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Objective:We used texture analysis and machine learning (ML) to classify small round cell
malignant tumors (SRCMTs) and Non-SRCMTs of nasal and paranasal sinus on fat-
suppressed T2 weighted imaging (Fs-T2WI).

Materials: Preoperative MRI scans of 164 patients from 1 January 2018 to 1 January
2021 diagnosed with SRCMTs and Non-SRCMTs were included in this study. A total of
271 features were extracted from each regions of interest. Datasets were randomly
divided into two sets, including a training set (∼70%) and a test set (∼30%). The Pearson
correlation coefficient (PCC) and principal component analysis (PCA) methods were
performed to reduce dimensions, and the Analysis of Variance (ANOVA), Kruskal-Wallis
(KW), and Recursive Feature Elimination (RFE) and Relief were performed for feature
selections. Classifications were performed using 10 ML classifiers. Results were evaluated
using a leave one out cross-validation analysis.

Results: We compared the AUC of all pipelines on the validation dataset with FeAture
Explorer (FAE) software. The pipeline using a PCC dimension reduction, relief feature
selection, and gaussian process (GP) classifier yielded the highest area under the curve
(AUC) using 15 features. When the “one-standard error” rule was used, FAE also produced
a simpler model with 13 features, including S(5,-5)SumAverg, S(3,0)InvDfMom, Skewness,
WavEnHL_s-3, Horzl_GlevNonU, Horzl_RLNonUni, 135dr_GlevNonU, WavEnLL_s-3,
Teta4, Teta2, S(5,5)DifVarnc, Perc.01%, and WavEnLH_s-2. The AUCs of the training/
validation/test datasets were 1.000/0.965/0.979, and the accuracies, sensitivities, and
specificities were 0.890, 0.880, and 0.920, respectively. The best algorithm was GPwhose
AUCs of the training/validation/test datasets by the two-dimensional reduction methods
and four feature selection methods were greater than approximately 0.800. Especially, the
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AUCs of different datasets were greater than approximately 0.900 using the PCC, RFE/
Relief, and GP algorithms.

Conclusions: We demonstrated the feasibility of combining artificial intelligence and the
radiomics from Fs-T2WI to differentially diagnose SRCMTs and Non-SRCMTs. This non-
invasive approach could be very promising in clinical oncology.
Keywords: Fs-T2WI, artificial intelligence, machine learning, texture analysis, radiomics, small round cell
malignant tumors
INTRODUCTION

Malignant tumors in the nasal and paranasal sinuses are rare,
comprise less than 1% of all malignancies and about 3% of head
and neck malignancies (1, 2), including small round cell
malignant tumors (SRCMTs) and non-SRCMTs. SRCMTs
form a specific group of malignancies in the nasal and
paranasal sinuses based on neuroectodermal, soft tissue, and
hematopoietic differentiation, such as seen in rhabdomyosarcoma
(RMS), malignant melanoma (MM), olfactory neuroblastoma
(ONB), neuroendocrine carcinoma (NEC), and lymphoma. In
contrast, non-SRCMTs form another common group of
malignant tumors in the nasal and paranasal sinuses based on
epithelial differentiation, including squamous cell carcinomas
(SCCs) and adenoid cystic carcinomas (ACCs) (3). The
distinction between these two groups is crucial as tumors are
variably managed with radiation, chemotherapy, conservative
medical therapy, local surgery, exenterative surgery, and
multimodal therapy, indicating that therapeutic decisions, surgical
planning, and prognoses are very different for each tumor type (4).

Conventional magnetic resonance imaging (MRI) has
limitations of its own when differentiating between SRCMTs
and Non-SRCMTs. Under the circumstances, as texture analysis
(TA) techniques, by using mathematically defined features, can
analyze pixel distributions, intensities and dependencies, it can
provide a wealth of information beyond what can be seen with
the human eye and thus can be used to characterize SRCMTs and
Non-SRCMTs, quantitatively (5). Other sequences, such as the
apparent diffusion coefficient, have been used to discriminate
benign and malignant nasal and paranasal sinus lesions or
different histopathologic types of sinonasal malignancies (6–
11). However, less attention has been given to the application
of TA for fat-suppressed T2-weighted MR images (Fs-T2WI)
collected as part of routine clinical practice.

