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5-methylcytosine RNA methylation regulators affect prognosis
and tumor microenvironment in lung adenocarcinoma
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Background: Accumulating evidence has shown that 5-methylcytosinec (m5C) RNA methylation
plays an essential role in tumorigenesis. However, the roles of m5C regulators in the prognosis, tumor
microenvironment (TME), and immunotherapy responses of lung adenocarcinoma (LUAD) have not been
fully analyzed.

Methods: Based on 14 m5C RNA regulators, we evaluated the m5C RNA modification patterns in
patients with LUAD (n=594) in The Cancer Genome Atlas (TCGA). Unsupervised clustering analysis was
performed to confirm distinct m5C modification patterns. Gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses were performed to investigate the biological functions of
differentially expressed genes (DEGs) among different m5C RINA modification patterns. An m5C signature
(m5Csig) was constructed using least absolute shrinkage and selection operator (LASSO) algorithms. The
GSE72094 cohort (n=442) from the Gene Expression Omnibus (GEO) was used to validate m5Csig. A
receiver operating characteristic (ROC) model was constructed to evaluate the sensitivity and specificity of
m5Csig. Tumor-infiltrating immune cells (TTICs) between the high- and low-risk groups were estimated
using the Cell Type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT)
algorithm.

Results: We identified 3 m5C RNA modification clusters. Overall survival (OS) differed among the
3 clusters. The m5Csig, including TRDMT1, NSUN1, NSUN4, NSUN7, and ALYREF, was constructed to
classify patients with LUAD into high- and low-risk groups. The high-risk group, with more immune cell
infiltration, had a significantly poorer OS than that the low-risk group, which was associated with better
response to immune checkpoint blockade therapy.

Conclusions: The present study revealed that m5C RINA regulators play a significant role in TME
regulation in LUAD. The m5Csig can predict the prognosis of patients with LUAD and might provide

novel strategies for tumor immunotherapy.
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Introduction

Lung cancer is one of the leading causes of cancer-related
morbidity and mortality worldwide (1). Non-small cell
lung carcinoma (NSCLC), accounting for 85% of all lung
cancers, mainly comprises lung squamous cell carcinoma
(LUSC) and lung adenocarcinoma (LUAD), with LUAD
being the most common NSCLC subtype (2). With advances
in targeted therapy and immunotherapy (3,4), the 5-year
survival rate of patients with NSCLC is still unsatisfactory,
at 4-17% (5). Patients with the same clinical characteristics
can have distinctly different prognoses because of molecular
differences. Therefore, there is an urgent need to confirm
new molecular targets to improve the clinical treatment
outcome in patients with LUAD.

Methylation of RNA, an important epigenetic
modification that includes 5-methylcytosine (m5C), N6-
methyladenosine (m6A), N1-methyladenosine (m1A),
pseudouridine (¥), and inosine (I), has been identified
to decorate protein-coding messenger RNAs (mRNAs)
and noncoding RNAs (ncRNAs) (6-10). Modifications of
RNA play crucial roles in RNA translation, transcription,
processing, stability, and splicing (11,12), and m5C is
one of the most common RNA modifications (13). The
m5C RNA methylation can be catalyzed dynamically by a
series of significant mediator proteins known as “writers”
[tRNA aspartic acid methyltransferase 1 (TRDMT1),
NOP2 nucleolar protein (NSUN1), NOP2/Sun RNA
methyltransferase 2 (NSUN2), NSUN3-7], “readers” [Aly/
REF export factor (ALYREF) and Y-box binding protein
1 (YBX1)], and “erasers” [tetmethylcytosine dioxygenase 1
(TETT), TET2-3]” (13-16). Dysregulation and disorder of
m5C are associated with the occurrence of human diseases,
including malignancies (17-19).

In recent years, immune checkpoint blockade (ICB) has
made great breakthroughs in clinical efficacy for patients
with cancer (20). However, only a small number of patients
benefit from ICB (21). Numerous studies have identified
that the tumor microenvironment (TME), which contains
immune cells (such as T and B lymphocytes, natural killer
(NK) cells, macrophages, polymorphonuclear cells, dendritic
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cells, as well as mast cells) and stromal cells, plays a crucial
role in tumor progression, immunotherapy response, and
immune escape (22,23). However, the relationship among
m5C, immunotherapy response, and the TME in LUAD
remains unclear. Therefore, a comprehensive understanding
of the effect of m5C regulators on the TME might provide
new insights into the immune regulation of the TME.

