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Abstract

Science needs to understand the strength of its findings. This essay considers the evaluation of studies that
test scientific (not statistical) hypotheses. A scientific hypothesis is a putative explanation for an observation or
phenomenon; it makes (or “entails”) testable predictions that must be true if the hypothesis is true and that
lead to its rejection if they are false. The question is, “how should we judge the strength of a hypothesis that
passes a series of experimental tests?” This question is especially relevant in view of the “reproducibility cri-
sis” that is the cause of great unease. Reproducibility is said to be a dire problem because major neuro-
science conclusions supposedly rest entirely on the outcomes of single, p valued statistical tests. To
investigate this concern, I propose to (1) ask whether neuroscience typically does base major conclusions on
single tests; (2) discuss the advantages of testing multiple predictions to evaluate a hypothesis; and (3) review
ways in which multiple outcomes can be combined to assess the overall strength of a project that tests multi-
ple predictions of one hypothesis. I argue that scientific hypothesis testing in general, and combining the re-
sults of several experiments in particular, may justify placing greater confidence in multiple-testing procedures
than in other ways of conducting science.
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Significance Statement

The statistical p value is commonly used to express the significance of research findings. But a single p
value cannot meaningfully represent a study involving multiple tests of a given hypothesis. I report a survey
that confirms that a large fraction of neuroscience work published in The Journal of Neuroscience does in-
volve multiple-testing procedures. As readers, we normally evaluate the strength of a hypothesis-testing
study by “combining,” in an ill-defined intellectual way, the outcomes of multiple experiments that test it.
We assume that conclusions that are supported by the combination of multiple outcomes are likely to be
stronger and more reliable than those that rest on single outcomes. Yet there is no standard, objective pro-
cess for taking multiple outcomes into account when evaluating such studies. Here, I propose to adapt
methods normally used in meta-analysis across studies to help rationalize this process. This approach of-
fers many direct and indirect benefits for neuroscientists’ thinking habits and communication practices.

Introduction
Scientists are not always clear about the reasoning that

we use to conduct, communicate, and draw conclusions
from our work, and this can have adverse consequences.

A lack of clarity causes difficulties and wastes time in
evaluating and weighing the strength of each others’ re-
ports. I suggest that these problems have also influenced
perceptions about the “reproducibility crisis” that science
is reportedly suffering. Concern about the reliability of
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science has reached the highest levels of the NIH (Collins
and Tabak, 2014) and numerous other forums (Landis et
al., 2012; Task Force on Reproducibility, American
Society for Cell Biology, 2014). Many of the concerns
stem from portrayals of science like that offered by the
statistician, John Ioannidis, who argues that “most pub-
lished research findings are false,” especially in biomedi-
cal science (Ioannidis, 2005). He states “... that the high
rate of nonreplication (lack of confirmation) of research
discoveries is a consequence of the convenient, yet ill-
founded strategy of claiming conclusive research findings
solely on the basis of a single study assessed by formal
statistical significance, typically for a p value ,0.05”
(italics added).
He continues, “Research is not most appropriately rep-

resented and summarized by p values, but, unfortunately,
there is a widespread notion that medical research ar-
ticles should be interpreted based only on p values.”
Additional concerns are added by Katherine Button and

colleagues (Button et al., 2013), who conclude that much
experimental science, such as neuroscience, is fatally
flawed because its claims are based on statistical tests
that are “underpowered,” largely because of small experi-
mental group sizes. Statistical power is essentially the
ability of a test to identify a real effect when it exists.
Power is defined as “1-b ,” where b is the probability of
failing to reject the null hypothesis when it should be re-
jected. Statistical power varies from 0 to 1 and values
of�0.8 are considered “good.” Button et al. (2013) calcu-
late that the typical power of a neuroscience study is
;0.2, i.e., quite low.
However, these serious concerns arise from broad as-

sumptions that may not be universally applicable. Biomedical
science encompasses many experimental approaches, and
not all are equally susceptible to the criticisms. Projects in
which multiple tests are performed to arrive at conclusions
are expected to be more reliable than those in which one test
is considered decisive. To the extent that basic (“pre-clinical”)
biomedical science consists of scientific hypothesis testing,
in which a given hypothesis is subjected to many tests of its
predictions, it may be more reliable than other forms of
research.
It is critical here to distinguish between a “scientific

hypothesis” and a “statistical hypothesis,” which are
very different concepts (Alger, 2019; chapter 5). A scien-
tific hypothesis is a putative conceptual explanation for an
observation or phenomenon; it makes predictions that
could, in principle, falsify it. A statistical hypothesis is
simply a mathematical procedure (often part of Null
Hypothesis Significance Testing, NHST) that is conducted
as part of a broader examination of a scientific hypothesis
(Alger, 2019, p. 133). However, scientific hypotheses can

be tested without using NHST methods, and, vice versa,
NHST methods are often used to compare groups when
no scientific hypothesis is being tested. Unless noted oth-
erwise, in this essay “hypothesis” and “hypothesis test-
ing” refer to scientific hypotheses.
To appreciate many of the arguments of Ioannidis,

