each f02XH . Furthermore, F(t) admits a compact attractor in XH .

The following result provides the strict positivity of solutions to system (2.4).

Lemma 3.4. For f02XH, let u(t, ,, f0) be the solution of (2.4). Suppose that there exists t2� 0 such that I1(t2, ,, f0) þ Iv1(t2, ,,
f0)> 0, I2(t2, ,, f0) þ Iv2(t2, ,, f0)> 0, and M(t2, ,, f0)> 0. Then

Wðt; x;f0Þ>0 for ðt; xÞ2ðt2;∞Þ � U;

where W ¼ I1, I2, Sv, Iv1, Iv2.
Proof. First, we suppose that Iv1(t2, ,, f0)þ Iv2(t2, ,, f0)¼ 0. Then I1(t2, ,, f0)s 0, I2(t2, ,, f0)s 0, and Sv(t2, ,, f0)s 0. By the
first three equations of (2.4), we have8>>>>>>><>>>>>>>:

vI1
vt

� DhDI1 � g1ðxÞI1;
vI2
vt

� DhDI2 � g2ðxÞI2;
vSv
vt

� DvDSv þ Svð�a1ðxÞI1 � a2ðxÞI2 þ bðxÞ � mðxÞMÞ

(3.4)

for (t, x)2 (t2, ∞)�U. Due to the fact that I1(t2, ,, f0) s 0, I2(t2, ,, f0) s 0, and Sv(t2, ,, f0) s 0, we can use the maximum

principle to obtain

I1ðt; xÞ>0; I2ðt; xÞ>0; and Svðt; xÞ>0 for ðt; xÞ2ðt2;∞Þ � U:

Furthermore, it follows from the fourth and fifth equations of (2.4)-(2.5) that
8>><>>:
vIv1
vt

>DvDIv1 � mðxÞMIv1;

vIv2
vt

>DvDIv2 � mðxÞMIv2

(3.5)

for (t, x)2 (t2, ∞)�U. Again, by the maximum principle,
Iv1ðt; xÞ>0 and Iv2ðt; xÞ>0 for ðt; xÞ2ðt2;∞Þ � U:
Now, suppose that Iv1(t2, ,, f0) þ Iv2(t2, ,, f0) s 0. We distinguish three cases to finish the proof.
Case 1: Iv1(t2, ,, f0)s 0 and Iv2(t2, ,, f0)¼ 0. Then I2(t2, ,, f0)s 0. By the first equation of (2.4), we have the first inequality

of (3.4). Further from the comparison principle and the fact that Hu(x) is nontrivial, we know that the inequality is strict for
some x2U, which means I1(t, x)> 0 for ðt; xÞ2ðt2;∞Þ� U. Similarly, we get directly from the second equation of (2.4), the
second inequality of (3.4), and the maximum principle that I2(t, x)> 0 for ðt; xÞ2ðt2;∞Þ � U as I2(t2, ,, f0) s 0. Notice that8>><>>:

vIv1
vt

� DvDIv1 � mðxÞMIv1;

vIv2
vt

� DvDIv2 � mðxÞMIv2

(3.6)

for (t, x)2 (t2, ∞)�U. It follows immediately from the maximum principle that
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Iv1ðt; xÞ>0 and Iv2ðt; xÞ>0 for ðt; xÞ2ðt2;∞Þ � U:
By the Sv-equation of (2.4), we have

vSv
vt

>DvDSv þ Svð�a1ðxÞI1 �a2ðxÞI2 þbðxÞ�mðxÞMÞ for ðt; xÞ2ðt2;∞Þ � U; (3.7)
which implies

Svðt; xÞ>0 for ðt; xÞ2ðt2;∞Þ � U:
Case 2: Iv1(t2, ,, f0)¼ 0 and Iv2(t2, ,, f0) s 0. Then I1(t2, ,, f0) s 0. Consequently,

Wðt; x;f0Þ>0 for ðt; xÞ2ðt2;∞Þ � U;

where W ¼ I1, I2, Sv, Iv1, Iv2. Clearly, the remaining proof is similar to that for case 1.
Case 3: Iv1(t2, ,, f0)s 0 and Iv2(t2, ,, f0)s 0. By the first two equations of (2.4), we see that the first two inequalities of (3.4)

hold and each is strict for some x2U. Then from the comparison principle, we get

I1ðt; xÞ>0 and I2ðt; xÞ>0 for ðt; xÞ2ðt2;∞Þ � U:

By the fourth and the fifth equations of (2.4), we know that (3.6) is valid. Again it follows from the maximum principle that

Iv1ðt; xÞ>0 and Iv2ðt; xÞ>0 for ðt; xÞ2ðt2;∞Þ � U:

Finally, it yields from the third equation of (2.4) and (3.7) that

Svðt; xÞ>0 for ðt; xÞ2ðt2;∞Þ � U:

This completes the proof. ,

4. The reproduction numbers

This section is devoted to defining the BRNs and IRNs for our model. Generally speaking, the epidemic and extinction of
malaria according to reproduction numbers provide important implications to the exploration of the complicated impacts of
spatial heterogeneity on disease transmission. For the method used here, we refer to (Diekmann et al., 1990; Liang et al., 2017;
Magal et al., 2019; Thieme, 2009; Wang & Zhao, 2012) and references therein.

4.1. Basic reproduction numbers

We first define the BRNs by considering two subsystems, which contain only the sensitive strain and the resistant strain,
respectively. The subsystem that only contains the sensitive strain is8>>>>>>><>>>>>>>:

vI1
vt

¼ DhDI1 � g1ðxÞI1 þ c1ðxÞHuðxÞIv1;
vSv
vt

¼ DvDSv � a1ðxÞSvI1 þ bðxÞðSv þ Iv1Þ � mðxÞðSv þ Iv1ÞSv;
vIv1
vt

¼ DvDIv1 þ a1ðxÞSvI1 � mðxÞðSv þ Iv1ÞIv1

(4.1)

for (t, x)2 (0, ∞)�U, associated with

vW4

vn
¼ 0; W4 ¼ I1; Sv; Iv1; ðt; xÞ2ð0;∞Þ � vU; (4.2)

while the subsystem that only contains the resistant strain is
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8>>>>>>><>>>>>>>:

vI2
vt

¼ DhDI2 � g2ðxÞI2 þ c2ðxÞHuðxÞIv2;
vSv
vt

¼ DvDSv � a2ðxÞSvI2 þ bðxÞðSv þ Iv2Þ � mðxÞðSv þ Iv2ÞSv;
vIv2
vt

¼ DvDIv2 þ a2ðxÞSvI2 � mðxÞðSv þ Iv2ÞIv2

(4.3)

for (t, x)2 (0, ∞)�U, associated with

vW5

vn
¼ 0; W5 ¼ I2; Sv; Iv2; ðt; xÞ2ð0;∞Þ � vU: (4.4)

Obviously, by (2.2), the DFSSs and the PSS of system (4.1) are

E10 ¼ ð0;0;0Þ; E11 ¼ ð0;MðxÞ;0Þ and E1E ¼ ðI*1ðxÞ; S*vðxÞ; I*v1ðxÞÞ

while those of system (4.3) are

E20 ¼ ð0;0;0Þ; E21 ¼ ð0;MðxÞ;0Þ and E2E ¼ ðeI2ðxÞ;eSvðxÞ;eIv2ðxÞÞ:
Each steady state of system (4.1) and system (4.3) can be viewed as a BSS of system (2.4), which allows us to give the steady
states of system (2.4) as follows.

(i) DFSSs of system (2.4):

E0 ¼ ð0;0;0;0;0Þ and E1 ¼ ð0;0;MðxÞ;0;0Þ;

(ii) BSSs of system (2.4):

E1v ¼ ðI*1ðxÞ; 0; S*v ðxÞ; I*v1ðxÞ;0Þ and E2v ¼ ð0;eI2ðxÞ;eSvðxÞ;0;eIv2ðxÞÞ;

(iii) PSS of system (2.4):

EE ¼ ð ̊I1ðxÞ; ̊I2ðxÞ; S̊vðxÞ; ̊Iv1ðxÞ; ̊Iv2ðxÞÞ:

Here E1v is called the sensitive strain steady state as the I2- and Iv2-components are zero. Similarly, E2v is called the resistant
strain steady state.

We first define BRNs for subsystems (4.1) and (4.3), denoted by R1
0 and R2

0, respectively. Let EdCðU;R3Þ and its positive

cone is denoted by EþdCðU;R3
þÞ. Let

EHdfðI1; Sv; Iv1ÞT 2 Eþ : 0� SvðxÞþ Iv1ðxÞ�MðxÞ for x2Ug:

A simple calculation shows that the DFSS E10 of subsystem (4.1) is always unstable. Linearize (4.1) around E11 and consider only
the infectious compartments to get
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8>><>>:
vI1
vt

¼ DhDI1 � g1ðxÞI1 þ c1ðxÞHuðxÞIv1;
vIv1
vt

¼ DvDIv1 þ a1ðxÞMðxÞI1 � mðxÞMðxÞIv1
(4.5)

for (t, x)2 (0, ∞)�U, and

vW6

vn
¼ 0; W6 ¼ I1; Iv1; ðt; xÞ2ð0;∞Þ � vU:

Let WdCðU;R2Þ. We define the operator F1 : W/W by

F1ðvÞ ¼
�

0 0
a1ðxÞMðxÞ 0

��
v1ðxÞ
v2ðxÞ

�
for v ¼ ðv1; v2ÞT2W: (4.6)

Denote by J(t)¼ diag(T1(t), T3(t)) the evolution operators of the system

dv
dt

¼ V1vbDDv�W1v; (4.7)

where

DðV1Þ ¼
��

h1;h2Þ2
\
p�1

W2;pðU;R2Þ : vh1
vn

¼ vh2
vn

¼ 0 on vU and V1ðh1;h2Þ2W

�
;

D
¼ diagðDh;DvÞ;
�W1

¼
 �g1ðxÞ c1ðxÞHuðxÞ

0 �mðxÞMðxÞ

!
:

In view of [31, Theorem 3.12], V1 is resolvent positive and JðtÞEþ3Eþ for each t> 0.

Following the standard procedure, at t¼ 0, we assume that v0 ¼ ðv01; v02Þ
T ¼ ðI01; I0v1Þ

T
is the spatial distribution of infectious

hosts and vectors with the sensitive strain near E11. Hence, as time evolves, JðtÞv0ðxÞ ¼ ðT1ðtÞv01ðxÞ; T3ðtÞv02ðxÞÞ stands for the
distribution of remaining infective hosts and vectors. The distribution of total infective vectors can be calculated byZ ∞

0
a1ðxÞMðxÞðT1ðtÞv01ÞðxÞdt:

As a result, the following continuous and positive operator on Y defined by
L1ðv0ÞðxÞd
Z ∞

0
F1JðtÞv0ðxÞdt ¼ F1

Z ∞

0
JðtÞv0ðxÞdt

is called the next generation operator. We define the spectral radius of L1 as the BRN for subsystem (4.1), i.e.,
R1
0drðL1Þ: (4.8)

The BRN R2
0 for subsystem (4.3) can be obtained in the same way. Consequently, the BRN of system (2.4) is defined by
R0 ¼ maxfR1
0;R

2
0g: (4.9)

1
The following observation indicates the relationship between R0 and the principal eigenvalue of an associated linear
elliptic eigenvalue problem.

Lemma 4.1. Let R1
0 be defined by (4.8). Considering8<:�DD4þW14 ¼ kF14;

x2U;

v4i

vn
¼ 0; i ¼ 1;2; x2vU;

(4.10)
940
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we have the following statements.

(i) Problem (4.10) admits a unique principal eigenvalue k0> 0. Futhermore, k0 has a strictly positive eigenvector ð4*
1ðxÞ;

4*
2ðxÞÞ.

(ii) R1
0 ¼ 1

k0
.