In this study, we analyzed 14 m5C RNA methylation
regulators in LUAD from The Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) databases.
We identified that m5C regulators were closely associated
with LUAD prognosis, and then constructed an m5C
signature (m5Csig) to predict the LUAD survival and
evaluate the response to ICB. Overall, the results indicated
that m5Csig could act as a biomarker to predict survival
and the response of ICB in LUAD. We present the
following article in accordance with the TRIPOD reporting
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-500/rc).

Methods
Acquisition of data

The RNA sequencing data (n=594), somatic mutation
information (n=561), copy number variation (CNV)
information (n=555), and the corresponding clinicopathological
features (n=522) of patients with LUAD were downloaded
from TCGA (https://portal.gdc.cancer.gov/). To validate
the findings in the TCGA database, the validation cohort
GSE72094 (n=442) was downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). The study was conducted in accordance with
the Declaration of Helsinki (as revised in 2013).

Protein-protein interaction analysis

The Search Tool for the Retrieval of Interacting Genes
(STRING) database (https://string-db.org/) was used to
analyze protein-protein interaction (PPI) information and
detect the interactions of 14 m5C regulators. We then
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extracted PPI pairs with a combined score of 0.4.

Unsupervised clustering for 14 m5C regulators

Unsupervised clustering analysis was used to identify
different m5C RNA modification patterns among patients
with LUAD (n=535) from TCGA. The 14 m5C regulators
included 8 writers (TRDMT1, NSUN1-7), 2 readers
(ALYREF and YBX1), and 4 erasers [TET1-3, AlkB
homolog 1, histone H2A dioxygenase (ALKBH1)]. The
consensus clustering algorithm was employed to categorize
patients with LUAD into different modification patterns (24).
The consensus ClusterPlus package (https://bioconductor.
org/packages/release/bioc/html/ConsensusClusterPlus.html)
was used to perform the above steps with a cycle computation
of 1,000 iterations to guarantee the stability and reliability
of the results (25). The overall survival (OS) rates of patients
with the 3 modification patterns were calculated using the
Kaplan-Meier method.

Identification of differentially expressed genes between
mS5C modification patterns

The empirical Bayesian approach in the limma R package
(https://bioconductor.org/packages/release/bioc/html/
limma.html) was applied to identify differentially expressed
genes (DEGs) among the different m5C modification
patterns in the standard comparison mode (26). The
significance criteria for determining DEGs was set as an
adjusted P value <0.001. To identify the potential functions
and pathways enriched in the different modification
patterns, gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were performed
based on the DEGs identified among the different
modification patterns (27).

Development of the m5C regulators-related prognostic
signature

Univariate Cox regression analysis was performed to
identify m5C RNA methylation regulators that were
associated with the OS of patients with LUAD. A least
absolute shrinkage and selection operator (LASSO) Cox
regression algorithm was carried out to construct an optimal
m5Csig to predict the prognosis of patients with LUAD.
Then, the obtained prognosis-associated genes were used to
construct the m5Cscore function to calculate the score for
each patient. The m5Cscore formula we used as follows:
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m5Cscore = Z coef; x expr, [1]

i=l

where m5Cscore is a prognostic risk score for patients
with LUAD patients, coef; represents the coefficient, and
expr; represents the expression of each prognostic gene.
According to the median m5Cscore, the patients with
LUAD were classified into high- and low-risk groups. The
Kaplan-Meier method with the log-rank test was used to
evaluate the OS differences between the high- and low-risk
groups, and a receiver operating characteristic curve (ROC)
was used to evaluate the prediction accuracy of m5Csig.
Univariate and multivariate Cox regression analyses were
used to explore prognostic values of m5Csig and clinical
characteristics.

Estimation of TME cell infiltration

According to the method used by Newman ez al. (28),
22 types of tumor-infiltrating immune cells (TTICs) between
the high- and low-risk groups were estimated using the Cell
Type Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT) algorithm.

