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ABSTRACT Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
on surfaces is emerging as an important tool for identifying past exposure to individuals
shedding viral RNA. Our past work demonstrated that SARS-CoV-2 reverse transcription-
quantitative PCR (RT-qPCR) signals from surfaces can identify when infected individuals
have touched surfaces and when they have been present in hospital rooms or schools.
However, the sensitivity and specificity of surface sampling as a method for detecting
the presence of a SARS-CoV-2 positive individual, as well as guidance about where to sam-
ple, has not been established. To address these questions and to test whether our past
observations linking SARS-CoV-2 abundance to Rothia sp. in hospitals also hold in a residen-
tial setting, we performed a detailed spatial sampling of three isolation housing units,
assessing each sample for SARS-CoV-2 abundance by RT-qPCR, linking the results to 16S
rRNA gene amplicon sequences (to assess the bacterial community at each location), and
to the Cq value of the contemporaneous clinical test. Our results showed that the high-
est SARS-CoV-2 load in this setting is on touched surfaces, such as light switches and
faucets, but a detectable signal was present in many untouched surfaces (e.g., floors)
that may be more relevant in settings, such as schools where mask-wearing is enforced.
As in past studies, the bacterial community predicts which samples are positive for SARS-
CoV-2, with Rothia sp. showing a positive association.

IMPORTANCE Surface sampling for detecting SARS-CoV-2, the virus that causes coronavirus
disease 2019 (COVID-19), is increasingly being used to locate infected individuals. We tested
which indoor surfaces had high versus low viral loads by collecting 381 samples from three
residential units where infected individuals resided, and interpreted the results in terms
of whether SARS-CoV-2 was likely transmitted directly (e.g., touching a light switch) or
indirectly (e.g., by droplets or aerosols settling). We found the highest loads where the
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subject touched the surface directly, although enough virus was detected on indirectly
contacted surfaces to make such locations useful for sampling (e.g., in schools, where
students did not touch the light switches and also wore masks such that they had no op-
portunity to touch their face and then the object). We also documented links between
the bacteria present in a sample and the SARS-CoV-2 virus, consistent with earlier studies.

KEYWORDS COVID-19, RT-qPCR, Rothia, SARS-CoV-2, built-environment, environmental
monitoring, isolation, quarantine, surface sampling, swab

Environmental monitoring for severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) RNA by reverse transcription-quantitative PCR (RT-qPCR) is increasingly

gaining acceptance. In the Safer at School Early Alert (SASEA) (https://saseasystem.org/)
project, daily surface swabbing was employed as part of an effort to detect coronavirus
disease 2019 (COVID-19) cases in nine elementary schools. This study identified 89 clinically
positive COVID-19 cases, with 33% of the positive cases preceded by a room-matched sur-
face positive (1). As pandemic response measures like SASEA become more widely imple-
mented, understanding where SARS-CoV-2 signatures will most likely be found reduces the
cost and labor of surface swabbing in large facilities. Previous work focused on sampling ar-
bitrary surfaces in isolation and congregate-care facilities, homes, and hospitals, with various
detection performances obscuring which surfaces are best for monitoring COVID-19 spread
(2–6). Counterintuitively, high-touch hospital surfaces expected to accumulate viral load,
including door handles and patient bed rails, can yield lower SARS-CoV-2 detection rates,
presumably because they are cleaned more often (7, 8).

Most microbes in the built environment come from human inhabitants (9–11). Oral,
gut, and skin microbiomes of COVID-19 patients change during disease (8, 12, 13). Therefore,
SARS-CoV-2 positive built environmental samples may differ in bacterial communities from
SARS-CoV-2 negative samples. This has been documented in a hospital setting, with associa-
tions between SARS-CoV-2 status (detected/not detected) and both the overall microbial
community and Rothia sp. specifically (8).

To extend these results to a residential setting and understand how SARS-CoV-2 is
distributed in the living space of an infected individual, we performed environmental
sampling in the apartments of three people who recently tested positive for COVID-19
(Fig. S1) while quarantined in an isolation facility. On the day of swabbing, each quarantining
individual provided an anterior nares swab sample (average Cq: 29.5, 28.4, 28.6 for apartments
A, B, and C, respectively). Although apartments differed in size, floor plan, and features
(furniture, appliances, etc.), similar features at similar densities were swabbed across all
three (n = 140, 116, and 125).