Button, and their colleagues, it is necessary to understand
their concept of positive predictive value (PPV; see equa-
tion below). This is a statistical construct that is used to
estimate the likelihood of reproducing a given result. PPV
is defined as “the post-study probability that [the experi-
mental result] is true” (Button et al., 2013). In addition to
the “pre-study odds” of a result’s being correct, the PPV
is heavily dependent on the p value of the result and the
statistical power of the test. It follows from the statisti-
cians’ assumptions about hypotheses and neuroscience
practices that calculated PPVs for neuroscience research
are low (Button et al., 2013). On the other hand, PPVs
could be higher if their assumptions did not apply. I stress
that I am not advocating for the use of the PPV, which can
be criticized on technical grounds, but must refer to it to
examine the statistical arguments that suggest deficien-
cies in neuroscience.
To look into the first assumption, that neuroscience typ-

ically bases many important conclusions on single p val-
ued tests, I analyze papers published in consecutive
issues of The Journal of Neuroscience during 2018. For
the second assumption, I review elementary joint proba-
bility reasoning that indicates that the odds of obtaining a
group of experimental outcomes by chance alone are
generally extremely small. This notion is the foundation of
the argument that conclusions derived from multiple ex-
periments should be more secure those derived from one
test. However, there is currently no standard way of ob-
jectively evaluating the significance of a collection of re-
sults. As a step in this direction, I use two very different
procedures, Fisher’s method of combining results and
meta-analysis of effect sizes (Cummings and Calin-
Jageman, 2017) measured by Cohen’s d, which have not,
as far as I know, been applied to the problem of combin-
ing outcomes in the way that we need. Finally, in
Discussion, I suggest ways in which combining methods
such as these can improve how we assess and communi-
cate scientific findings.

Materials and Methods
To gauge the applicability of the statistical criticisms to

typical neuroscience research, I classified all Research
Articles that appeared in the first three issues of The Journal
of Neuroscience in 2018 according my interpretation of the
scientific “modes” they represented, i.e., “hypothesis test-
ing,” “questioning,” etc., because these modes have differ-
ent standards for acceptable evidence. Because my focus
is on hypothesis testing, I did a pdf search of each article for
“hypoth” (excluding references to “statistical” hypothesis
and cases where “hypothesis” was used incorrectly as a
synonym for “prediction”). I also searched “predict” and
“model” (which was counted when used as a synonym for
“hypothesis” and excluded when it referred to “animal mod-
els,” “model systems,” etc.) and checked the contexts in
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which the words appeared. In judging how to categorize a
paper, I read its Abstract, Significance Statement, and as
much of the text, figure legends, and Discussion as neces-
sary to understand its aims and see how its conclusions
were reached. Each paper was classified as “hypothesis-
based,” “discovery science,” (identifying and characterizing
the elements of an area), “questioning” (a series of related
questions not evidently focused on a hypothesis), or “com-
putational-modeling” (where the major focus was on a com-
puter model, and empirical issues were secondary).
I looked not only at what the authors said about their in-

vestigation, i.e., whether they stated directly that they
were testing a hypothesis or not, but what they actually
did. As a general observation, scientific authors are incon-
sistent in their use of “hypothesis,” and they often omit
the word even when it is obvious that they are testing a
hypothesis. When the authors assumed that a phenomen-
on had a specific explanation, then conducted experi-
mental tests of logical predictions of that explanation, and
drew a final conclusion related to the likely validity of the
original explanation, I counted it as implicitly based on a
hypothesis even if the words “hypothesis,” “prediction,”
etc. never appeared. For all hypothesis-testing papers, I
counted the number of experimental manipulations that
tested the main hypothesis, even if there were one or more
subsidiary hypotheses (see example in text). If a paper did
not actually test predictions of a potential explanation, then I
categorized it as “questioning” or “discovery” science.
While my strategy was unavoidably subjective, the ma-
jority of classifications would probably be uncontrover-
sial and disagreements unlikely to change the overall
trends substantially.
To illustrate use of the statistical combining methods,