Building and Validation of a Nomogram

Clinical factors [age, gender, stage and tumor-node-
metastasis (TINM) stage] and the m5Cscore were used to
develop a prognostic nomogram to evaluate the probability
of 1-, 2-, and 3-year OS for patients with LUAD (29). The
C-index and a calibration plot were constructed to estimate
the accuracy and consistency of the m5Cscore.

Statistical analysis

Spearman and distance correlation analyses were used to
compute the correlation coefficients among the expression
levels of m5C regulators. The Wilcoxon test was used to
analyze the difference between 2 groups, and the Kruskal-
Wallis test and one-way analysis of variance (ANOVA) were
used among 3 or more groups. LASSO Cox regression
and Kaplan-Meier analyses were performed to construct
and evaluate the m5Cscore. The area under the receiver
operating characteristic curve (AUC) was used to investigate
the time-dependent prognostic value of the m5Cscore.
Multivariate Cox regression and stratified analysis were
used to verify the independence of the m5Cscore from
other clinical factors. Statistical significance was set at
P<0.05, and all statistical P values were 2-sided. All data
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were processed using R 4.0.3 software (R Foundation for
Statistical Computing, Vienna, Austria).

Results

Landscape of genetic variation among m5C regulators in
LUAD

The workflow of our study is shown in Figure S1. A total
of 14 m5C regulators including 8 writers (TRDMTT,
NSUNI1-7), 2 readers (ALYREF and YBX1), and 4 erasers
(TET1-3, ALKBH1) were included in our study (Table SI).
First, the frequency of CNVs and somatic mutations of the
14 m5C regulators were investigated in LUAD. The CNV
alteration frequency indicated that CNV alterations were
ubiquitous among the 14 m5C regulators. As shown in
Figure 14 and Table S2, NSUN2 (13.69% amplification vs.
1.80% deletion), ALYREF (10.81% amplification vs. 1.44%
deletion), YBX1 (7.39% amplification vs. 1.80% deletion),
and NSUN#4 (6.13% amplification vs. 2.52% deletion) were
associated with amplification of the copy number, while
ALYBHI (4.86% deletion vs. 1.80% amplification) and
NSUNI (5.95% deletion vs. 4.32% amplification) were
frequently deleted. The distribution of CNV alteration of
m5C regulators on chromosomes is shown in Figure 1B. The
analysis showed that 13.19% of patients with LUAD (n=74)
experienced mutations of m5C regulators. The highest
mutation frequency was exhibited by TET1 (4%) followed
by TET2 2%) and TET3 (2%), while the genes including
the writers (NSUNI, NSUN3-5 and NSUN7), readers
(ALYREF and YBXT) had no mutations in the patients with
LUAD (Figure 1C). To explore the relationship between
CNV alteration and the expression of m5C regulators, we
analyzed the mRNA expression levels of the regulators.
The results indicated that the expression levels of NSUNT,
NSUN2, NSUN4-7, ALKBH1, TET1, TET3, and
ALYREF were significantly upregulated in LUAD (P<0.001),
whereas the expression level of TRDMT1 was significantly
downregulated in LUAD (P<0.001). No significant difference
was found in the expression levels of TET2, YBX1, and
NSUN3 (Figure 1D,1E). These analyses showed CNV might
play a crucial role in the imbalanced expression of m5C
regulators, which could affect the occurrence and progression
of LUAD. The clinicopathological features of the patients
with LUAD are summarized in Table S3.

Correlation and interaction between mS5C regulators

To determine the crosstalk among m5C regulators,
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correlation analysis was performed, which showed mainly
positive correlations among the m5C regulators; however,
several regulators exhibited a negative correlation among
the m5C regulators. For example, TET2 and NSUN3 had
the strongest positive correlation (r=0.7, P<0.001), whereas
the correlation between TET2 and NSUNS was negative
(r=-0.30, P<0.001). Weak correlations were observed
between TRDMT'1 and other regulators (YBX1, NSUNS,
ALYREF, NSUN1, NSUN2, NSUN4, and ALKBH1)
(Figure 1F and Table S4). The PPI network analysis indicated
that the 14 m5C regulators interacted with each other and
TRDMTT1 was one of the hub genes (Figure 1G,1H).