Each sampled surface was swabbed twice in immediately adjacent locations: first
with a swab premoistened and stored in 95% ethanol, then by a second swab premoistened
and stored in a 0.5% SDS wt/vol solution (Text S1). Ethanol samples underwent 16S V4 rRNA
gene amplicon (16S) sequencing, and SDS samples underwent RT-qPCR for SARS-CoV-2
detection. In the 16S sequencing, sequences were demultiplexed, quality filtered, and
denoised with deblurring (14) in Qiita (15) (study ID:13957) using default parameters.
The resulting feature tables were processed using QIIME2 (16).

RESULTS

We collected 381 matched 16S and SARS-CoV-2 surface samples from the three apart-
ments, of which 178 (47%) were positive for SARS-CoV-2 (Fig. 1) (Table S1). Apartments A and
C had comparable positivity rates (53% and 61%, respectively), but apartment B was substan-
tially lower (24%). In all three apartments, the rate of detection was highest in the bedroom
(72% on average versus 47% overall). The swabbed surfaces were grouped into three catego-
ries: high-touch, low-touch, or floors. High-touch surfaces included door handles, switches,
and countertops while walls, door faces, and ceiling fans were examples of low-touch surfaces.
High-touch surfaces and floors had positivity rates 2 to 3 times higher than low-touch surfaces
across all apartments (Table S2).
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We estimated surface viral load, in viral genomic equivalents (GE’s), from Cq’s using
published regression curves (17) and mapped resulting viral loads onto 3D renderings of
each apartment. High-touch surfaces had the highest viral load across all apartments, fol-
lowed by floor samples and then high-use objects (fridge, sinks, toilets, and beds) (Fig. 1).
The maps for each apartment were studied to understand patterns of SARS-CoV-2 detec-
tion and deposition by room use. In the kitchens, objects with planar faces and handles,
such as the refrigerator, cabinets, and drawers, revealed that only the touched handles had
detectable RT-qPCR signal (Fig. 1C inset, as an example). We could not detect viral RNA on
adjacent planar faces, which were presumably breathed on but not touched.

For quality control of 16S sequencing from low-biomass samples, we sequenced
surface swabs from the apartments together with positive and negative controls using
KatharoSeq (Text S1; Fig. S2A) (18). Of 381 samples that underwent 16S sequencing,
121 fell below the KatharoSeq threshold and were excluded (Fig. S2C). Informed by
alpha rarefaction curves (Fig. S2B), the remaining samples were rarefied to 4000 features
(suboperational-taxonomic-units [sOTUs] (14)), removing an additional 36 samples from
the analysis. Therefore, 157 samples were excluded from downstream analyses (122 SARS-
CoV-2 negative matched swabs, 35 positive) (Fig. S2C).

Bacterial alpha diversity analysis revealed a significant difference in Faith’s phylogenetic
diversity (Faith’s PD) metric between SARS-CoV-2 detection status groupings at the whole

FIG 1 Distribution of SARS-CoV-2 viral load in isolation dorm apartments. (A to C) Floor plans for each apartment highlighted where SARS-CoV-2 RNA
signatures were detected. (Inset) 3D rendering of the kitchen in apartment C showing SARS-CoV-2 viral load in genomic equivalents (GEs) mapped to
features in that room.
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FIG 2 (A) Area under the precision-recall curve showing the overall prediction performance of the random forest classifiers when trained on the
features from two apartments and cross-validated on the remaining apartment. (B) Confusion matrix showing per-room type classifiers’ performances

(Continued on next page)
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data set level but demonstrated limited significant differences within apartments or room
types (Fig. S3). Forward stepwise redundancy analysis (RDA) using the unweighted UniFrac
beta diversity metric identified four nonredundant variables of significant effect size (apart-
ment, surface material, type of room, and SARS-CoV-2 detection status) which accounted for
45.4% of the variation in the data (Fig. S4B). Analyzed by apartment, only in apartment B did
virus detection lack significant effect. When subsetting the entire data set by room type,
detection status had a significant effect on variability across all rooms.