I analyzed the paper by Cen et al. (2018), as suggested
by a reviewer of the present article. The authors made
multiple comparisons with ANOVAs followed by
Bonferroni post hoc tests; however, to make my analy-
sis more transparent, I measured means and SEMs
from their figures and conducted two-tailed t tests.
When more than one experimental group was com-
pared with the same standard control, I took only the
first measurement to avoid possible complications of
non-independent p values. I used the p values to calcu-
late the combined mean significance level for all of the
tests according to Fisher’s method (see below). This is
an extremely conservative approach, as including the
additional tests would have further increased the signif-
icance of the combined test.
For the meta-analysis of the Cohen’s d parameter

(Cummings and Calin-Jageman, 2017; p. 239), I calcu-
lated effect sizes on the same means and SEMs from
which p values were obtained for the Fisher’s method
example. I determined Cohen’s d using an on-line calcu-
lator (https://www.socscistatistics.com/effectsize/default3.
aspx) and estimated statistical power with Gp-Power
(http://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-
psychologie-und-arbeitspsychologie/gpower.html). I then
conducted a random-effects meta-analysis on the Cohen’s d
values with Exploratory Software for Confidence Interval
(ESCI) software, which is available at https://thenewstatistics.
com/itns/esci/ (Cummings and Calin-Jageman, 2017).

Results
Of the total of 52 Research Articles in the first three is-

sues of The Journal of Neuroscience in 2018, I classified
39 (75%) as hypothesis-based, with 19 “explicitly” and 20
“implicitly” testing one or more hypotheses. Of the re-
maining 13 papers, eight appeared to be “question” or
“discovery” based, and five were primarily computer-
modeling studies that included a few experiments (see
Table 1). Because the premises and goals of the non-hy-
pothesis testing kinds of studies are fundamentally dis-
tinct from hypothesis-testing studies (Alger, 2019; chp. 4),
the same standards cannot be used to evaluate them,
and I did not examine these papers further.
None of the papers based its major conclusion on a sin-

gle test. In fact, the overarching conclusion of each hypoth-
esis-based investigation was supported by approximately
seven experiments (6.96 1.57, mean 6 SD, n=39) that
tested multiple predictions of the central hypothesis. In 20
papers, at least one (one to three) alternative hypothesis
was directly mentioned. Typically (27/39), the experimental
tests were “consistent” with the overall hypothesis, while in
19 papers, at least one hypothesis was explicitly falsified or
ruled out. These results replicate previous findings (Alger,
2019; chapter 9).
As noted earlier, some science criticism rests on the

concept that major scientific conclusions rest on the out-
come of a single p valued test. Indeed, there are circum-
stances in which the outcome of a single test is intended
to be decisive, for instance, in clinical trials of drugs
where we need to know whether the drugs are safe and
effective or not. Nevertheless, as the preceding analysis
showed, the research published in The Journal of
Neuroscience is not primarily of this kind. Moreover, we
intuitively expect conclusions bolstered by several lines of
evidence to be more secure than those resting on just
one. Simple statistical principles quantify this intuition.
Provided that individual events are truly independent—

the occurrence of one does not affect the occurrence of
the other and the events are not correlated—then the rule
is to multiply their probabilities to get the probability of the
joint, or compound, event in which all of the individual
events occur together or sequentially. Consider five
games of chance with probabilities of winning of 1/5, 1/
15, 1/20, 1/6, and 1/10. While the odds of winning any sin-
gle game are not very small, if you saw someone step up
and win all five in a row, you might well suspect that he
was a cheat, because the odds of doing that are 1/
90,000.
The same general reasoning applies to the case in

which several independent experimental predictions of a
given hypothesis are tested. If the hypothesis is that
GABA is the neurotransmitter at a given synapse, then we
could use different groups of animals, experimental prep-
arations, etc. and test five independent predictions: that
synaptic stimulation will evoke an IPSP; chemically dis-
tinct pharmacological agents will mimic and block the
IPSP; immunostaining for the GABA-synthetic enzyme
will be found in the pre-synaptic nerve terminal; the IPSP
will not occur in a GABA receptor knock-out animal, etc.
The experiments test completely independent predictions
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of the same hypothesis, hence the chance probability of
obtaining five significant outcomes that are consistent
with it by random chance alone must be much lower than
that of obtaining any one of them. If the tests were done at
p� 0.05, the chances would be �(0.05)5 or�3.13�7 that
they would all just happen to be consistent with the hy-
pothesis. Accordingly, we feel that a hypothesis that has
passed many tests to be on much firmer ground than if it
had passed only one test. Note, however, that the product
of a group of p values is just a number; it is not itself a sig-
nificance level.
It can be difficult for readers to tease the crucial infor-