Network analyses of m5C regulators

Univariate Cox regression analysis showed the prognostic
values of 14 m5C regulators in patients with LUAD, and
each regulator had a different prognostic value (Figure 2A).
Among the m5C regulators, TRDMT1, NSUNI1, NSUN4,
NSUNY7, and ALYREF were related to the prognosis
of patients with LUAD (P<0.05). The interactions,
connections, and prognostic values of the m5C regulators
are depicted in the m5C regulatory network (Figure 2B).
The strongest positive correlation was observed between
TET2 and NSUN3 (r=0.70, P<0.001), while the strongest
negative correlation was observed between TET?2 and
NSUNS (r=-0.30, P<0.001) (Tables S5,56).

Consensus clustering of m5C regulators identified 3
clusters with different clinical outcomes

To explore whether the expression levels of m5C regulators
were associated with prognosis, consensus clustering analysis
was applied to classify patients with LUAD in TCGA cohort
into subgroups based on their consensus expression of m5C
regulators. It was found that K=3 had optimal clustering
stability to classify the patients with LUAD into 3 clusters,
namely m5C clusters 1-3 (Figure S2A-S2H). Patients in
m5C cluster 3 had a significantly poorer OS than patients in
cluster 1 and cluster 2 (Figure 2C, P=0.032). Furthermore,
to identify enriched functions and pathways among the
clusters, GO and KEGG analyses were conducted based on
the DEGs identified among the m5C clusters. The results
indicated that the DEGs were enriched in various processes,
including RNA transport, spliceosome, mitotic nuclear
division, and chromosome segregation (Figure 2D,2E).
All significant (P<0.05) GO terms and KEGG pathways
for the DEGs among 3 clusters are shown in Tables S7,S8.
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Figure 1 Landscape of the genetics and expression analysis of m5C regulators in TCGA-LUAD. (A) The CNV frequency of 14 m5C
regulators; (B) the distribution of CNV alterations of the 14 m5C regulators on 23 chromosomes; (C) the mutation frequency of the 14
m5C regulators in 561 patients with LUAD; (D) the expression levels of the 14 m5C regulators between LUAD tissues and normal tissues;
(E) heatmap of the 14 m5C regulators between LUAD tissues and normal tissues; (F) correlations among the 14 m5C regulators; (G) PPI
network of the 14 m5C regulators; (H) the interaction numbers of each regulator with the other 13 regulators. ***P<0.001. TCGA-LUAD,
The Cancer Genome Atlas lung adenocarcinoma cohort; CNV, copy number variation; PPI, protein-protein interaction.
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Figure 2 Prognostic analysis of 14 m5C regulators and patterns of m5C methylation modification in TCGA-LUAD. (A) Prognostic analyses

for 14 m5C regulators using a univariate Cox regression model. (B) The network of m5C regulators in LUAD. The lines linking regulators

represent their interactions, and the thickness of the lines represents the correlation strength between regulators. (C) Kaplan-Meier curve
analysis for patients with LUAD in clusters 1-3. (D,E) Functional annotation of DEGs among the 3 clusters using GO (D) and KEGG (E)
analysis. (F) Heatmap and clinicopathological features of the three clusters classified by the m5C regulators. TCGA-LUAD, The Cancer
Genome Atlas lung adenocarcinoma cohort; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes.

Furthermore, the associations among the 3 clusters,
clinicopathological features, and expression levels of the
14 m5C regulators in the TCGA-LUAD cohort were
evaluated. As shown in Figure 2F, the expression levels of
the m5C regulators were higher in cluster 3, especially for
ALYREF and YBX1.

Prognostic analysis of m5Csig in the TCGA-LUAD

As mentioned above, 5 m5C regulators, TRDMT,
NSUNI1, NSUN4, NSUN7, and ALYREF, were
associated with the prognosis of patients with LUAD
according to the results of univariate Cox regression
analysis (Figure 3A). The regulators TRDMT1, NSUN4,
and NSUNY7 act as protective factors, whereas NSUN1
and ALYREF are associated with risk of LUAD. The

© Annals of Translational Medicine. All rights reserved.