Proof. We first prove (i). Let (k, 4) be an eigenvalue pair of problem (4.10) with 4 ¼ (41, 42), that is,

��DhD41 þ g1ðxÞ41 ¼ c1ðxÞHuðxÞ42; x2U;
�DvD42 þ mðxÞMðxÞ42 ¼ ka1ðxÞMðxÞ41;

x2U:

Recall that T1(t), t> 0, is strongly positive and compact. Let bT3ðtÞ : Y/Y be the strictly positive and compact semigroup

generated by the operator bA3dDvD� mðxÞMðxÞ. Due to [31, Theorem 3.12], for 42Y, we have8><>:
ðkId � A1Þ�1

4 ¼
Z ∞

0
e�ktT1ðtÞ4dt; k> sðA1Þ;

ðkId � bA3Þ�1
4 ¼

Z ∞

0
e�ktbT 3ðtÞ4dt; k> sðbA3Þ:

(4.11)

Here sðAÞ ¼ supfRel : l2sðAÞg denotes the spectral bound of A, where sðAÞ denotes the spectral set of A. Due to

sðA1Þ ¼ max
x2U

f�g1ðxÞg<0 and sðbA3Þ ¼ max
x2U

f�mðxÞMðxÞg<0;

taking k¼ 0 in (4.11) leads to

�A�1
1 4 ¼

Z ∞

0
T1ðtÞ4dt and � bA�1

3 4 ¼
Z ∞

0

bT 3ðtÞ4dt for 42Y:

It follows that the operators �A�1
1 and �bA�1

3 are compact and strongly positive. We rewrite system (4.10) as

��A141ðxÞ ¼ c1ðxÞHuðxÞ42ðxÞ; x2U;

�bA342ðxÞ ¼ ka1ðxÞMðxÞ41ðxÞ;
x2U;

which allows us to obtain that 41ðxÞ ¼ �c1ðxÞHuðxÞA�1
1 42ðxÞ and (k, 42(x)) satisfies

1
k
e4 ¼ a1ðxÞMðxÞc1ðxÞHuðxÞA�1

1
bA�1
3 e4: (4.12)

Note that a1ðxÞMðxÞc1ðxÞHuðxÞ>0 for x2U. Thus the operator a1ðxÞMðxÞc1ðxÞHuðxÞA�1
1
bA�1
3 is strongly positive and compact on

Y. This combined with the Krein-Rutman Theorem implies that system (4.12) admits a unique principal eigenvalue k0> 0,

corresponding to which, 4*
2ðxÞ[0 in Y. Let 4*

1ðxÞ ¼ � c1ðxÞHuðxÞA�1
1 4*

2ðxÞ. Then 4*
1ðxÞ[0. This proves (i).

The assertion (ii) can be easily obtained according to [37, Theorem 3.2]. This completes the proof. ,
It is noted that subsystem (4.5) is cooperative and irreducible. We substitute the solution ðel1tj1ðxÞ; el1tj2ðxÞÞ into (4.5) to

obtain8>>>><>>>>:
l1j1ðxÞ ¼ DhDj1ðxÞ þ c1ðxÞHuðxÞj2ðxÞ � g1ðxÞj1ðxÞ; x2U;

l1j2ðxÞ ¼ DvDj2ðxÞ þ a1ðxÞMðxÞj1ðxÞ � mðxÞMj2ðxÞ; x2U;

vW7ðxÞ
vn

¼ 0; W7ðxÞ ¼ j1ðxÞ;j2ðxÞ; x2vU:

(4.13)
Similarly, for ðI2; Iv2Þ ¼ ðel2tj3ðxÞ;el2tj4ðxÞÞ, we get
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8>>>><>>>>:
l2j3ðxÞ ¼ DhDj3ðxÞ þ c2ðxÞHuðxÞj4ðxÞ � g2ðxÞj3ðxÞ; x2U;

l2j4ðxÞ ¼ DvDj4ðxÞ þ a2ðxÞMðxÞj3ðxÞ � mðxÞMðxÞj4ðxÞ; x2U;

vW8ðxÞ
vn

¼ 0; W8ðxÞ ¼ j3ðxÞ;j4ðxÞ; x2vU:

(4.14)
The following result comes from [31, Theorem 3.5], which reveals that R1
0 � 1 (respectively, R2

0 � 1) has the same sign as
the principal eigenvalue of (4.13) (respectively, (4.14)).

Lemma 4.2. Let F1 and V1 be defined in (4.6) and (4.7), respectively. Define

F2d
�

0 0
a2ðxÞMðxÞ 0

�
and V2d

�
DhD� g2ðxÞ c2ðxÞHuðxÞ

0 DvD� mðxÞMðxÞ
�
; x2U:
Then Ri
0 � 1 has the same sign as l*i ðMÞ ¼ sðFi þ ViÞ, i¼ 1, 2.
4.2. The relationship between Ri
0 and Ri

0ðxÞ

When the diffusion terms in subsystem (4.1) are ignored, we arrive at the following ODE systemwith respect to a specific
location x,8>>>>>>><>>>>>>>:

dI1
vt

¼ �g1ðxÞI1 þ c1ðxÞHuðxÞIv1;

dSv
vt

¼ �a1ðxÞSvI1 þ bðxÞðSv þ Iv1Þ � mðxÞðSv þ Iv1ÞSv;

dIv1
vt

¼ a1ðxÞSvI1 � mðxÞðSv þ Iv1ÞIv1:

(4.15)

At a specific location x, we define

R1
0ðxÞ ¼ R1

1ðxÞR1
2ðxÞ; (4.16)

where

R1
1ðxÞ ¼

c1ðxÞHuðxÞ
g1ðxÞ

and R1
2ðxÞ ¼

a1ðxÞ
mðxÞ :

Here R1
1ðxÞ (respectively, R1

2ðxÞ) measures the impact of one infected mosquito (respectively, infectious human) on sus-

ceptible humans (respectively, susceptible mosquitoes) for the sensitive strain. Note that Ri
0ðxÞ is a multiplication operator,

termed as the LBRN for the sensitive strain (when i¼ 1) and resistant strain (when i¼ 2). This subsection is devoted to

studying the relationship between Ri
0 and Ri

0ðxÞ. The main idea comes from (Magal et al., 2019).

By (4.8), the BRN R1
0 for (4.1) is defined as

R1
0 ¼ rð�F1V

�1
1 Þ:

Following the approach developed in [21, Theorem 3.1], we get

R1
0 ¼ rðL11R1

1ðxÞL12R1
2ðxÞÞ (4.17)

with

L11 ¼ ðg1ðxÞ � DhDÞ�1g1ðxÞ and L12 ¼ ðmðxÞMðxÞ � DvDÞ�1mðxÞMðxÞ:

Similarly, we get

R2
0ðxÞ ¼ R2

1ðxÞR2
2ðxÞ; (4.18)

where
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R2
1ðxÞ ¼

c2ðxÞHuðxÞ
g2ðxÞ

and R2
2ðxÞ ¼

a2ðxÞ
mðxÞ :

Further,

R2
0 ¼ rðL21R2

1ðxÞL22R2
2ðxÞÞ (4.19)

with

L21 ¼ ðg2ðxÞ � DhDÞ�1g2ðxÞ and L22 ¼ ðmðxÞMðxÞ � DvDÞ�1mðxÞMðxÞ:

From [21, Theorem 3.6], we directly obtain the following result.

Lemma 4.3. If Ri
0ðxÞ>1 (i¼ 1, 2) (respectively, Ri

0ðxÞ<1) for x2 U, then Ri
0 >1 (respectively, Ri

0 <1).

The main contribution of (Magal et al., 2019) is the characterization of the limit behavior of Ri
0 (i¼ 1, 2) as the diffusion

rates approach infinity or zero. The following first main result of this subsection in the casewhere the diffusion rates approach
infinity can be viewed as a direct consequence of [21, Theorem 3.6 and Remark 4.8]. Thus the proof is omitted here.

Lemma 4.4. Let R1
0 and R2

0 be defined by (4.17) and (4.19), respectively. Then the following statements are valid.

(i) For i¼ 1, 2, lim
Dh/∞

lim
Dv/∞

Ri
0 ¼ lim

Dv/∞
lim

Dh/∞
Ri

0 ¼ R
i
1R

i
2.

(ii) For i¼ 1, 2, lim
ðDh; DvÞ/ð∞; ∞Þ

Ri
0 ¼ R

i
1R

i
2.

Here

R
i
1d

Z
U
giðxÞRi

1ðxÞdxZ
U
giðxÞdx

¼

Z
U
ciðxÞHuðxÞdxZ
U
giðxÞdx
and

R
i
2d

Z
U
mðxÞRi

2ðxÞdxZ
U
mðxÞdx

¼

Z
U
aiðxÞdxZ

U
mðxÞdx

:

The next main result of this subsection in the case where diffusion rates approach zero can be viewed as a direct
consequence of [21, Theorem 4.10 and Theorem 4.11]. Again, we omit the proof.

Lemma 4.5. Let R1
0 and R2

0 be defined by (4.17) and (4.19), respectively.

(i) For i¼ 1, 2, lim
Dh/0

lim
Dv/0

Ri
0 ¼ lim

Dv/0
lim
Dh/0

Ri
0 ¼ maxfRi

0ðxÞg.
(ii) For i¼ 1, 2, lim

ðDh; DvÞ/ð0; 0Þ
Ri

0 ¼ maxfRi
0ðxÞg.

Here R1
0ðxÞ and R2

0ðxÞ are defined by (4.16) and (4.18), respectively.

Lemma 4.4 and Lemma 4.5 demonstrate the effect of large or small diffusion rates onRi
0 (i¼ 1, 2) for a single-strain system.

4.3. Invasion reproduction numbers

Recall that for i¼ 1, 2, Eiv is the BSS of system (2.4), where the non-zero infected components are I*1ðxÞ and I*v1ðxÞwhen i¼ 1

while they areeI2ðxÞ andeIv2ðxÞ when i¼ 2. In this subsection, we define the IRNs for the two strains, denoted by bRi
0 (i¼ 1, 2).

Here the IRN means the average number of secondary infections by introducing one infective into a susceptible component
for one strain, but with the presence of the other strain.

Note that the PSS E2E of system (4.3) satisfies
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8>>>>>>>>>><>>>>>>>>>>:

0 ¼ DhDeI2ðxÞ � g2ðxÞeI2ðxÞ þ c2ðxÞHuðxÞeIv2ðxÞ; x2U;

0 ¼ DvDeSvðxÞ � a2ðxÞeSvðxÞeI2ðxÞ þ bðxÞðeSvðxÞ þeIv2ðxÞÞ
�mðxÞðeSvðxÞ þeIv2ðxÞÞeSvðxÞ;

x2U;

0 ¼ DvDeIv2ðxÞ þ a2ðxÞeSvðxÞeI2ðxÞ � mðxÞðeSvðxÞ þeIv2ðxÞÞeIv2ðxÞ; x2U;

vW9ðxÞ
vn

¼ 0; W9ðxÞ ¼eI2ðxÞ;eSvðxÞ;eIv2ðxÞ; x2vU:

(4.20)

By letting
I1 ¼ u1; I2 ¼eI2 þ u2; Sv ¼ eSv þ u3; Iv1 ¼ u4 and Iv2 ¼eIv2 þ u5; (4.21)

2
we linearize system (2.4) around Ev and consider only infective components u1 and u4 to obtain8>>>>>>><>>>>>>>:

vu1

vt
¼ DhDu1 � g1ðxÞu1 þ c1ðxÞHuðxÞu4; ðt; xÞ2ð0;∞Þ � U;

vu4

vt
¼ DvDu4 � mðxÞðeSvðxÞ þeIv2ðxÞÞu4 þ a1ðxÞeSvðxÞu1; ðt; xÞ2ð0;∞Þ � U;

vW10

vn
¼ 0; W10 ¼ u1;u4; ðt; xÞ2ð0;∞Þ � vU;

whose associated eigenvalue problem containing u1 and u4 reads as
8>>>><>>>>:
lbu1ðxÞ ¼ DhDbu1ðxÞ � g1ðxÞbu1ðxÞ þ c1ðxÞHuðxÞbu4ðxÞ; x2U;

lbu4ðxÞ ¼ DvDbu4ðxÞ � mðxÞðeSvðxÞ þeIv2ðxÞÞbu4ðxÞ þ a1ðxÞeSvðxÞbu1ðxÞ; x2U;

vW11ðxÞ
vn

¼ 0; W11ðxÞ ¼ bu1ðxÞ; bu4ðxÞ; x2vU:

(4.22)

b 1

As in (Magal et al., 2019; Thieme, 2009; Wang & Zhao, 2012), the IRN R0 of the sensitive strain for (2.4) is defined as

bR1
0 ¼ rð�bF1

bV�1
1 Þ; (4.23)

where bV : DðbV Þ3W/W and cF : W/W are linear operators defined respectively by
1 1 1

bV 1v ¼
�
DhD� g1ðxÞ c1ðxÞHuðxÞ

0 DvD� mðxÞðeSvðxÞ þeIv2ðxÞÞ
�
v

and
bF1v ¼
�

0 0
a1ðxÞeSvðxÞ 0

�
v

with DðbV Þ ¼ DðV Þ. The following lemma can be obtained in a similar way as Lemma 4.2.
1 1

Lemma 4.6. Let bR1
0 be defined by (4.23). The following two statements hold.