As a branch of artificial intelligence, machine learning (ML)
includes various algorithms that can enhance diagnosis,
treatments and follow-up results in neuro-oncology medicine
by analyzing huge complex datasets (12, 13). More importantly,
not depending on user experience, ML is more objective than
other conventional analyses and has good repeatability. To our
knowledge, no studies using TA and ML for differentiating
sinonasal SRCMTs from non-SRCMTs have been reported. To
bridge this gap, this retrospective study was intended to evaluate
the potential value of the ML-based Fs-T2WI texture analysis for
distinguishing SRCMTs from non-SRCMTs. To achieve the
optimal predictive ability and clinical utility, we compared
2

two-dimensional reduction, four feature selection methods and
ten ML algorithms.
MATERIALS AND METHODS

Patients
We used the surgical pathology database from January 1, 2018, to
January 1, 2021, in our hospital. Exclusion criteria were (1)
patients who received treatments before MRI scans and (2)
inadequate image quality. All methods were performed in
accordance with the relevant guidelines and regulations, and
the informed consent requirement was waived. This
retrospective study was approved by the Institutional Ethics
Review Committee of our hospital.

Image acquisition
Patients were examined with a 3T MR scanner (MAGNETOM
Skyra, Siemens Healthcare, Erlangen, Germany) with a standard
head coil. The MRI scan protocols included: axial fat-suppressed
T2-weighted imaging (Fs-T2WI) (TR/TE= 5000/117 ms,
matrix=256 x 256, field of view=24 x 24 cm2, slice thickness=5
mm, intersection gap =1mm).

Extraction of Textural Features
MaZda software (version 4.7, The Technical University of Lodz,
Institute of Electronics, http://www.eletel.p.lodz.pl/mazda/) was
used for the analyses. We applied the limitation of dynamics to
m± 3d(m: mean grey-level value, d: standard deviation) (14) to
achieve reliable results for the MRI texture classifications.
Regions of interest (ROIs) on the Fs-T2WI images of the
largest layer were selected. Two physicians delineated ROIs
manually along the edge of the lesion and filled the lesion in
with a red marker, excluding the various necrotic and cystic
regions. In total, 271 features were extracted for each ROI. The
number of radiomics features based on feature classes were as
follows and shown in Table 1: (i) 9 histogram features based on
the number of pixel counts in the image that possessed a certain
grey-level value (15); (ii) 220 grey-level co-occurrence matrix
(GLCM) features based on the extraction of statistical
information about the distribution of pixel pairs (16); (iii) 20
grey-level run-length matrix (GLRLM) features based on
searching the image for runs that have the same grey-level
values in a pre-defined direction (17); (iv) a 5 auto-regressive
model (ARM) based on the weights associated with four
neighboring pixels and the variance of the minimized
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prediction error; (v) 12 wavelet transform (WAV) features on
texture frequency components extracted from the energies
computed within the channels (18); and (vi) 5 absolute
gradient statistics (AGS) features based on smooth or steep
variations, resulting in low or high gradient values (15).
Multiple GLRLMs were computed along the 0°, 45°, 90°, 135°,
and z-axis directions, and 1, 2, 3, and 4 pixels. Multiple GLCMs
were computed along four different angles (horizontal, vertical,
diagonal 45°, and diagonal 135°).

Feature Selections
Computer-generated random datasets were used to assign 70%
of datasets to the training set and 30% of the datasets to the
independent test set. FeAture Explorer software (FAE, V 0.3.6)
software on Python (3.7.6) (https://github.com/salan668/FAE)
was used. Firstly, the synthetic minority oversampling technique
(SMOTE) was used to balance the training dataset. This method
works by taking each minority class sample and introducing
synthetic examples along the line segments joining any/all of the
k minority class nearest neighbors. The neighboring points were
randomly chosen depending on the amount of over-sampling
required. Secondly, we normalized the dataset by Z-score
Normalization, which subtracts the mean value and divides the
standard deviation for each feature. Lastly, we used a Pearson
Correlation Coefficient (PCC) and principal component analysis
(PCA) to reduce the dimensions. PCC is used for each pair of two
features to reduce the row space dimensions of the feature matrix
(19). If the PCC was larger than 0.99, one of them was randomly
removed. PCA is an unsupervised feature reduction technique
that explains the variance-covariance structure of a set of
variables through linear combinations. Analysis of Variance
(ANOVA) and Kruskal-Wallis (KW) and Recursive Feature
Elimination (RFE) and Relief (20) were used for the feature
selection. ANOVA was a common analytic method to explore
the significant features corresponding to the labels. The KW is a
non-parametric version of ANOVA, which hypothesizes that the
population median of all groups is equal. The relief selects the
sub-data set and finds the relative features according to label
recursivity. The goal of the RFE is to select features based on a
classifier by recursively considering a smaller set of features. The
feature number range was set from 1 to 20.
Frontiers in Oncology | www.frontiersin.org 3
Classification Performances
The classification performances were tested using 10 ML
algorithms, including the support vector machine (SVM),
linear discriminant analysis (LDA); auto-encoder (AE);
random forests (RF); linear regression (LR); logistic regression
using Lasso (LRLasso); ada-boost (AB); decision tree (DT);
gaussian process (GP); and naive Bayes (NB)(Table 2).