5 m5C regulators were incorporated to build m5Csig
according to the LASSO Cox regression algorithm. The
regression coefficients of the 5 m5C regulatory factors
are as follows: TRDMT1, -0.519056; NOP2, 0.166168;
NSUNH4, -0.376147; NSUN7, -0.246224; ALYREF,
0.163589. The patients with LUAD with complete clinical
information (n=500) were classified into a high-risk
group (n=250) and a low-risk group (n=250) according
to the median m5Cscore, which was used as the cutoff
point. As shown in Figure 3B, the expression levels of the
risk-associated m5C regulators, NSUNI and ALYREEF,
were upregulated in the high-risk group, and those of
NSUN4, TRDMT1, and NSUN7 were downregulated
in the high-risk group. With the increasing m5Cscore,
the number of patients who died increased significantly
(Figure 3C,3D). The Kaplan-Meier curve revealed that
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the patients in the high-risk group had a significantly
poorer OS than those in the low-risk group (P=6.578¢-05,
Figure 3E). Principal component analysis (PCA) analysis
showed that the high- and low-risk groups were stratified
significantly in 2 different directions, indicating that the
patients with LUAD in the high-risk group could be
distinguished from those in the low-risk group (Figure 3F).
The time-dependent ROC analysis indicated that the
AUC values of m5Csig for 1-, 2-, and 3-year OS were
0.637, 0.615, and 0.658, respectively (Figure 3G). Next,
univariate and multivariate Cox regression analyses were
used to analyze whether the m5Cscore can be used as an
independent prognostic factor. Univariate Cox regression
analysis showed that T [hazard ratio (HR) =1.579, 95%
confidence interval (CI): 1.296-1.923, P<0.001], N (HR
=1.706, 95% CI: 1.405-2.072, P<0.001), M (HR =0.037,
95% CI: 1.038-3.272, P=0.037), stage (HR =1.577, 95%
CI: 1.348-1.845, P<0.001) and m5Cscore (HR =2.800, 95%
CI: 1.700-4.623, P<0.001) were significantly correlated
with OS (Figure 3H). However, no significant correlation
was found between age and gender and OS. Multivariate
Cox regression analysis indicated that only m5Cscore (HR
=2.263, 95% CI: 1.342-3.816, P=0.002) can be used as an
independent prognostic factor for LUAD (Figure 3I). These
results indicated that the m5Cscore has the potential to
predict prognosis in LUAD patients.

Validation of m5Csig in the GEO database

We validated m5Csig in the GSE72094 cohort. In total, 397
patients with complete clinical information were stratified
into the high-risk group (n=198) and the low-risk group
(n=199) using the median m5Cscore. As the m5Cscore
increased, the number of deaths among the patients
increased (Figure 44,4B). Patients in the low-risk group had
a better OS than those in the high-risk group (P=1.58e-03,
Figure 4C). The PCA analysis suggested that patients were
appropriately classified into high- and low-risk groups
(Figure 4D). The ROC curves showed that the AUC values
for 1-, 2-, and 3-year OS were 0.651, 0.615, and 0.59
respectively (Figure 4E). Univariate and multivariate Cox
regression analyses also demonstrated that the m5Cscore
can be used as an independent prognostic factor for LUAD
patients (Figure 4F4G).