(i) bR1
0 � 1 has the same sign as bl1, where bl1 is the principal eigenvalue of (4.22).

(ii) bR2
0 � 1 has the same sign as bl2, where bR2

0 is the IRN of the resistant strain for (2.4) and bl2 is the principal eigenvalue of
8>>>><>>>>:

lbu2ðxÞ ¼ DhDbu2ðxÞ � g2ðxÞbu2ðxÞ þ c2ðxÞHuðxÞbu5ðxÞ; x2U;

lbu5ðxÞ ¼ DvDbu5ðxÞ � mðxÞðS*v ðxÞ þ I*v1ðxÞÞbu5ðxÞ þ a2ðxÞS*v ðxÞbu2ðxÞ; x2U;

vW12ðxÞ
vn

¼ 0; W12ðxÞ ¼ bu2ðxÞ; bu5ðxÞ; x2vU:

(4.24)
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4.4. The relationship between bRi
0 and bRi

0ðxÞ

As forRi
0 (i¼ 1, 2), bRi

0ði¼ 1;2Þ is also difficult to visualize. We thus turn our attention to the relationship between bRi
0 andbRi

0ðxÞ with the help of (Magal et al., 2019), where bRi
0ðxÞ is the LIRN for the i strain and is defined below.

We first consider the sensitive strain. In this case, ðI2;Sv;Iv2Þ/ðeI2ðxÞ;eSvðxÞ;eIv2ðxÞÞ. We consider the following systemwith no
diffusion terms and containing only the infective compartments for the sensitive strain,8>><>>:

dI1
vt

¼ �g1ðxÞI1 þ c1ðxÞHuðxÞIv1;

dIv1
vt

¼ a1ðxÞeSvðxÞI1 � mðxÞðeSvðxÞ þ Iv1 þeIv2ðxÞÞIv1: (4.25)

Then
bR1
0ðxÞ ¼ bR1

1ðxÞ bR1
2ðxÞ; (4.26)

where
bR1
1ðxÞ ¼

c1ðxÞHuðxÞ
g1ðxÞ

and bR1
2ðxÞ ¼

a1ðxÞeSvðxÞ
mðxÞðeSvðxÞ þeIv2ðxÞÞ:

Following the approach in [21, Theorem 3.1], we directly have
bR1
0 ¼ rðbL11 bR1

1ðxÞbL12 bR1
2ðxÞÞ (4.27)

with
bL11 ¼ ðg1ðxÞ � DhDÞ�1g1ðxÞ
and
bL12 ¼ ðmðxÞðeSvðxÞ þeIv2ðxÞÞ � DvDÞ�1mðxÞðeSvðxÞþeIv2ðxÞÞ:
Similarly, for the resistant strain,
bR2
0ðxÞ ¼ bR2

1ðxÞ bR2
2ðxÞ; (4.28)

where
bR2
1ðxÞ ¼

c2ðxÞHuðxÞ
g2ðxÞ

and bR2
2ðxÞ ¼

a2ðxÞS*v ðxÞ
mðxÞðS*v ðxÞ þ I*v2ðxÞÞ

:

Furthermore,
bR2
0 ¼ rðbL21 bR2

1ðxÞbL22 bR2
2ðxÞÞ (4.29)

with
bL21 ¼ ðg2ðxÞ � DhDÞ�1g2ðxÞ
and
bL22 ¼ ðmðxÞðS*v ðxÞ þ I*v2ðxÞÞ � DvDÞ�1
mðxÞðS*vðxÞþ I*v2ðxÞÞ:

i

From (4.26) and (4.28), compared with (4.16) and (4.18), respectively, we know that bR0ðxÞ<Ri

0ðxÞ (i¼ 1, 2) (see also (Zhao
et al., 2020) and (Tuncer & Martcheva, 2012)).

The following result is a direct consequence of [21, Theorem 3.6].

Lemma 4.7. For i¼ 1, 2, if bRi
0ðxÞ>1 (respectively, bRi

0ðxÞ<1) for x2 U, then bRi
0 >1 (respectively, bRi

0 <1).

In the following, we investigate the limiting behaviors of bRi
0 (i¼ 1, 2) when the diffusion rates approach infinity or zero.

According to [15, Proposition 2.5],
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lim
Dv/0

ðeSvðxÞ;eIv2ðxÞÞ/ðeS0v ðxÞ;eI0v2ðxÞÞ; lim
Dv/∞

ðeSvðxÞ;eIv2ðxÞÞ/ðeS∞v ;eI∞v2Þ
and

lim
Dv/0

ðS*v ðxÞ; I*v1ðxÞÞ/ðS*0v ðxÞ; I*0v1ðxÞÞ; lim
Dv/∞

ðS*v ðxÞ; I*v1ðxÞÞ/ðS*∞v ; I*∞v1 Þ;

where eS0v ðxÞ,eI0v2ðxÞ, S*0v ðxÞ, I*0v1ðxÞ2CðU;RÞ are positive functions of position xwhile eS∞v ,eI∞v2, S*∞v , I*∞v1 are positive constants. The
following two result are counterparts of Lemma 4.4 and Lemma 4.5, respectively.

Lemma 4.8. Let bR1
0 and bR2

0 be defined by (4.27) and (4.29), respectively. Denote bR1
2;∞ðxÞ ¼ lim

Dv/∞
bR1
2ðxÞ ¼ a1ðxÞeS∞v

mðxÞðeS∞v þeI∞v2Þ andbR2
2;∞ðxÞ ¼ lim

Dv/∞
bR2
2ðxÞ ¼ a2ðxÞS*∞v

mðxÞðS*∞v þI*∞v1 Þ. Then the following two statements hold.

(i) lim
Dh/∞

lim
Dv/∞

bR1
0 ¼ lim

Dv/∞
lim

Dh/∞
bR1
0 ¼ eR1

1
eR1
2 and lim

ðDh ;DvÞ/ð∞;∞Þ
bR1
0 ¼ eR1

1
eR1
2, where

eR1
1d

Z
U
g1ðxÞ bR1

1ðxÞdxZ
U
g1ðxÞdx

¼

Z
U
c1ðxÞHuðxÞdxZ
U
g1ðxÞdx

and

eR1
2d

Z
U
mðxÞ bR1

2;∞ðxÞdxZ
U
mðxÞdx

¼
eS∞v

ðeS∞v þeI∞v2Þ
Z
U
a1ðxÞdxZ
U
mðxÞdx

:

(ii) lim
Dh/∞

lim
Dv/∞

bR2
0 ¼ lim

Dv/∞
lim

Dh/∞
bR2
0 ¼ eR2

1
eR2
2 and lim

ðDh ;DvÞ/ð∞;∞Þ
bR2
0 ¼ eR2

1
eR2
2, where

eR2
1d

Z
U
g2ðxÞ bR2

1ðxÞdxZ
U
g2ðxÞdx

¼

Z
U
c2ðxÞHuðxÞdxZ
U
g2ðxÞdx

and

eR2
2d

Z
U
mðxÞ bR2

2;∞ðxÞdxZ
U
mðxÞdx

¼ S*∞v
ðS*∞v þ I*∞v1 Þ

Z
U
a2ðxÞdxZ
U
mðxÞdx

:

Lemma 4.9. Let bR1
0 and bR2

0 be defined by (4.27) and (4.29), respectively. Then the following two statements are true.

(i) For i¼ 1, 2, lim
Dh/0

lim
Dv/0

bRi
0 ¼ lim

Dv/0
lim
Dh/0

bRi
0 ¼ maxf bRi

0ðxÞg.
(ii) For i¼ 1, 2, lim

ðDh; DvÞ/ð0; 0Þ
bRi
0 ¼ maxf bRi

0ðxÞg.

Here bR1
0ðxÞ and bR2

0ðxÞ are defined by (4.26) and (4.28), respectively.
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5. Threshold dynamics

In this section, we study the threshold dynamics of system (2.4) in terms of Ri
0 and bRi

0 (i¼ 1, 2). These results will
characterize the competition and coexistence phenomena between the sensitive strain and the resistant strain.

By the standard result in [20, Theorem 2.4 and Theorem 3.12], we first give the following lemma on the global dynamics of
subsystems (4.1) and (4.3).

Lemma 5.1. For i¼ 1, 2,

(i) if Ri
0 <1 then Ei1 is globally asymptomatically stable;

(ii) if Ri
0 >1 then Ei1 is unstable and subsystem for the strain i possesses a positive global asymptotic stable steady state EiE .

Recall that Eiv (i¼ 1, 2) is the BSS of system (2.4). In what follows, combining with the BRN Ri
0 and the IRN bRi

0, we

determine the invasion behaviors by investigating the stability of the BSS Eiv.

5.1. The stability of E0 and E1

Obviously, E0 is always unstable.We linearize (2.4) around E1 and then only consider equations for I1, I2, Iv1 and Iv2 to obtain8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

vI1
vt

¼ DhDI1 � g1ðxÞI1 þ c1ðxÞHuðxÞIv1; ðt; xÞ2ð0;∞Þ � U;

vI2
vt

¼ DhDI2 � g2ðxÞI2 þ c2ðxÞHuðxÞIv2; ðt; xÞ2ð0;∞Þ � U;

vIv1
vt

¼ DvDIv1 þ a1ðxÞMðxÞI1 � mðxÞMðxÞIv1; ðt; xÞ2ð0;∞Þ � U;

vIv2
vt

¼ DvDIv2 þ a2ðxÞMðxÞI2 � mðxÞMðxÞIv2; ðt; xÞ2ð0;∞Þ � U;

vW13

vn
¼ 0; W13 ¼ I1; I2; Iv1; Iv2; ðt; xÞ2ð0;∞Þ � vU:

(5.1)
Substituting (I1, I2, Iv1, Iv2)¼ elt(j1(x), j2(x), j3(x), j4(x)) into (5.1), we get8>>>>>>>>>><>>>>>>>>>>:

lj1 ¼ DhDj1 þ c1ðxÞHuðxÞj3 � g1ðxÞj1; x2U;

lj2 ¼ DhDj2 þ c2ðxÞHuðxÞj4 � g2ðxÞj2; x2U;

lj3 ¼ DvDj3 þ a1MðxÞj1 � mðxÞMðxÞj3; x2U;

lj4 ¼ DvDj4 þ a2MðxÞj2 � mðxÞMðxÞj4; x2U;

vW14

vn
¼ 0; W14 ¼ j1;j2;j3;j4; x2vU:

(5.2)
Due to the fact that the eigenpairs of (4.13) and (4.14) satisfy (5.2) in the form of

ðl;j1ðxÞ; 0;j2ðxÞ;0Þ or ðl;0;j3ðxÞ;0;j4ðxÞÞ
and Lemma 4.2, we know that E1 is stable ifR
1
0 <1 andR2

0 <1, that is, ifR0 <1. In fact, it is also globally stable from the result
below.