Evaluations
The results were evaluated using leave-one-out cross-validation
(LOOCV). Using LOOCV, learning sets were created by taking
all samples but one, which was used as the validation set.
The accuracy, sensitivity, and specificity were also calculated
at a cutoff value that maximized the value of the Youden index.
The area under the receiver operator characteristics curve
(AUC) for the classification of results was calculated for each
tested condition.
RESULTS

Of the 171 consecutive patients with a pathologic diagnosis of
SRCMTs or Non-SRCMTs over a 2-year period from January
2018 until January 2021, seven were excluded for poor MRI
image quality, and 164 patients were finally selected for the
study. There were 70 patients with SRCMTs and 94 patients with
Non-SRCMTs; RMS (n=16), lymphoma(n=18), MM (n=14),
NEC (n=14), ONB (n=8), SCC (n=66), and ACC (n=28).
There were 94 males and 70 females in the entire cohort. The
mean age of the patients was 55.22 years with a range of 13 to 87
years. After removing invalid cases automatically with FAE, 162
cases were included with 68 SRCMTs and 94 Non-SRCMTs. We
assigned 70% of the datasets to the training set (114 patients with
48 SRCMTs and 66 Non-SRCMTs) and 30% of datasets to the
independent test set (48 patients with 20 SRCMTs and 28
Non-SRCMTs).

The SMOTE technique was used to automatically create 18
synthetic SRCMTs samples in the training set by operating in the
feature space. We compared the AUC of all pipelines on the
validation dataset with FAE. The pipeline using PCC dimension
reduction, Relief feature selection, and a GP classifier yielded the
TABLE 1 | Texture analysis methods and the corresponding texture features.

Method Texture feature parameters

Histogram(9) mean, variance, skewness, kurtosis, and percentiles (1%, 10%, 50%, 90% and 99%)
Grey-level CO-occurrence matrix(GLCM)(220) angular second moment(AngScMom), contrast, inversedifferent moment(IDM), entropy(Ent), correlation(Correlat), sum of

squares(SumOfSqs), sum average(SumAverg), sum variance(SumVarnc), sum entropy(SumEntrp), difference variance
(DifVarnc), difference entropy(DifEntrp) along the 0°, 45°, 90°, 135° and z‐axis directions and 1, 2, 3 and 4 pixels

Grey‐level run‐length matrix(GLRLM)(20) run length nonuniformity(RLNonUni), grey level nonuniformity(GLevNonU), long run emphasis(LngREmph), short run
emphasis(ShrtREmp), fraction of image in runs(Fraction) of four different angels (horization, vertical, digonal45, and
digonal135)

Auto‐regressive model(ARM)(5) Teta1, Teta2, Teta3, Teta4, Sigma
Wavelets transform(WAV)(12) energy computed from the low–low frequency band within the first image scale(WavEnLL_s-1), WavEnLH_s-1,

WavEnHL_s-1, WavEnHH_s-1, WavEnLL_s-2, WavEnLH_s-2, WavEnHL_s-2, WavEnHH_s-2, WavEnLL_s-3,
WavEnLH_s-3, WavEnHL_s-3, WavEnHH_s-3