To test whether the bacterial community predicted SARS-CoV-2 status, we built a random
forest classifier using rarefied sOTU data. The overall area under the precision-recall curve
(AUPRC) was 0.78, suggesting a statistically significant association, but insufficiently strong
to predict the SARS-CoV-2 status of a single sample from the bacterial community (Fig. 2A
and B). We also applied compositionally aware, multinomial regression to our data set to
identify differentially abundant microbes between SARS-CoV-2 status groups (19). Because
this regression model implicitly accounts for variable sequencing depth by modeling the
relative fold change of each feature in centered log-ratio (CLR) coordinates (20), we used
unrarefied data as an input exclusively for this method (details in Text S1). The top 32 fea-
tures identified by the random forest classifier and the ranked fold changes in feature
abundance from the multinomial regression are shown in Fig. 2C. Agreeing with previ-
ously published findings, Rothia dentocariosa was one of the top features identified by the
classifier and was relatively positively associated with SARS-CoV-2 positive samples in the
regression (8, 12). Six sOTUs belonging to members of the genus Corynebacterium were
also highly ranked as predictive for positive samples (Fig. 2C).

Our results showed that detailed spatial mapping of SARS-CoV-2 RNA abundance
and associated bacterial signatures from built environment surfaces provided useful
insight into potential sampling locations and associations between the viral and bacterial com-
ponents of the microbiome. In the residential setting, high-touch surfaces have especially high
viral loads, although confirming this with detailed spatial maps in other settings (hospitals,
isolation hotels, and schools) may be useful for guiding sampling designs. However, while
high-touch surfaces have higher viral loads, floors had the highest rate of positivity, effec-
tively rendering both floors and high-touch surfaces as good candidates for detecting SARS-
CoV-2 indoors. We note that the sensitivity of arbitrary single surface sampling to detect the
presence of even an unmasked COVID-19 patient was low, which was evidenced in apartment
B where approximately only 1 in 4 random surface samples returned a SARS-CoV-2 detection
event, so multiple samples or samples from selected surfaces should be collected. Although
apartment B had a considerably lower rate of positivity, trends of SARS-CoV-2 detection across
indoor spaces and surface types closely mirrored those seen in the other two apartments in
this study, and largely agree with other surveys of SARS-CoV-2 RNA traces in the residential
setting (5, 6). These results reinforce the utility of surface monitoring as a robust, cost-effective
method for locating SARS-CoV-2 signals in the environment.

Our findings also corroborated SARS-CoV-2-associated changes in the microbiome
that have been previously published. Rothia dentocariosa has been identified across different
sample types in diverse settings, although the reasons for these associations remain unclear.
We also note multiple sOTUs belonging to the genus Corynebacterium predictive as of a
SARS-CoV-2 detection event, in contrast to the results of another study that found
Corynebacterium significantly decreased in the oral microbiome of individuals with COVID-
19 (11). We hypothesize that the Corynebacterium signal in this study might be evidence of
human skin contamination of indoor surfaces through contact (21, 22), leading to SARS-
CoV-2 deposition on surfaces. It has been established that the occupants of a room contrib-

FIG 2 Legend (Continued)
(AURPC) when cross-applied to the remaining room types. The diagonal represents self-validation. (C) Phylogenetic tree visualization (EMPress) where
the differentially abundant features between SARS-CoV-2 status groups identified by multinomial regression (Songbird) are plotted on the inner ring
(red: positive fold change in SARS-CoV-2 positive group; blue: negative fold change in SARS-CoV-2 positive group) and the ranked sOTUs (top 32)
identified as important by the random forest classifier are indicated on the outer ring. Leaves of the phylogenetic tree represent sOTUs relevant to the
microbiome diversity and differential abundance analyses (number of sOTUs = 1047). The taxonomic classification (p_:phylum) of the sOTUs is indicated
as colored branches in the phylogenetic tree.
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ute to the environmental microbiota, but our findings are among the first to demonstrate
that disease-associated changes in the microbiome are mirrored in the built environment.
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