Theorem 5.2. If R1
0 <1 and R2

0 <1, then E1 is globally attractive, that is,

lim
t/∞

kðI1; I2; Sv; Iv1; Iv2Þ� E1kX ¼0: (5.3)
Proof. By Lemma 4.2, we know that l*1ðMÞ<0 as R1
0 <1. Hence there is a small enough number e1> 0 such that le11 ðMÞ<0.

Due to M(0, ,) s 0 and (2.2), Mðt; ,Þ/Mð,Þ uniformly on U as t / ∞. Therefore, there exists a t3> 0 such that MðxÞ � e1 <

Mðt; xÞ<MðxÞ þ e1 for ðt;xÞ2ðt3;∞Þ� U. Then
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8>>>>>>><>>>>>>>:

vI1
vt

¼ DhDI1 � g1ðxÞI1 þ c1ðxÞHuðxÞIv1; ðt; xÞ2ðt3;∞Þ � U;

vIv1
vt

� DvDIv1 þ a1ðxÞðMðxÞ þ e1ÞI1 � mðxÞðMðxÞ � e1ÞIv1; ðt; xÞ2ðt3;∞Þ � U;

vW15

vn
¼ 0; W15 ¼ I1; Iv1; ðt; xÞ2ðt3;∞Þ � vU:

Denote the positive eigenvector corresponding to le11 ðMÞ by j ¼ ðje1
1 ; j

e1
2 Þ. By the continuity of le11 ðMÞ, we have

lime1/0l
e1
1 ðMÞ ¼ l*1ðMÞ<0whenR1

0 <1. Moreover, let x1> 0 such that ðI01;I0v1Þ � x1ðje1
1 ;j

e1
2 Þ. Then x1el

e1
1 ðt�t3Þj is the solution of8>>>>>>><>>>>>>>:

vI1
vt

¼ DhDI1 � g1ðxÞI1 þ c1ðxÞHuðxÞIv1; ðt; xÞ2ðt3;∞Þ � U;

vIv1
vt

¼ DvDIv1 þ a1ðxÞðMðxÞ þ e1ÞI1 � mðxÞðMðxÞ � e1ÞIv1; ðt; xÞ2ðt3;∞Þ � U;

vW15

vn
¼ 0; W15 ¼ I1; Iv1; ðt; xÞ2ðt3;∞Þ � vU:

According to the comparison principle, we get

ðI1; Iv1Þ � x1e
l
e1
1 ðt�t3Þðje1

1 ;j
e1
2 Þ for ðt; xÞ2ðt3;∞Þ � U:

Hence

lim
t/∞

I1ðt; xÞ ¼ 0 and lim
t/∞

Iv1ðt; xÞ ¼ 0 for x2U:

Similarly, when R2
0 <1, we can obtain

lim
t/∞

I2ðt; xÞ ¼ 0 and lim
t/∞

Iv2ðt; xÞ ¼ 0 for x2U:

These together with (2.2) imply that Svðt; xÞ/MðxÞ for all x2U as t / ∞. Thus the proof is completed. ,
5.2. Uniform persistence

We first give a result on non-coexistence, that is, under suitable conditions, one strain can be uniformly persistent while
the other one vanishes.

Theorem 5.3. Assume that, for i, j¼ 1, 2 with i s j, we have Ri
0 >1>Rj

0. Then there exists 2i> 0 such that

limt/∞Ijðt; x;f0Þ ¼ 0; limt/∞Ivjðt; x;f0Þ ¼ 0

and

lim inf
t/∞

Iiðt; x;f0Þ � 2i; lim inf
t/∞

Iviðt; x;f0Þ � 2i

for x2U,where u(t, ,, f0) ¼ (I1(t, ,, f0), I2(t, ,, f0), SvI2(t, ,, f0), Iv1I2(t, ,, f0), Iv2I2(t, ,, f0)) is any solution of (2.4) through f0 with

I0i ðxÞ þ I0viðxÞ>0 and S0v ðxÞ þ I0viðxÞ>0 for x2U.

Proof. By virtue of Rj
0 <1 and (i) of Lemma 5.1, we know that

limt/∞Ijðt; , ;f0Þ ¼ 0 and limt/∞Ivjðt; , ;fÞ ¼ 0:

Arguing similarly as for [20, Lemma 3.11], we see that there exists 2i> 0 such that lim inft/∞Ii(t, ,, f0)� 2i and lim inft/∞Ivi(t, ,,
f0)� 2i. ,

We now investigate the stability of Eiv (i¼ 1, 2) of (2.4) in terms of IRN bRi
0 (i¼ 1, 2). Firstly, we linearize (2.4) around E2v and

consider the associated eigenvalue problem,
948



J. Wang, W. Wu and Y. Chen Infectious Disease Modelling 9 (2024) 931e962
8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

lj1 ¼ DhDj1 � g1ðxÞj1 þ c1ðxÞHuðxÞj3; x2U;

lj2 ¼ DhDj2 � g2ðxÞj2 þ c2ðxÞHuðxÞj4; x2U;

lj5 ¼ DvDj5 � a1ðxÞeSvðxÞj1 � a2ðxÞeSvðxÞj2 � a2ðxÞeI2ðxÞj5
þbðxÞðj5 þ j3 þ j4Þ � mðxÞð2eSvðxÞ þeIv2ðxÞÞj5 � mðxÞeSvðxÞðj3 þ j4Þ;

x2U;

lj3 ¼ DvDj3 � mðxÞðeSvðxÞ þeIv2ðxÞÞj3 þ a1ðxÞeSvðxÞj1; x2U;

lj4 ¼ DvDj4 þ a2ðxÞeSvðxÞj2 þ a2ðxÞeI2ðxÞj5
�mðxÞeIv2ðxÞðj5 þ j3 þ 2j4Þ � mðxÞeSvðxÞj4;

x2U;

vW16

vn
¼ 0; W16 ¼ j1;j2;j5;j3;j4; x2vU:

(5.4)

Note that the first and second equations of (5.4) are decoupled from the others. Let l be an eigenvalue of (5.4). Then it satisfies8>>>><>>>>:
lj1 ¼ DhDj1 � g1ðxÞj1 þ c1ðxÞHuðxÞj3; x2U;

lj3 ¼ DvDj3 � mðxÞðeSvðxÞ þeIv2ðxÞÞj3 þ a1ðxÞeSvðxÞj1; x2U;

vW17

vn
¼ 0; W17 ¼ j1;j3; x2vU;

(5.5)

or 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

lj2 ¼ DhDj2 � g2ðxÞj2 þ c2ðxÞHuðxÞj4; x2U;

lj5 ¼ DvDj5 � a2ðxÞeSvðxÞj2 � a2ðxÞeI2ðxÞj5
þbðxÞðj5 þ j4Þ � mðxÞð2eSvðxÞ þeIv2ðxÞÞj5 � mðxÞeSvðxÞj4;

x2U;

lj4 ¼ DvDj4 þ a2ðxÞeSvðxÞj2 þ a2ðxÞeI2ðxÞj5
�mðxÞeIv2ðxÞðj5 þ 2j4Þ � mðxÞeSvðxÞj4;

x2U;

vW18

vn
¼ 0; W18 ¼ j2;j5;j4; x2vU:

(5.6)

Due to the stability of the associated E2E [20, Theorem 3.12], we know that the principal eigenvalue of (5.6) is negative.

Furthermore, problem (5.5) is cooperative, which implies that (5.5) admits a principal eigenvalue bl1 with a positive eigen-

vector ðj1ðxÞ;j3ðxÞÞ according to (Lam & Lou, 2016). We conclude from this and (i) of Lemma 4.6 that bl1 <0 if bR1
0 <1 whilebl1 >0 if bR1

0 >1. Similarly, by (ii) of Lemma 4.6, we know that bl2 <0 if bR2
0 <1 while bl2 >0 if bR2

0 >1. Hence we immediately
have the following result.

Lemma 5.4. Let R1
0, R

2
0, bR1

0, and bR2
0 be defined by (4.17), (4.19), (4.27), and (4.29), respectively.

(i) If R2
0 >1, then E2v is locally asymptomatically stable when bR1

0 <1 while it is unstable when bR1
0 >1.

(ii) If R1
0 >1, then E1v is locally asymptomatically stable when bR2

0 <1 while it is unstable when bR2
0 >1.

We next confirm that E0, E1, E1v , and E2v are uniform weak repellers with respect to solutions of (2.4) under the condition

that R1
0 >1 and R2

0 >1. Recall that FðtÞ : XH/XH is the continuous solution semiflow of (2.4). We define

XH0dff2XH : f1ðt; , Þþf4ðt; , Þ > 0 and f2ðt; , Þþf5ðt; , Þ > 0 and M1ðt; , Þ > 0g
and
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vXH0dff2XH : f1ðt; , Þþf4ðt; , Þ¼0 or f2ðt; , Þþf5ðt; , Þ¼0 or M1ðt; , Þ¼0g:
Then XH ¼ XH0∪vXH0 and the boundary vXH0 ¼ XH �XH0 is closed in XH .

Lemma 5.5. Suppose that R1
0 >1, R2

0 >1, bR1
0 >1, and bR2

0 >1. Then E1, E0, E1v , and E2v are uniform weak repellers for F(t), that is,

for U2fE1;E0;E1v ;E2vg, there is d> 0 (may depend on U) such that

lim sup
t/∞

kFðtÞf0 �UkX � d for f0 2XH0: (5.7)
Proof. We first prove the result for the case whereU¼ E1. Assume, for the contrary, that for any 32 > 0 there exists a solution
of (2.4) such that

lim sup
t/∞

kFðtÞf0 � E1kX < 32: (5.8)

Then for some t4> 0 we have

MðxÞ � 32 < Sv <MðxÞ þ 32 and 0< I1; I2; Iv1; Iv2 < 32 for ðt; xÞ2ðt4;∞Þ � U:

Due to8>>>>>>><>>>>>>>:

vI1
vt

¼ DhDI1 � g1ðxÞI1 þ c1ðxÞHuðxÞIv1; ðt; xÞ2ðt4;∞Þ � U;

vIv1
vt

� DvDIv1 þ a1ðxÞðMðxÞ � 32ÞI1 � mðxÞðMðxÞ þ 3 32ÞIv1; ðt; xÞ2ðt4;∞Þ � U;

vW19

vn
¼ 0; W19 ¼ I1; Iv1; ðt; xÞ2ðt4;∞Þ � vU;

when R1
0 >1, Lemma 4.2 implies that l*1ðMÞ>0, where l*1ðMÞ is the principal eigenvalue of (4.5). Form Lemma 3.4, one has

I1(t4, x)> 0 and Iv1(t4, x)> 0 for all x2U. In view of lim 32/0
ele21 ¼ l*1ðMÞ>0, there exists 32 > 0 such that the principal

eigenvalue ele21 >0 and it has a positive eigenfunction 4e2 ¼ ð4e2
1 ;4

e2
2 Þ. Choose CE1 >0 small enough such that ðI1ðt4; xÞ; Iv1ðt4; xÞ

Þ � CE1 ð4 32
1 ; 4

32
2 Þ for all x2U. Obviously, CE1e

el 32

1 ðt�t4Þ4 32 is a solution of8>>>>>>><>>>>>>>:

vI1
vt

¼ DhDI1 � g1ðxÞI1 þ c1ðxÞHuðxÞIv1; ðt; xÞ2ðt4;∞Þ � U;

vIv1
vt

¼ DvDIv1 þ a1ðxÞðMðxÞ � 32ÞI1 � mðxÞðMðxÞ þ 3 32ÞIv1; ðt; xÞ2ðt4;∞Þ � U;

vW19

vn
¼ 0; W19 ¼ I1; Iv1; ðt; xÞ2ðt4;∞Þ � vU:

It follows from the comparison principle that

ðI1; Iv1Þ � CE1e
el 32

1 ðt�t4Þð4 32
1 ;4 32

2 Þ for ðt; xÞ2ðt4;∞Þ � U:

Since el 32

1 >0 when R1
0 >1, this implies that

lim
t/∞

I1ðt; xÞ ¼ ∞; lim
t/∞

Iv1ðt; xÞ ¼ ∞ uniformly for x2U: (5.9)

Similarly, if R2
0 >1, then

lim
t/∞

I2ðt; xÞ ¼ ∞; lim
t/∞

Iv2ðt; xÞ ¼ ∞ uniformly for x2U: (5.10)

These results contradict with the boundedness of (I1, I2, Iv1, Iv2). This proves the result in the case where U¼ E1.
Secondly, we prove the result in the case where U¼ E0. If (5.7) does not hold, then for any e3> 0 there is a solution of (2.4)

satisfies
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lim sup
t/∞

kFðtÞf0 � E0kX < e3 (5.11)

and hence there is t5> 0 such that

Svðt; , Þ; Iv1ðt; , Þ; Iv2ðt; , Þ< e3 for ðt; xÞ2ðt5;∞Þ � U:

However, from (2.2), we haveMðt; xÞ/MðxÞ uniformly onU as t/∞, a contradiction. This proves the result in the casewhere
U¼ E0.

Thirdly, we consider the case where U ¼ E1v . Since bR2
0 >1, we know that bl2 >0 by Lemma 4.6. Due to the continuity of bl2,

we can find a small enough e4 such that ble42 >0. We show that (5.7) holds with d¼ e4 by contradictory arguments. Otherwise,
there is a solution of (2.4) satisfying

lim sup
t/∞

kFðtÞf0 � E1vkX < e4: (5.12)

It follows that, for some t6> 0,

I*1ðxÞ � e4 < I1ðt; xÞ< I*1ðxÞ þ e4; 0< I2ðt; xÞ< e4; S*v ðxÞ � e4 < Svðt; xÞ< S*v ðxÞ þ e4;

I*v1ðxÞ � e4 < Iv1ðt; xÞ< I*v1ðxÞ þ e4 and 0< Iv2ðt; xÞ< e4 for ðt; xÞ2ðt6;∞Þ � U;

which lead to8>>>>>>><>>>>>>>:

vI2
vt

¼ DhDI2 � g2ðxÞI2 þ c2ðxÞHuðxÞIv2; ðt; xÞ2ðt6;∞Þ � U;

vIv2
vt

� DvDIv2 þ a2ðxÞðS*v ðxÞ � e4ÞI2 � mðxÞðS*v ðxÞ þ I*v1ðxÞ þ 3e4ÞIv2; ðt; xÞ2ðt6;∞Þ � U;

vW20

vn
¼ 0; W20ðt; xÞ ¼ I2; Iv2; ðt; xÞ2ðt6;∞Þ � vU:

Denote by b4e4 ¼ ð4e4
1 ;4

e4
2 Þ the eigenfunction corresponding to ble42 . Choose CE1

v

>0 small enough such that

ðI2ðt6; xÞ; Iv2ðt6; xÞÞ � CE1
v

ð4e4
1 ;4

e4
2 Þ:

By the comparison principle, we have

ðI2; Iv2Þ � CE1
v

ð4e4
1 ;4

e4
2 Þel̂

e4
2 ðt�t6Þ for t > t6:

Clearly,

lim
t/∞

ðI2; Iv2Þ ¼ ð∞;∞Þ;

which contradicts with the boundedness of (I2, Iv2). Thus the result holds in the case where U ¼ E1v . Similarly, we can show

that the result holds in the case where U ¼ E1v .
This completes the proof. ,
With the above preparation, we are ready to show the persistence.

Theorem 5.6. Suppose that R1
0 >1, R2

0 >1, bR1
0 >1, and bR2

0 >1. Then there is a d* >0 such that, for any f02XH0,

lim inf
t/∞

Wðt; xÞ � d*; (5.13)

where W ¼ I1, I2, Sv, Iv1, Iv2. Furthermore, system (2.4) has at least one PSS in XH0.

Proof. We complete the proof in the following four steps.

Step 1. For f02XH0, show FðtÞf02XH0 for t> 0, that is, XH0 is invariant under F(t).

The proof has been given in the proof of Lemma 3.4.
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Step 2. For any f02vXH0, prove thatFðtÞf02vXH0 for t� 0 (that is, vXH0 is invariant underF(t)) andu(f0) is either {E1} or
fE1vg or fE2vg or {E0}, where u(f0) is the u-limit set of f0.

If f02vXH0, then I01 þ I0v1 ¼ 0 or I02ðxÞ þ I0v2 ¼ 0 or S0v þ I0v1 þ I0v2 ¼ 0. We distinguish four cases to finish the discussion for
this step.

Case 1: I01 þ I0v1 ¼ 0, I02 þ I0v2 ¼ 0, and S0vs0. It then follows from the equations on I1, I2, Iv1, Iv2 of (2.4) that

I1ðt; , Þ ¼ Iv1ðt; , Þ ¼ I2ðt; , Þ ¼ Iv2ðt; , Þ ¼ 0 for t � 0;

which means that FðtÞf02vXH0 for t� 0. As the equation on Sv of (2.4) satisfies (2.1), we have from (2.2) that Svðt; xÞ/MðxÞ
uniformly on U as t / ∞. This tells us that u(f0)¼ {E1}.

Case 2: I01 þ I0v1s0, I02 þ I0v2 ¼ 0, and S0vs0. It then follows from the equations on I2 and Iv2 of (2.4) that I2(t, ,)¼ Iv2(t, ,)¼ 0
for t� 0 and hence FðtÞf02vXH0 for t� 0. Note that either (i) I01s0 and I0v1 ¼ 0; or (ii) I01 ¼ 0 and I0v1s0; or(iii) I01s0 and
I0v1s0. In either case, due to the maximum principle, we have

I1ðt; xÞ>0; Iv1ðt; xÞ>0 and Svðt; xÞ>0 for ðt; xÞ2ð0;∞Þ � U:

Then by Theorem 5.3, uðf0Þ ¼ fE1vg.

Case 3: I01 þ I0v1 ¼ 0, I02 þ I0v2s0, and S0vs0. It then follows from the equations of I1 and Iv1 of (2.4) that I1(t, ,)¼ Iv1(t, ,)¼ 0
for all t� 0, which also implies that FðtÞf02vXH0 for t� 0. Similar arguments as those in case 2 yield uðf0Þ ¼ fE2vg.
Case 4: S0v þ I0v1 þ I0v2 ¼ 0. It then follows from the equations on Sv, Iv1, and Iv2 of (2.4) that Sv(t, ,)¼ Iv1(t, ,)¼ Iv2(t, ,)¼ 0 for
all t� 0 and hence FðtÞf02vXH0 for t� 0. Then the equation on I1 of (2.4) becomes

vI1
vt

¼ DhDI1 � g1ðxÞI1 with
vI1
vn

¼ 0;

which implies that I1(t, ,) / 0 uniformly on U as t /∞. Similarly, we have I2(t, ,) / 0 uniformly on U as t /∞. As a result,
u(f0)¼ {E0}.

Denote by Fv the restriction of F(t) on vXH0. Result in Step 2 implies that Fv has a global compact attractor Bv and

eBvd∪f02Bv
uðf0Þ ¼ fE0; E1; E1v ; E2vg:
Step 3. Show that eBv has an acyclic covering Q ¼ fE1g∪fE1vg∪fE2vg∪fE0g.

It is suffices to show that

fE1vgKfE1g; fE2vgKfE1g; fE0gKfE1g;

fE1vgKfE0g; fE2vgKfE0g and fE1vgKfE2vg;

i.e.,

WuðE1vÞ∩WsðE1Þ ¼ Ø; WuðE2vÞ∩WsðE1Þ ¼ Ø; WuðE0Þ∩WsðE1Þ ¼ Ø;

WuðE1vÞ∩WsðE0Þ ¼ Ø; WuðE2vÞ∩WsðE0Þ ¼ Ø and WuðE1vÞ∩WsðE2vÞ ¼ Ø;

where Wu(א) and Ws(א) are the unstable and stable manifold of ,א respectively. In what follows, we only verify

WuðE1vÞ∩WsðE1Þ ¼ Ø as the others can be dealt with similarity.
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For any f02Ws(E1), denote by (I1, I2, Sv, Iv1, Iv2) the complete orbit of f0. It follows that I01ð,Þ ¼ I0v1ð,Þ ¼ 0 and further I1(t,

,)¼ Iv1(t, ,)¼ 0 for t2 (�∞, ∞). Therefore, I1/̸ I*1ðxÞ and Iv1/̸ I*v1ðxÞ as t / �∞, a contradiction with f02WuðE1vÞ. Conse-
quently, there exists an acyclic covering Q for eBv.

Step 4. Prove that WsðE1Þ∩XH0 ¼ Ø, WsðE1v Þ∩XH0 ¼ Ø, WsðE2vÞ∩XH0 ¼ Ø, and WsðE0Þ∩XH0 ¼ Ø.

Set

Mvdff0 2 vXH0 : FðtÞf0 2 vXH0 for t > 0g:

Clearly, inMv, there are only four steady states E1, E1v , E
2
v and E0. By Lemma 5.5, they are isolated invariants of F(t) inXH0. The

result follows immediately.
With the help of [43, Theorem 1.3.1 and Remark 1.3.1], F(t) is uniformly persistent in regard to ðXH0;vXH0Þ. Further, F(t) is

point dissipative (see Theorem 3.2). According to [22, Theorem 3.7 and Remark 3.10], F(t) has a global attractor bA in XH0.