Absolute gradient statistics(AGS)(5) absolute gradient mean(GrMean), variance(GrVariance), skewness(GrSkewness) kurtosis(GrKurtosis), nonzeros
(GrNonZeros)
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highest AUC using 15 features. When the “one-standard error”
rule was used, FAE also produced a simpler model with 13
features (21), whose ROC curves are shown in Figure 1. The
AUCs of the training/validation/test datasets achieved 1.000/
0.965/0.979, and the accuracy, sensitivity, and specificity were
0.89, 0.88, and 0.92 (Supplementary Materials), respectively.
Features selected by FAE were S(5,-5)SumAverg, S(3,0)
InvDfMom, Skewness, WavEnHL_s-3, Horzl_GlevNonU,
Horzl_RLNonUni, 135dr_GlevNonU, WavEnLL_s-3, Teta4,
Teta2, S(5,5)DifVarnc, Perc.01%, and WavEnLH_s-2 (the
weight=1.48, 1.29, 1.28, 1.25, 1.21, 1.19, 1.19, 1.13, 1.10, 1.02,
1.00, 0.99, and 0.98). The AUCs of the training/validation/test
datasets by the two-dimensional reduction methods and four
feature selection methods were greater than ~0.800 using GP
algorithm (Figure 2). Especially, the AUCs of different datasets
were more than about 0.900 using the PCC, RFE/Relief, and GP
algorithm (Figures 3, 4).
Frontiers in Oncology | www.frontiersin.org 4
DISCUSSION

This study investigated the potential value of the Fs-T2WI
texture analysis of maximum tumor solid components for
distinguishing SRCMTs from non-SRCMTs with ML. The key
findings were as follows: (1) The pipeline using PCC dimension
reduction, relief feature selection, and GP classifier yielded the
highest AUC. (2) The best algorithm was GP whose AUCs of the
training/validation/test datasets by the two-dimensional
reduction methods and four feature selection methods were
greater than approximately 0.800. Especially, the AUCs of
different datasets were more than about 0.900 using the PCC,
RFE/Relief, and GP algorithm. (3) TA with ML appears to be
most helpful in tumor differentiation using standard Fs-T2WI
routinely acquired with a high accuracy of 0.89.

Radiomics data contain first-, second-, and higher-order
statistics (22). First-order statistics are described as the
TABLE 2 | The parameters of the algorithms.

Algorithms Parameters

SVM C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None,
verbose=False, max_iter=- 1, decision_function_shape='ovr', break_ties=False, random_state=None

AE hidden_layer_sizes=(100), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant',
learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False,
momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08,
n_iter_no_change=10, max_fun=15000

LDA solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=0.0001
RF n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,

max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False,
n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None

LR penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs',
max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None

LRLasso alpha=1.0, *, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False,
positive=False, random_state=None, selection='cyclic'

AB base_estimator=None, *, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None
DT criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,

random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, ccp_alpha=0.0
GP kernel=None, *, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True,

random_state=None, multi_class='one_vs_rest', n_jobs=None
NB alpha=1.0,binarize=0.0,fit_prior=True,class_prior=None
A B C

FIGURE 1 | Performance of models generated using Pearson correlation coefficient (PCC) analyses, and Relief and Gaussian process (GP) algorithms. (A) Receiver
operating characteristic (ROC) curves of this model on different datasets, (B) FeAture Explorer software suggested a candidate 13-feature model according to the
“one-standard error” rule, and (C) A contribution of features in the final model.
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distribution of individual voxel values regardless of spatial
relationships and are generally histogram-based features that
refer to statistical parameters of pixel intensities within the ROI,
such as mean, variance, skewness, kurtosis, and Perc.10%.
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Second-order statistics describe texture features. Specifically,
they describe statistical interrelationships between voxels with
similar or dissimilar contrast values, such as the co-occurrence
matrix, which is calculated from the intensities of pixel pairing,
A B

FIGURE 3 | Areas under the curve (AUCs) on different datasets using the Analysis of Variance (ANOVA), Kruskal-Wallis (KW), and Recursive Feature Elimination
(RFE) and Relief using Gaussian process (GP). (A) Pearson correlation coefficient (PCC), (B) principal component analysis (PCA).
A B