mation out of scientific papers as they are currently writ-
ten. Not only is the work intrinsically complicated, but
papers are often not written to maximize clarity. A com-
mon obstacle to good communication is the tendency of
scientific papers to omit a direct statement of the hypoth-
eses that are being tested, which is an acute problem in
papers overflowing with data and significance tests. An
ancillary objective of my proposal for analysis is to en-
courage authors to be more straightforward in laying out
the logic of their work. It may be instructive to see how a
complex paper can be analyzed.
As an example, I used the paper of Cen et al. (2018).

Although the paper reports a total of 114 p values, they do
not all factor equally in the analysis. The first step is to see
how the experiments are organized. The authors state
that their main hypothesis is that N-cadherin, regulated by
PKD1, promotes functional synapse formation in the ro-
dent brain. It appears that the data in the first two figures
of the paper provide the critical tests of this hypothesis.
These figures include 43 statistical comparisons, many of
which were controls to ensure measurement validity, or
which did not critically test the hypothesis, e.g., 18 tests
of spine area or miniature synaptic amplitude were sup-
portive, but not critical. I omitted them, as well as multiple
comparisons made to the same control group to avoid the
possibility of correlations among p values. For instance, if
an effect was increased by PKD1 overexpression (OE)
and reduced by dominant negative (DN) PKD1, I counted
only the increase, as both tests used the same vector-
treated control group. In the end, six unique comparisons
tested crucial, independent, non-redundant predictions
(shown in Figs. 2A2,B2,D2,E2, 3B2,C2 of Cen et al., 2018).
I emphasize that this exercise is merely intended to illus-
trate the combining methods; the ultimate aim is to encour-
age authors to explain and justify their decisions about
including or excluding certain tests in their analyses.
Cen et al. (2018) test the following predictions of their

main hypothesis with a variety of morphologic and elec-
trophysiological methods:
(1) N-cadherin directly interacts with PKD1.Test: GST

pull-down.
(2) N-cadherin and PKD1 will co-localize to the synaptic

region. Test: immunofluorescence images.
Predictions (1) and (2) are descriptive, i.e., non-quanti-

fied; other predictions are tested quantitatively.
(3) PKD1 increases synapse formation. Tests (Fig. 2A2):

OE of hPKD1 increases spine density and area (p, 0.001
for both); DN-hPKD1 decreases spine density and area
(p,0.001 for both).

(4) PKD1 increases synaptic transmission. Tests (Fig.
2B2): OE of hPKD1 increases mEPSC frequency (p,
0.006) but not amplitude; DN-hPKD1 decreases mEPSC
frequency (p, 0.002) but not amplitude.
(5) PKD1 acts upstream of N-cadherin on synapse for-

mation and synaptic transmission. Tests (Fig. 3B2): DN-
hPKD-induced reductions of spine density and area are
rescued by OE of N-cadherin (p, 0.001 for both). DN-
hPKD1-induced reduction in mEPSC frequency is res-
cued by OE of N-cadherin (p, 0.001 for both).
These are the key predictions the main hypothesis: their

falsification would have called for the rejection of the hy-
pothesis in its present form. The organization of these
tests of the main hypothesis is illustrated in Figure 1.
Cen et al. (2018) go on to identify specific sites on N-

cadherin that PKD1 binds and phosphorylates and they
test the associated hypothesis that these sites are critical
for the actions of PKD1 on N-cadherin. They next investi-
gate b -catenin as a binding partner for N-cadherin and
test the hypothesis that this binding is promoted by
PKD1. While these subsidiary hypotheses and their tests
clearly complement and extend the main hypothesis, they
are distinct from it and must be analyzed separately.
Whether falsified or supported, the outcomes of testing
them would not affect the conclusion of the main hypoth-
esis. The relationships among the main hypothesis and
other hypotheses are shown in Figure 2. Note that Cen et
al. (2018) is unusually intricate, although not unique; the
diagrams of most papers will not be nearly as complicated
as Figures 1, 2.
Basic probability considerations imply that the odds of