Clinical characteristics between the bigh- and low-risk groups

A stratification analysis was performed to evaluate whether
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the m5Cscore could predict survival with the same clinical
factor subgroup. Patients were stratified based on clinical
parameters, such as age (<65/>65 years), gender (female/
male), T (T1+2/T3+4), N (NO/N1-3), M (M0/M1), and
stage (I+II/ITI+IV). The results showed that the m5Cscore
could classify patients of the same stratum of age, gender,
and early stage (T'1-2, NO, MO and stage I+II) into high-
and low-risk groups (P<0.05). Patients in the high-risk
group had a poorer OS than those in the low-risk group
in each stratum (Figure S3A-S3L). We further analyzed
the differences of clinical characteristics between the high-
and low-m5Cscore groups and the difference of m5Cscore
among different clinical characteristics. No significant
distribution difference was found in terms of age (<65/
>65 years) (P=0.15, Figure S4A,54B), gender (female/male)
(P=0.37, Figure S4C,S4D), stage I and stage 1I (P=0.19),
stage I and stage III (P=0.33), and stage II and stage III
(P=0.87) (Figure S4E,S4F). However, significant clinical
differences were observed in terms of stage I and stage IV
(P=0.043), stage II and stage IV (P=0.018), stage III and
stage IV (P=0.023) (Figure S4E,S4F), ever smoking and
never smoking (P=0.046, Figure 5A,5B), EGFR mutation
group and EGFR wild group (P=4.2¢-05, Figure 5C,5D),
KRAS mutation group and KRAS wild group (P=0.0032,
Figure SE,5F), and TP53 mutation group and 7P53 wild
group (P=0.006, Figure 5G,5H).

Tumor mutation burden in the bigh- and low- risk groups
in the TCGA-LUAD database

The tumor mutation burden (T'MB) quantification analyses
indicated that the high-risk group correlated remarkably
with a higher TMB (P<0.001, Figure 5I). The m5Cscore
and TMB also exhibited a significant positive correlation
(R=0.24, P<0.001, Figure 57). There was no difference in
OS between the high- and low-TMB groups (P=0.089,
Figure SK). As shown in Figure 5L, when combined with the
mS5Cscore, there were significant survival differences among
the 4 groups. The high-TMB/low-m5Cscore group had
better survival than the high-TMB/high-m5Cscore group,
and the low-TMB/high-m5Cscore group had the least
favorable OS.

Expression of immune checkpoints and TME cell
infiltration characteristics between the bigh- and low-risk
groups in TCGA database

To determine the tumor immune infiltration characteristics,
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we evaluated the expression of 24 immune checkpoints
between the high- and low-risk groups. We found a
substantial difference in the expression of 24 immune
checkpoints, among which LAG3, PDCD1 (PD-1),
TNFRSF4, CD274 (PD-L1), CD276, TNFRSFS,
TMIGD2, TNFRSF9, TNFSF4, TNFSF9, KIR3DLI1,
TNFRSF18, and CD70 were upregulated significantly in
the high-risk group (Figure 64). We further analyzed the
proportion of immune cells between the high- and low- risk

© Annals of Translational Medicine. All rights reserved.

groups in the TCGA-LUAD database. Heterogeneity of
LUAD was indicated by the different ratios of each cell type
(Figure 6B). Furthermore, we compared the infiltration
of immune cells between the high- and low- risk groups.
As shown in Figure 6C, the high-risk group had a higher
fraction of CD8 T cells, activated CD4 memory T
cells, follicular helper T cells, resting NK cells, and MO0
macrophages compared with those in the low-risk group
(P<0.05). However, naive B cells, resting CD4 memory T
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cells, resting dendritic cells, and resting mast cells were
markedly downregulated in the high-risk group (P<0.05).

Construction of a prognostic nomogram for LUAD in the
TCGA data

To establish a clinically applicable method to evaluate
the prognosis of patients with LUAD, we constructed a
prognostic nomogram by integrating clinical factors (age,
gender, stage) with the m5Cscore (Figure S5A). Using the
bootstrap method, calibration plots showed no significant
deviation from the ideal for 1-, 3- and 5-year OS (Figure S5B).
These results indicated that the prognostic nomogram could
be used to predict the prognosis of patients with LUAD.

© Annals of Translational Medicine. All rights reserved.