Furthermore, for f02
bA, we have

f1ð0; , Þ>0; f2ð0; , Þ>0; f4ð0; , Þ>0 and f5ð0; , Þ>0:

By a similar argument as that in (Shi & Zhao, 2021), we define a continuous function mð,Þ : XH0/Rþ by:

mðf0Þdmin
�
min
x2U

f1ð0; xÞ; min
x2U

f2ð0; xÞ; min
x2U

f4ð0; xÞ; min
x2U

f5ð0; xÞ
�

for f02XH0:

Then m(,) is a generalized distance function for F(t) (Smith & Zhao, 2001). Therefore, with the help of Lemma 3.4 and [13,
Theorem 4.1], (5.13) holds. Moreover, system (2.4) has at least one PSS in XH0 due to [22, Theorem 4.7]. ,
5.3. The limiting problem

This subsection analyzes the limiting system associated with system (2.4). Note that Mðt; ,Þ/MðxÞ as t / ∞ if S0v þ I0v1þ
I0v2s0 (see (2.2)). Inspired by (Magal et al., 2018) and (Zhao, 2012), we consider the following limiting system:8>>>>>>>>>>>><>>>>>>>>>>>>:

vI1
vt

¼ DhDI1 � g1ðxÞI1 þ c1ðxÞHuðxÞIv1;
vI2
vt

¼ DhDI2 � g2ðxÞI2 þ c2ðxÞHuðxÞIv2;
vIv1
vt

¼ DvDIv1 þ a1ðxÞQðt; xÞI1 � mðxÞMðxÞIv1;
vIv2
vt

¼ DvDIv2 þ a2ðxÞQðt; xÞI2 � mðxÞMðxÞIv2

(5.14)

for (t, x)2 (0, ∞)�U, associated with8>><>>:
vW21

vn
¼ 0; W21 ¼ I1; I2; Iv1; Iv2; ðt; xÞ2ð0;∞Þ � vU;

ðI1ð0; xÞ; I2ð0; xÞ; Iv1ð0; xÞ; Iv2ð0; xÞÞ ¼ ef ¼ ðI01; I02; I0v1; I0v2Þ; x2U;

(5.15)

where Qðt;xÞ ¼ ðMðxÞ � Iv1 � Iv2Þþ ¼ maxfMðxÞ � Iv1 � Iv2;0g. The steady states of (5.14)-(5.15) satisfies
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8>>>>>>>>>><>>>>>>>>>>:

�DhDI1ðxÞ ¼ �g1ðxÞI1ðxÞ þ c1ðxÞHuðxÞIv1ðxÞ; x2U;
�DhDI2ðxÞ ¼ �g2ðxÞI2ðxÞ þ c2ðxÞHuðxÞIv2ðxÞ;

x2U;
�DvDIv1ðxÞ ¼ a1ðxÞeQðxÞI1ðxÞ � mðxÞMðxÞIv1ðxÞ;

x2U;
�DvDIv2ðxÞ ¼ a2ðxÞeQðxÞI2ðxÞ � mðxÞMðxÞIv2ðxÞ;

x2U;

vW22ðxÞ
vn

¼ 0; W22ðxÞ ¼ I1ðxÞ; I2ðxÞ; Iv1ðxÞ; Iv2ðxÞ; x2vU;

(5.16)

where eQðxÞ ¼ ðMðxÞ � Iv1ðxÞ � Iv2ðxÞÞþ ¼ maxfMðxÞ � Iv1ðxÞ � Iv2ðxÞ;0g. We define

Hdfef2CðU;R4
þÞ : I01ðxÞþ I0v1ðxÞs0; I02ðxÞþ I0v2ðxÞs0g: (5.17)

In what follows, we prove that the PSS of (5.14) is globally attractive in H whenever it exists. Before going into details, we
utilize the theory developed by (Amann, 1976) and (Zhao, 2017) to confirm that the PSS of (5.14) is unique if it exists.

Lemma 5.7. If ŮðxÞ ¼ ð ̊I1ðxÞ; ̊I2ðxÞ; ̊Iv1ðxÞ; ̊Iv2ðxÞÞ is a nontrivial nonnegative steady state of (5.14)-(5.15) with ̊IiðxÞþ ̊IviðxÞs 0;
i ¼ 1;2, then

(i) ̊I1ðxÞ; ̊I2ðxÞ; ̊Iv1ðxÞ; ̊Iv2ðxÞ>0 for all x2U;
(ii) ̊Iv1ðx0Þ þ ̊Iv2ðx0Þ<Mðx0Þ for some x02U.

Proof. We first prove (i). From the equations on I1 and I2 of (5.16), one has

ðgiðxÞ�DhDÞ ̊IiðxÞ ¼ ciðxÞHuðxÞ ̊IviðxÞ for i ¼ 1;2:
Since ŮðxÞ is nontrivial and ̊IiðxÞþ ̊IviðxÞs0, we know that ̊IiðxÞs0 and ̊IviðxÞs0 for i¼ 1, 2. An application of the maximum
principle gives

̊I1ðxÞ; ̊I2ðxÞ; ̊Iv1ðxÞ; ̊Iv2ðxÞ>0 for x2U:
We next prove (ii). If ̊Iv1ðxÞ þ ̊Iv2ðxÞ � MðxÞ for all x2U, then from the equations on Iv1 and Iv2 of (5.16) we obtain that

�DvD ̊IviðxÞ ¼ aiðxÞeQðxÞ ̊IiðxÞ � mðxÞMðxÞ ̊IviðxÞ ¼ �mðxÞMðxÞ ̊IviðxÞ

for x2U, i¼ 1, 2. This implies that ̊IviðxÞ ¼ 0, i¼ 1, 2, which is a contradiction. ,

Lemma 5.7 tells us that every nontrivial nonnegative steady state ŮðxÞ is strictly positive if it exists and ̊IiðxÞþ ̊IviðxÞs 0;
i ¼ 1;2. With this in mind, for any C1 >0, we define

S ¼
�
ð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT2CðU;R2

þÞ :
���� ̊Iv1ðxÞ þ ̊Iv2ðxÞk∞ � C1

and ̊Iv1ðx0Þ þ ̊Iv2ðx0Þ<Mðx0Þ for some x02U
o
:

(5.18)

Further, for C2 >0 and C3 >0, we define bF : S3CðUÞ/CðUÞ by

bF ðð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT Þ

¼
0@ ðC2 � DvDÞ�1½a1ðxÞeQðxÞðg1ðxÞ � DhDÞ�1c1ðxÞHuðxÞ ̊Iv1ðxÞ þ ðC2 � mðxÞMðxÞÞ ̊Iv1ðxÞ�

ðC3 � DvDÞ�1½a2ðxÞeQðxÞðg2ðxÞ � DhDÞ�1c2ðxÞHuðxÞ ̊Iv2ðxÞ þ ðC3 � mðxÞMðxÞÞ ̊Iv2ðxÞ�

1A
for ð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT2S.

Lemma 5.8. Suppose that ̊IiðxÞþ ̊IviðxÞs0, i¼ 1, 2. Let ŮðxÞ be a PSS of (5.16). Then there is C*1 >0 such that for all C1 > C*1, C2 >0,

and C3 >0, ð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT is a nontrivial fixed point (NFP) of bF .
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Proof. The equations on ̊I1 and ̊I2 of (5.16) give

̊I1ðxÞ ¼ ðg1ðxÞ � DhDÞ�1c1ðxÞHuðxÞ ̊Iv1ðxÞ
and
̊I2ðxÞ ¼ ðg2ðxÞ � DhDÞ�1c2ðxÞHuðxÞ ̊Iv2ðxÞ;

respectively. Combining them with the equations on ̊Iv1 and ̊Iv2 of (5.16) gives
 
�DvD ̊Iv1ðxÞ
�DvD ̊Iv2ðxÞ

!
¼
 
a1ðxÞeQðxÞðg1ðxÞ � DhDÞ�1c1ðxÞHuðxÞ ̊Iv1ðxÞ � mðxÞMðxÞ ̊Iv1ðxÞ
a2ðxÞeQðxÞðg2ðxÞ � DhDÞ�1c2ðxÞHuðxÞ ̊Iv2ðxÞ � mðxÞMðxÞ ̊Iv2ðxÞ

!
:

By Lemma 5.7, ð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT is a NFP of bF if C1 is large. ,
Lemma 5.9. For fixed C1 >0, there exists C*2 >0 such that bF is monotone for all C2, C3 > C*2, that is, for ð ̊I
1
v1ðxÞ; ̊I

1
v2ðxÞÞ

T
,

ð ̊I
2
v1ðxÞ; ̊I

2
v2ðxÞÞ

T
2S with ð ̊I

1
v1ðxÞ; ̊I

1
v2ðxÞÞ

T
� ð ̊I

2
v1ðxÞ; ̊I

2
v2ðxÞÞ

T
, we have

bF ðð ̊I
1
v1ðxÞ; ̊I

1
v2ðxÞÞ

T
Þ � bF ðð ̊I

2
v1ðxÞ; ̊I

2
v2ðxÞÞ

T
Þ:
Proof. Denote

S1 ¼ fðeh1; eh2ÞT 2CðU;R2
þÞ : 0� eh1; eh2 �MðxÞ� ̊Iv1ðxÞ� ̊Iv2ðxÞg:

It suffices to show bF ðð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT Þ � bF ðð ̊Iv1ðxÞ þ eh1; ̊Iv2ðxÞ þ eh2ÞT Þ for any ð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT2S and ðeh1; eh2ÞT2S1. Define

½ bF �ðð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT Þ ¼ ð½ bF �1; ½ bF �2ÞT

¼
0@a1ðxÞeQðxÞðg1ðxÞ � DhDÞ�1c1ðxÞHuðxÞ ̊Iv1ðxÞ þ ðC2 � mðxÞMðxÞÞ ̊Iv1ðxÞ

a2ðxÞeQðxÞðg2ðxÞ � DhDÞ�1c2ðxÞHuðxÞ ̊Iv2ðxÞ þ ðC3 � mðxÞMðxÞÞ ̊Iv2ðxÞ

1A:

A direct calculation gives

½ bF �ðð ̊Iv1ðxÞ þ eh1; ̊Iv2ðxÞ þ eh2ÞT Þ � ½ bF �ðð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT Þ�
0B@a1ðxÞðeQeh1

ðxÞ � eQðxÞÞðg1ðxÞ � DhDÞ�1c1ðxÞHuðxÞ ̊Iv1ðxÞ þ ðC2 � mðxÞMðxÞÞeh1
a2ðxÞðeQeh2

ðxÞ � eQðxÞÞðg2ðxÞ � DhDÞ�1c2ðxÞHuðxÞ ̊Iv2ðxÞ þ ðC3 � mðxÞMðxÞÞeh2
1CA

� 0@eh1½�a1ðxÞðg1ðxÞ � DhDÞ�1c1ðxÞHuðxÞ ̊Iv1ðxÞ þ C2 � mðxÞMðxÞ�

eh2½�a2ðxÞðg2ðxÞ � DhDÞ�1c2ðxÞHuðxÞ ̊Iv2ðxÞ þ C3 � mðxÞMðxÞ�

1A;

where eQeh1
ðxÞ ¼ ðMðxÞ � ̊Iv1ðxÞ � ̊Iv2ðxÞ � eh1Þþ and eQeh2

ðxÞ ¼ ðMðxÞ � ̊Iv1ðxÞ � ̊Iv2ðxÞ � eh2Þþ. Here we have used the inequalities

jeQeh1
ðxÞ � eQðxÞj � eh1 and jeQeh2

ðxÞ � eQðxÞj � eh2:
With the help of the elliptic estimate, we note that the following set( 

ðg1ðxÞ � DhDÞ�1c1ðxÞHuðxÞ ̊Iv1ðxÞ
ðg2ðxÞ � DhDÞ�1c2ðxÞHuðxÞ ̊Iv2ðxÞ

!
; ð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT2S

)

is bounded, which implies that

½ bF �ðð ̊Iv1ðxÞ þ eh1; ̊Iv2ðxÞ þ eh2ÞT Þ � ½ bF �ðð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT Þ � 0
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if C2 and C3 are large. Hence

bF ðð ̊Iv1ðxÞ þ eh1; ̊Iv2ðxÞ þ eh2ÞT Þ � bF ðð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT Þ � 0;

i.e., bF is monotone if C2 and C3 are large. ,
In the coming discussion, for f, 42CðU;RÞ, we say f≪ 4 if f(x)< 4(x) for x2U.

Lemma 5.10. For any t2 (0, 1) and ð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT2S with ð ̊Iv1ðxÞ; ̊Iv2ðxÞÞT[0, we have

t bF ðð ̊I
1
v1ðxÞ; ̊I

1
v2ðxÞÞ

T
Þ≪ bF ððt ̊I

1
v1ðxÞ; t ̊I

1
v2ðxÞÞ

T
Þ.