DC

FIGURE 2 | Areas under the curve (AUCs) of the different datasets using Pearson correlation coefficient (PCC) and principal component analysis (PCA) methods and
Relief and Gaussian process (GP) algorithms. (A) Analysis of Variance (ANOVA), (B) Kruskal-Wallis (KW), (C) Relief, and (D) Recursive Feature Elimination (RFE).
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with the spatial relationship of pixel pairing defined. Higher-
order statistics impose filter grids on images to extract repetitive
or nonrepetitive patterns, such as wavelets, which are data on
texture frequency components extracted from the energies
computed within the channels. In 2015, Fujima et al. (23)
assessed the utility of the histogram analysis on tumor blood
flow (TBF) obtained with pseudo-continuous arterial spin
labeling to differentiate SCC and lymphoma in nasal or
sinonasal cavities, achieving an accuracy of 0.87 for the mean
TBF, the coefficient of variation, and kurtosis. In 2019, this group
(24) also applied histograms and TAs for Fs-T2WI to
differentiate SCC and lymphoma in the head and neck and
found that the relative mean signal, contrast, and homogeneity
could be useful. Another study (25) applied GLCM and WAV,
using the ANOVA, rank-sum test, and SVM classification feature
selections to diagnose osteosarcoma and achieved an accuracy of
0.82-0.96. Muramatsu et al. (26) applied GLCM and WAV using
artificial neural network, SVM, and RF algorithms to classify and
diagnose malignant and benign breast masses, achieving AUCs
of 0.83-0.86. Finally, 440 radiomics features were applied,
including histograms, GLCMs, GLRLMs, and WAVs, using 24
feature selection methods and three classification methods to
predict lung cancer histologic subtypes (27)and they found that
the Relief and NB algorithms achieved higher accuracies and the
highest AUCs compared with other studied algorithms.
Similarly, in our study, the Relief feature selection and GP
classifier yielded the highest AUCs using the histogram,
GLCM, GLRLM, and WAV. The Relief can avoid a heuristic
search and select relevant features in linear time based on the
given features and training instances regardless of the complexity
of the target concept to be learned. The GP classification is a
nonparametric method based on a Laplace approximation used
for approximating the non-Gaussian posterior by a Gaussian
method. It can easily handle a variety of problems, such as an
insufficient capacity for the classical linear method, complex data
types, and the curse of dimensions (28). Sovizi et al. reported that
Frontiers in Oncology | www.frontiersin.org 6
they achieved high sensitivity results using GP classification
model (29). Consistent with their results, the AUCs of different
datasets by GP algorithm were greater than approximately 0.900
with the RFE/Relief feature selection methods. RFE is recursively
repeated in the pruned set, removing the least important features
until the desired number of feature selections is eventually
reached. Chatterjee et al. (30) have applied TAs to differentiate
melanoma, dysplastic nevi, and basal cell carcinoma in
dermoscopic images using SVM-RFE, achieving an accuracy of
0.952. Vamvakas et al. (31) applied SVM-RFE using 3D TA to
classify low- and high-grade gliomas. With a LOOCV, they
achieved an accuracy of 0.955 and an AUC of 0.955.

Some studies reported their diverse automated or semi-
automated segmentation methods. For example, Muzzamil
et al. proposed lung CT image segmentation using intensity
thresholding (32). Husham et al. (33) and Malathi et al. (34), for
another example, analysed between active contour and Otsu
thresholding segmentation algorithms in segmenting brain
tumor MRI and pleura diseases CT, respectively. In addition,
Hussein et al. (35) proposed a new Viola–Jones model for the
segmentation of ovarian and breast ultrasound images. Artificial
neural networks and SVM have been tried for division of
nasopharyngeal carcinoma, respectively (36, 37). The accuracy
and consistency of the tumor delineation plays an important role
in differential diagnosis. However, most of the tumors in the site
of the nasal cavity and paranasal sinus adjacent to the air in Fs-
T2 maps are without edema areas. Thus, we chose manual
segmentation by experts not automated or semi-automatic
segmentation to determine the boundary.

There were some limitations. First, as the SRCMTs studied
were of various histologic types, subgroup analyses in more
details should be performed in future studies after obtaining a
larger sample size and a careful consideration of the study
groups. Second, our model used manually delineated ROIs
performed along the edge of the lesion. Segmenting precise
tumor regions is the focus of future work. In our further
A B

FIGURE 4 | Areas under the curve (AUCs) of different datasets using 10 machine learning algorithms. (A) Pearson correlation coefficient (PCC), (B) principal
component analysis (PCA). SVM, support vector machine; LDA, linear discriminant analysis; AE, auto-encoder; RF, random forests; LR, linear regression; LRLasso,
logistic regression via Lasso; AB, ada-boost; DT, decision tree; GP, Gaussian process; NB, naive Bayes.
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studies, we will propose a multiparametric MRI investigation
including ADC, T2-weighted MRI and dynamic contrast-
enhanced MRI involving early and delayed phases to generate
a robust model to differentially diagnose SRCMTs and Non-
SRCMTs by segmenting precisely three-dimensional tumor
regions in a larger sample.
CONCLUSIONS

We demonstrated the feasibility of combining artificial
intelligence and radiomics using Fs-T2WI in the differential
diagnosis of SRCMTs and Non-SRCMTs. This approach could
be a very promising non-invasive method in clinical oncology.
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