Discussion

Abnormalities of m5C modifications have been shown
to influence RNA stability, gene expression, and protein
synthesis, and thus have an essential role in various cellular,
biological, and pathological processes (20-32). The RNA
m5C modification and its regulators have been shown to
be involved in the progression of various cancers, including
hepatocellular carcinoma (33), bladder cancer (34),
glioblastoma multiforme (35), breast cancer (36), and head
and neck carcinoma (37), indicating that RNA m5C might
play an important role in tumorigenesis and progression.
However, the biological functions and mechanism by which
mS5C modifications affect the TME were previously unknown.
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In this study, we found that m5C regulators were
significantly differently expressed in LUAD. By
analyzing the expression profiles of m5C regulators,
we identified 3 m5C clusters associated with different
prognoses. Moreover, GO and KEGG function analysis
indicated that DEGs among the 3 clusters were closely
correlated with biological processes and signaling
pathways, such as RNA transport, spliceosome, mitotic
nuclear division, and chromosome segregation. We also
identified 4 writers (TRDMT1, NSUN1, NSUN4, and
NSUNY7) and 1 eraser (ALYREF) were correlated with
the prognosis of LUAD using LASSO Cox regression.
Among the 5 m5C regulators, TRDMT1 mainly
mediates tRNA stability and regulates cell metabolism
of the m5C modification (30,38,39). Loss of TRDMT1I
promoted homologous recombination and increased
cellular sensitivity to DNA double-strand breaks (40).
The NSUNI protein (also known as NOP2) is a
nucleolar-specific protein that plays a crucial role in RNA
modification (41), cell cycle progression (41), chromatin
organization (42), and HIV-1 latency (43). NSUN4,
which forms a complex with MTERF4, is not essential
in mitochondrial ribosome biogenesis and mitochondrial
translation termination in conditional Nsuzn4 mouse knockout
mutants (44,45). High expression of NSUN7 has been
associated with shorter survival in low-grade gliomas (46),
and a deletion mutation of NSUN7 has been associated with
reduced sperm motility in asthenospermic men (47). The
mRNA export adaptor, ALYREF, serves as a specific m5C-
binding protein and functions in promoting mRNA export
(48,49). An ALYREF-MYCN coactivator complex might be
involved in neuroblastoma tumorigenesis (50).

An m5Csig was constructed, which divided patients
with LUAD into high- and low-risk groups. Patients in the
high-risk group had a significantly poorer OS than those
in the low-risk group. Univariate and multivariate Cox
regression analyses demonstrated that the m5Cscore was
an independent prognostic factor for patients with LUAD.
Accumulated evidence has demonstrated that patients
overexpressing PD-1/PD-L1 and with a high TMB status
are associated with an improved and durable ICB response
(51-53). The TMB quantification analyses indicated that
the high-risk group correlated markedly with a higher
TMB. The m5Cscore and TMB also exhibited a significant
positive correlation. The high-risk group displayed
significantly higher expression levels of PD-1 and PD-L1
than the low-risk group. The above results demonstrated
that LUAD with a high m5Cscore might show a better
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response to ICB therapy.

Accumulating evidence suggested that m5C is closely
related to TME. Schoeler et 4/. demonstrated that TET
enzymes control antibody production and shape the
mutational landscape in germinal centre B cells. TET?2
and TET3 guide the transition of germinal centre B
cells to antibody-secreting plasma cells (54). Yue et al.
revealed Tet2/3-deficiency in Treg cells leads to T cell
activation and results in an activated phenotype and
dysregulated expression of multiple Treg activation and
phenotypic molecules in healthy mice (55). In our study,
the CIBERSORT results showed that the high-risk group
had stronger immune cell invasion compared with that of
the low-risk group, for example, the numbers of CD8 T
cells and activated CD4 memory T cells were significantly
increased. These results suggested that the m5C regulators
might be involved in the progression and prognosis of
LUAD by modulating TIIC infiltration of the TME.
Targeting m5C-related regulators might provide a novel
way to improve the efficiency of ICB in LUAD.

However, there were several limitations to our study.
First, this was a bioinformatic study based on a public
database; therefore, further in vivo and in vitro experimental
studies are needed to explore the potential effect and
mechanism of m5C regulators in LUAD. Second, more
potential m5C regulators have yet to be discovered. Last,
the regulatory mechanism of m5C regulators in the TME
was not determined, which requires further investigation to
provide a better understanding.

Conclusions

In summary, we comprehensively analyzed the relationship
between m5C methylation regulators and TME immune
modulation. Based on the characteristics of m5C regulators,
m5Csig was constructed to predict the prognosis of patients
with LUAD, which might provide novel strategies for ICB
therapy.
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