Proof. From the definition of S, we know that ̊Iv1ðx0Þ þ ̊Iv2ðx0Þ<Mðx0Þ for some x02U. Then

ðMðx0Þ � ̊Iv1ðx0Þ � ̊Iv2ðx0ÞÞþ < ðMðx0Þ � t ̊Iv1ðx0Þ � t ̊Iv2ðx0ÞÞþ

and

ðMðxÞ � ̊Iv1ðxÞ � ̊Iv2ðxÞÞþ � ðMðxÞ � t ̊Iv1ðxÞ � t ̊Iv2ðxÞÞþ

for x2U. Hence

t½ bF �ðð ̊I
1
v1ðx0Þ; ̊I

1
v2ðx0ÞÞ

T
Þ< ½ bF �ððt ̊I

1
v1ðx0Þ; t ̊I

1
v2ðx0ÞÞ

T
Þ and t½ bF �ðð ̊I

1
v1ðxÞ; ̊I

1
v2ðxÞÞ

T
Þ � ½ bF �ððt ̊I

1
v1ðxÞ; t ̊I

1
v2ðxÞÞ

T
Þ:

Recall that

bF ¼ ððC2 � DvDÞ�1½ bF �1; ðC3 � DvDÞ�1½ bF �2ÞT :

By the strong positivity of ðC2 � DvDÞ�1 and ðC3 � DvDÞ�1, the assertion follows. ,

Lemma 5.11. The PSS of (5.14), if exists, is unique.

Proof. If ðI11ðxÞ; I12ðxÞ; I1v1ðxÞ; I1v2ðxÞÞ and ðI21ðxÞ; I22ðxÞ; I2v1ðxÞ; I2v2ðxÞÞ are two distinct PSSs. Then ðI1v1ðxÞ; I1v2ðxÞÞ sðI2v1ðxÞ; I2v2ðxÞÞ by
the first and second equations of (5.16). Assume that ðI1v1ðxÞ; I1v2ðxÞÞ> ðI2v1ðxÞ; I2v2ðxÞÞ and define

t ¼ maxfet�0 : etðI1v1ðxÞ; I1v2ðxÞÞT �ðI2v1ðxÞ; I2v2ðxÞÞ
Tg:

It follows that t2 (0, 1),

tðI1v1ðxÞ; I1v2ðxÞÞ
T � ðI2v1ðxÞ; I2v2ðxÞÞ

T

and

tðI1v1ðx0Þ; I1v2ðx0ÞÞ
T ¼ ðI2v1ðx0Þ; I2v2ðx0ÞÞ

T

for some x02U. We can choose C1, C2 and C3 such that ðI1v1ðxÞ; I1v2ðxÞÞ
T
and ðI2v1ðxÞ; I2v2ðxÞÞ

T
are NFPs of bF , i.e.

bF ððI1v1ðxÞ; I1v2ðxÞÞ
T Þ ¼ ðI1v1ðxÞ; I1v2ðxÞÞ

T

and

bF ððI2v1ðxÞ; I2v2ðxÞÞ
T Þ ¼ ðI2v1ðxÞ; I2v2ðxÞÞ

T
:

On the other hand, by Lemma 5.9 and Lemma 5.10, we have
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tðI1v1ðxÞ; I1v2ðxÞÞ
T

¼ t bF ððI1v1ðxÞ; I1v2ðxÞÞ
T Þ

≪≪bF ðtðI1v1ðxÞ; I1v2ðxÞÞ
T Þ

≪ bF ððI2v1ðxÞ; I2v2ðxÞÞ
T Þ ¼ ðI2v1ðxÞ; I2v2ðxÞÞ

T
;

that is, tðI1v1ðxÞ; I1v2ðxÞÞ
T
≪ðI2v1ðxÞ; I2v2ðxÞÞ

T
, which contradicts with

tðI1v1ðx0Þ; I1v2ðx0ÞÞ
T ¼ ðI2v1ðx0Þ; I2v2ðx0ÞÞ

T
:

This completes the proof. ,

Denote by eJðtÞ : CðU;R4Þ/CðU;R4Þ the semiflow generated by (5.14). Recall that system (5.14) is cooperative. By the

standard theory developed in (Smith, 1995), we know that eJðtÞ is monotone.

Lemma 5.12. Let H be defined by (5.17). For any ef2H, the solution of (5.14) satisfies

I1 >0; I2 >0; Iv1 >0 and Iv2 >0 for ðt; xÞ2ð0;∞Þ � U:
Proof. Since eJðtÞ is monotone, by the comparison principle, we directly have

I1 � 0; I2 � 0; Iv1 � 0 and Iv2 � 0 for ðt; xÞ2½0;∞Þ � U:

Under the condition ef2H, that is, I01ðxÞ þ I0v1ðxÞs0 and I02ðxÞþ I0v2ðxÞs0, we distinguish the following four cases to finish the
proof.

Case 1. I0v1ðxÞs0 and I0v2ðxÞs0.

Notice that8>>>>>>><>>>>>>>:

vIv1
vt

� DvDIv1 � mðxÞMðxÞIv1; ðt; xÞ2ð0;∞Þ � U;

vIv2
vt

� DvDIv2 � mðxÞMðxÞIv2; ðt; xÞ2ð0;∞Þ � U;

vW22

vn
¼ 0; W22 ¼ Iv1; Iv2; ðt; xÞ2ð0;∞Þ � vU:

(5.19)

By the comparison principle,
Iv1 >0 and Iv2 >0 for ðt; xÞ2ð0;∞Þ � U:

Then, by the first two equations of (5.14), together with the first two inequalities of (3.4) and the fact that H (x) is nontrivial,
u

we have

I1 >0 and I2 >0 for ðt; xÞ2ð0;∞Þ � U:
Case 2. I0v1ðxÞs0 and I0v2ðxÞ ¼ 0.

In this case, we have I02ðxÞs0. By the third equation of (5.14), we have the first inequality of (5.19). Again from the
comparison principle, we get

Iv1ðt; xÞ>0 for ðt; xÞ2ð0;∞Þ � U:

Then, similarly as in case 1, we have
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I1ðt; xÞ>0 and I2ðt; xÞ>0 for ðt; xÞ2ð0;∞Þ � U:

Due to (5.18) and the continuity of Iv2(t, x) and Iv2(0, x)¼ 0, we obtainQ(t, x)> 0 for ðt; xÞ2ð0; t7� � U for some t7> 0. Then by
the comparison principle and

vIv2
vt

>DvDIv2 � mðxÞMðxÞIv2; ðt; xÞ2ð0; t7� � U; (5.20)

we get Iv2(t, x)> 0 for ðt;xÞ2ð0; t7� � U. Finally, by the second inequality of (5.19), we have Iv2(t, x)> 0 for ðt;xÞ2ð0;∞Þ� U.

Case 3. I0v1ðxÞ ¼ 0 and I0v2ðxÞs0.

In this case, we have I01ðxÞs0. Similar to case 2, we have

I1ðt; xÞ>0; I2ðt; xÞ>0; Iv1ðt; xÞ>0 and Iv2ðt; xÞ>0 for ðt; xÞ2ð0;∞Þ � U:
Case 4. I0v1ðxÞþ I0v2ðxÞ ¼ 0.

In this case, I01ðxÞs0 and I02ðxÞs0. By the first two equations of (5.14), together with the first two inequalities of (3.4) and
the fact that Hu(x) is nontrivial, we have

I1ðt; xÞ>0 and I2ðt; xÞ>0 for ð0; xÞ2ðt;∞Þ � U:
By the continuity of Iv1(t, x), Iv2(t, x), and Iv1(0, x)¼ Iv2(0, x)¼ 0 for x2U, we obtain Q(t, x)> 0 for ðt; xÞ2ð0; t8� � U for some
t8> 0. Then by

vIv1
vt

>DvDIv1 � mðxÞMðxÞIv2; ðt; xÞ2ð0; t8� � U; (5.21)
(5.20), and the comparison principle, we have Iv1(t, x) > 0, Iv2(t, x) > 0 for ðt;xÞ2ð0; t8� � U. Finally, by (5.19), we have

Iv1ðt; xÞ>0 and Iv2ðt; xÞ>0 for ðt; xÞ2ð0;∞Þ � U:
In conclusion, we have completed the proof. ,

Lemma 5.13. Let H be defined by (5.17). For any ef2H, the solution of (5.14) satisfies

0 � I1ðt; xÞ; I2ðt; xÞ; Iv1ðt; xÞ; Iv2ðt; xÞ � B for ðt; xÞ2ð0;∞Þ � U;

where B is large enough.

Proof. LetB1 ¼maxf
���MðxÞkY þ 1;

���I0v1ðxÞkY þ 1;
���I0v2ðxÞkY þ 1g. The third and fourth equations of (5.14) together with the

comparison principle give

Iv1ðt; xÞ � B1 and Iv2ðt; xÞ � B1 for ðt; xÞ2ð0;∞Þ � U:

Then by the first two equations of (5.14), for i¼ 1, 2, we have8>><>>:
vIi
vt

� DhDIi � giðxÞIi þ ciðxÞHuðxÞB1; ðt; xÞ2ð0;∞Þ � U;

vIi
vn

¼ 0; ðt; xÞ2ð0;∞Þ � vU:

So Ii(t, x) is a lower solution of
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8>>>>>><>>>>>>:

vy

vt
¼ DhDy� giðxÞyþ ciðxÞHuðxÞB1; ðt; xÞ2ð0;∞Þ � U;

vy

vn
¼ 0; ðt; xÞ2ð0;∞Þ � vU;

2ð0; xÞ ¼ I0i ðxÞ; x2U:

Let B2 ¼ maxfðkciðxÞkY þ 1ÞðkHuðxÞkY þ 1ÞB1 =gi;
���I0i ðxÞkY þ 1g, where gi ¼ minfgiðxÞ : x2Ug. Then we have 0 � yðt; xÞ �

B2 for ðt;xÞ2ð0;∞Þ�U. Again from the comparison principle, 0 � Ii � y � B2. Consequently, we have got the desired result by
letting B ¼ maxfB1;B2g. ,
Lemma 5.14. Assume that ŮðxÞ ¼ ð ̊I1ðxÞ; ̊I2ðxÞ; ̊Iv1ðxÞ; ̊Iv2ðxÞÞ is a PSS of (5.14). Then ŮðxÞ is globally asymptomatically stable.

Proof. With the help of [43, Lemma 2.2.1], in the following, we show that for each ef2H,

lim
t/∞

Iiðt; , Þ ¼ ̊Iið,Þ and lim
t/∞

Iviðt; , Þ ¼ ̊Ivið,Þ; i ¼ 1;2:

By Lemma 5.12, we have I1(t, x)> 0 I2> 0(t, x), Iv1(t, x)> 0, and Iv2(t, x)> 0 for ðt;xÞ2ð0;∞Þ� U, which allow us to assume that

I01ðxÞ>0, I02ðxÞ>0, I0v1ðxÞ>0, and I0v2ðxÞ>0 for x2U. Choose e6 small enough and let

U ¼ ðI1; I2; Iv1; Iv2Þ ¼ ðe6 ̊I1ðxÞ; e6
̊I2ðxÞ; e6

̊Iv1ðxÞ; e6
̊Iv2ðxÞÞ

which satisfies8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�DhDI1ðxÞ ¼ �g1ðxÞI1ðxÞ þ c1ðxÞHuðxÞIv1ðxÞ; x2U;
�DhDI2ðxÞ ¼ �g2ðxÞI2ðxÞ þ c2ðxÞHuðxÞIv2ðxÞ;
x2U;
�DvDIv1ðxÞ � a1ðxÞðMðxÞ � Iv1ðxÞ � Iv2ðxÞÞþI1ðxÞ � mðxÞMðxÞIv1ðxÞ;
x2U;
�DvDIv2ðxÞ � a2ðxÞðMðxÞ � Iv1ðxÞ � Iv2ðxÞÞþI2ðxÞ � mðxÞMðxÞIv2ðxÞ;

x2U;

vW23ðxÞ
vn

¼ 0; W23ðxÞ ¼ I1ðxÞ; I2ðxÞ; Iv1ðxÞ; Iv2ðxÞ; x2vU;

I1ðxÞ � I01; I2ðxÞ � I02; Iv1ðxÞ � I0v1; Iv2ðxÞ � I0v2; x2U:

(5.22)

Recall that eFðtÞUðt; xÞ is monotone increasing in t and converges to a PSS of (5.14) (see [27, Corollary 7.3.6]). As ŮðxÞ is the
unique PSS of (5.14), it follows that

eJðtÞUðxÞ/ŮðxÞ as t/∞:

Similarly, for sufficiently large number G, we define

U ¼ ðI1; I2; Iv1; Iv2Þ ¼ ðG ̊I1ðxÞ; G ̊I2ðxÞ; G ̊Iv1ðxÞ; G ̊Iv2ðxÞÞ

and then eJðtÞUðt; xÞ/ŮðxÞ as t / ∞. By the definitions of U and U, we get

Uðt; xÞ � ef � Uðt; xÞ:

As eJðtÞ is monotone, we directly have

eJðtÞUðt; xÞ � eJðtÞef � eJðtÞUðt; xÞ; t � 0:

Clearly, eJðtÞef/ŮðxÞ as t/∞. This completes the proof. ,
5.4. Global dynamics of EE
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As stated in Theorem 5.6, if R1
0 >1, R2

0 >1, bR1
0 >1, and bR2

0 >1, then system (2.4) has at least a PSS, denoted by EE. From

(2.2), we know that S̊v þ ̊Iv1 þ ̊Iv2 ¼ M. Hence Ů is the unique PPS of (5.14), which in turn implies that EE is the unique PSS of
(2.4).

In what follows, we study the global attractivity of EE. The method used here is the theory of asymptotically autonomous
semiflows developed in [30, Theorem 4.1].

Theorem 5.15. Suppose thatR1
0 >1,R2

0 >1, bR1
0 >1, and bR2

0 >1. Then the EE of (2.4) is globally attractive, that is, for any ðI01;I02;S0v ;
I0v1; I

0
v2Þ2XH0, the solution of (2.4) satisfies

lim
t/∞

kuðt; , Þ� ð ̊I1;
̊I2; S̊v; ̊Iv1;

̊Iv2ÞkX ¼0

uniformly on U, where u(t, x) ¼ (I1(t, x), I2(t, x), Sv(t, x), Iv1(t, x), Iv2(t, x)) for (t, x)2 (0, ∞)�U.

Proof. We only need to pay attention to the infection compartments of (2.4), which satisfy8>>>>>>>>>>>><>>>>>>>>>>>>:

vI1
vt

¼ DhDI1 � g1ðxÞI1 þ c1ðxÞHuðxÞIv1;
vI2
vt

¼ DhDI2 � g2ðxÞI2 þ c2ðxÞHuðxÞIv2;
vIv1
vt

¼ DvDIv1 þ a1ðxÞQðt; xÞI1 þ g1ðt; xÞ � mðxÞMðxÞIv1;
vIv2
vt

¼ DvDIv2 þ a2ðxÞQðt; xÞI2 þ g2ðt; xÞ � mðxÞMðxÞIv2

(5.23)

for (t, x)2 (0, ∞)�U, associated with8><>:
vW24

vn
¼ 0; W24 ¼ I1; I2; Iv1; Iv2; ðt; xÞ2ð0;∞Þ � vU

ðI1ð0; xÞ; I2ð0; xÞ; Iv1ð0; xÞ; Iv2ð0; xÞÞ ¼ ðI01ðxÞ; I02ðxÞ; I0v1ðxÞ; I0v2ðxÞÞ; x2U;

(5.24)

where

giðt; xÞ ¼ aiðxÞðSvðt; xÞ�Qðt; xÞÞIiðt; xÞ � mðxÞðM�MðxÞÞIviðt; xÞ; i ¼ 1;2:

It follows from

jSvðt; xÞ �Qðt; xÞj � jMðxÞ �MðxÞj

that giðt; xÞ/0 uniformly on U as t / ∞, i¼ 1, 2. According to the theory developed in [24, Proposition 1.1], system (5.23) is
asymptomatically autonomous with the limiting system (5.14). From Theorem 5.6, the u-limit set of (5.23) is contained in H

defined by (5.17). Further from Lemma 5.14 and the definition ofH, we know thatH is the stable set of ŮðxÞ. An application of
the result of asymptomatically autonomous semiflows in [30, Theorem 4.1] gives that

ðI1ðt; , Þ; I2ðt; , Þ; Iv1ðt; , Þ; Iv2ðt; , ÞÞ/Ů as t/∞:

Further, from Svðt; ,Þ þ Iv1ðt; ,Þ þ Iv2ðt; ,Þ/M and S̊v þ ̊Iv1 þ ̊Iv2 ¼ M, we have Svðt; ,Þ/S̊v as t / ∞. This completes the proof.
,

6. Conclusion

This paper concentrated on the threshold dynamics of a diffusive malaria model with the sensitive and resistant strains.
Taking into account the heterogeneous environment, the vector population growing with a logistic term and the susceptible
hosts at space x remaining at Hu(x), we have formulated and analyzed the model to explore the competition and coexistence
phenomena between the two strains.

Mathematically, we first investigated the well-posedness of system (2.4). According to the theory developed in (Smith,
1995), we confirmed the existence and uniqueness of classical solutions for system (2.4) on [0, Tmax) with 0< Tmax � ∞.
We then proved the ultimate boundedness of the unique global solution, which is verified by using the comparison principle
(see Theorem 3.2). Further, thanks to [27, Theorem 2.1 and Theorem 7.3.1] and [22, Theorem 2.9], the existence of a global
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attractor is ensured (see Lemma 3.3). Based on the maximum principle, we proved the strict positivity of solutions (see
Lemma 3.4).

Due to the complexity of the model (the spatial heterogeneity and two-strain structure), we first analyzed the associated

single-strain subsystems (4.1) and (4.3). Subsystem (4.1) with the sensitive strain possesses three steady states: DFSSs E10 and

E11 and PSS E1E; while subsystem (4.3) for the resistant strain possesses three steady states: DFSSs E20 and E21 and PSS E2E . The
DFSSs and the PSSs of subsystem (4.1) and (4.3) can be viewed as DFSSs and the BSSs of system (2.4), respectively. That is,

model (2.4) has five steady states: DFSSs E0 and E1, BSSs E1v and E2v , and the PSS EE.
By the approach developed in (Diekmann et al., 1990; Liang et al., 2017; Magal et al., 2019; Thieme, 2009; Wang & Zhao,

2012), we introduced the BRN Ri
0 of each strain (i¼ 1, 2) for system (2.4) by using the next generation operator. Then we

defined the BRNR0 of system (2.4) as the maximum ofR1
0 andR2

0 (see (4.9)). We also built up the relationship betweenRi
0 �

1 (i¼ 1, 2) and the principal eigenvalue of the associated eigenvalue problem (see Lemma 4.2). The main difficulty we
overcame is to characterize the BRN of the diffusive malaria model with multiple diffusive infection compartments. With this

in mind, we established the connection between the BRN Ri
0 (i¼ 1, 2) and the LBRN Ri

0ðxÞ (i¼ 1, 2). By appealing to the
approach developed in (Magal et al., 2019), we defined the BRN as the spectral radius of a product of LBRN and the strongly

positive compact linear operators with spectral radius one (see (4.17) and (4.19)). As described in Lemma 4.3, Ri
0 >1 when

Ri
0ðxÞ>1 for all x2U, and Ri

0 <1 when Ri
0ðxÞ<1 for all x2U. We further investigated the effect of large or small diffusion

rates on Ri
0 (i¼ 1, 2) for a single-strain system (see Lemma 4.4 and Lemma 4.5).

We also investigated the competition and exclusion phenomena between the sensitive and resistant strains. To this end,

the IRN bRi
0 of each strain (i¼ 1, 2) for system (2.4) is depicted rigorously (see (4.27) and (4.29)). In these circumstances, we

aimed to investigate the possibility of the coexistence of the sensitive and resistant strains. We also established the rela-

tionship between bRi
0 � 1 (i¼ 1, 2) and the principal eigenvalue of the corresponding eigenvalue problem (see Lemma 4.6).

With the BRNRi
0 (i¼ 1, 2) and the IRN bRi

0 (i¼ 1, 2), we carried out the stability analysis of the steady states to understand the
interaction between the sensitive and resistant strains. Using the results obtained in (Magal et al., 2018), the threshold dy-

namics about single-strainmodels are clearly characterized: Themalariawith strain i becomes extinct in the casewhereRi
0 <

1 (i¼ 1, 2), Ei1 is globally asymptotically stable (see (i) of Lemma 5.1); The malaria with strain i becomes epidemic in the case

where Ri
0 >1 (i¼ 1, 2), EiE is a unique PSS (see (ii) of Lemma 5.1). As to our model (2.4), we obtained the following results:

(i) E0 is always unstable. If R1
0 <1 and R2

0 <1, E1 is globally attractive (see Theorem 5.2), which biologically means that
malaria becomes extinct.

(ii) If Ri
0 >1>Rj

0 (i, j¼ 1, 2 with i s j), Eiv is globally attractive (see Theorem 5.3), which biologically means that malaria
with strain i becomes epidemic, while the malaria with strain j becomes extinct (see Theorem 5.3). Combined with the
linearized system and the associated eigenvalue problem, we studied the stability of Eiv (i¼ 1, 2) when another strain
invades: malaria with strain jwill not invade in the case where bRj

0 <1 and the strain j becomes established in the case
where bRj

0 >1 for j¼ 1, 2 and i s j, both of which are based on the condition that the i strain becomes endemic (see
Lemma 5.4).

(iii) E0; E1; E
1
v ; E

2
v are uniformweak repellers in the case whereR1

0 >1,R2
0 >1, bR1

0 >1 and bR2
0 >1, which are proved with by

way of contradiction (see Lemma 5.5). The existence of a PSS EE for system (2.4) is also confirmed in Theorem 5.6.

However, it is not easy to get the global dynamics of EE. With the total density of female adult mosquitoesM(t, x) satisfying
(2.1), it is natural to consider the dynamics of (2.4) dominated by the corresponding limiting system (5.14). By confirming the
existence and uniqueness of the PSS of the limiting system (5.14), we have verified the positivity of solutions to (5.14) (see

Lemma 5.7), the well-posedness of NFP by defining an explicitly function bF i (see Lemma 5.8), the monotonicity of bF i (see

Lemma 5.9), and the sublinear property for bF i (see Lemma 5.10). As a result, the PSS of the limiting system is unique if it exists
(see Lemma 5.11).

Applying the comparison principle for cooperative systems, we proved the positivity (see Lemma 5.12) and boundedness
of solutions of the limiting system (see Lemma 5.13), and then obtained the global stability of PSS with the theory of
monotone dynamical systems (see Lemma 5.14). Finally, with the help of the theory of asymptotically autonomous semiflows
(Thieme, 1992), we confirmed that system (5.23) is asymptomatically autonomous with the limiting system (5.14) and the u-

limit set of (5.23) is contained in the stable set of ŮðxÞ. We obtained the global asymptotic stability of EE (see Theorem 5.15).

With regard to biological meanings, we analyzed the relationship between the two strains in terms ofRi
0 and bRi

0, and then

we summarized four phenomena of competition of the sensitive strain and the resistant strain, i.e., ifR1
0 <1 andR2

0 <1, then

malaria epidemic vanishes; if R1
0 >1, bR1

0 <1, R2
0 >1, bR2

0 >1, then malaria with the sensitive strain becomes extinct and

malaria with the resistant strain becomes epidemic; if R1
0 >1, bR1

0 >1, R2
0 >1, bR2

0 <1, then malaria with the sensitive strain

becomes epidemic andmalariawith the resistant strain becomes extinct; ifR1
0 >1, bR1

0 >1,R2
0 >1, bR2

0 >1, then the two strains
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become epidemic and prevalent in the habitat. Recently, Wang et al. (Wang et al., 2023) considered the spreading speeds and
traveling wave solutions for a diffusive vector-borne disease model, we leave these problems for our model in a future study.
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