getting significant values for all six critical tests in Cen et
al. (2018) by chance alone are extremely tiny; however, as
mentioned, the product of a group of p values is not a sig-
nificance level. R.A. Fisher introduced a method for con-
verting a group of independent p values that all test a
given hypothesis into a single parameter that can be used
in a significance test (Fisher, 1925; Winkler et al., 2016;
see also Fisher’s combined probability test https://en.
wikipedia.org/wiki/Fisher’s_method; https://en.wikipedia.
org/wiki/Extensions_of_Fisher’s_method). For conven-
ience, I will call this parameter “pFM” because it is not a
conventional p value. Fisher’s combined test is used in
meta-analyses of multiple replications of the same experi-
ment across a variety of conditions or laboratories but has
not, to my knowledge, been used to evaluate a collection
of tests of a single scientific hypothesis. Fisher’s test is:

x 2 ¼ �2
Xk

i¼1

ln ðpiÞ;

where pi is the p value of the ith test and there are k tests
in all. The sum of the natural logarithms (ln) of the p val-
ues, multiplied by �2, is a x2 variable with 2k degrees of
freedom and can be evaluated via a table of critical val-
ues for the x2 distribution (for derivation of Fisher’s test
equation, see: https://brainder.org/2012/05/11/the-logic-
of-the-fisher-method-to-combine-p-values/). Applying
Fisher’s test to Cen et al.’s major hypothesis (k=6; df=12),
yields
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X2 ¼ 35:95orp,0:001:

In other words, the probability, pFM, of getting their col-
lection of p values by chance alone is,0.001, and there-
fore, we may be justified having confidence in the
conclusion. Fisher’s method, or a similar test, does not
add any new element but gives an objective estimate of
the significance of the combined results. (Note here that
the mathematical transformation involved can yield re-
sults that differ qualitatively from simply multiplying the p
values.) I stress that Fisher’s method is markedly affected
by any but the most minor correlations (i.e., r. 0.1)
among p values; notable correlations among these values

will cause pFM to be much lower (i.e., more extreme) than
the actual significance value (Alves and Yu, 2014; Poole
et al., 2016). Careful experimental design is required to
ensure the independence of the tests to be combined.
Fisher’s method is only one of a number of procedures

for combining test results. To illustrate an alternative ap-
proach, I re-worked the assessment of Cen et al. (2018) as
a meta-analysis (see Borenstein et al., 2007; Cummings
and Calin-Jageman, 2017) of the effect sizes, defined by
Cohen’s d, of the same predictions. Cohen’s d is a normal-
ized, dimensionless measure of the mean difference be-
tween control and experimental values. I treated each
prediction of the main hypothesis in Cen et al. (2018) as a

Figure 1. Diagram of the main hypothesis and predictions of Cen et al. (2018). The solid lines connect the hypothesis and the logi-
cal predictions tested. This diagram omits experimental controls tests that primarily validate techniques, include non-independent p
values, or add useful but non-essential information. The main hypothesis predicts that PKD1 associates directly with N-cadherin,
and that PKD1 and N-cadherin jointly affect synaptic development in a variety of structural and physiological ways. Separate groups
of experiments test these predictions.
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two-sample independent comparisons test, determined
Cohen’s d for each comparison, and conducted a random-
effects meta-analysis (see Materials and Methods). Figure
3 shows effect sizes together with their 95% confidence in-
tervals for each individual test, plus the calculated group
mean effect size (1.518) and its confidence interval (1.181,

1.856). Effect sizes of 0.8 and 1.2 are considered “large”
and “very large,” respectively, hence, an effect size of
1.518 having a 95% confidence interval well above zero is
quite impressive and reinforces the conclusion reached by
Fisher’s method, namely, that Cen et al.’s experimental
tests strongly corroborate their main hypothesis.

Figure 2. Diagram of the logical structure of Cen et al. (2018). The paper reports several distinct groups of experiments. One group
tests the main hypothesis and others test subsidiary hypotheses that are complementary to the main one but are not a necessary part
of it. Connections between hypotheses and predictions that are logically necessary are indicated by solid lines; dotted lines indicate
complementary, but not mandatory, connections. Falsification of the logically-necessary predictions would call for rejection of the hy-
pothesis in its present form; falsification of any of the subsidiary hypothesis would not affect the truth of the main hypothesis. The fig-
ure numbers in the boxes identify the source of major data in Cen et al., 2018 that were used to test the indicated hypothesis.
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The findings underscore the conclusions that (1) when
evaluating the probable validity of scientific conclusions, it
is necessary to take into account all of the available data
that bear on the conclusion; and (2) obtaining a collection
of independent experimental results that all test a given hy-
pothesis constitutes much stronger evidence regarding the
hypothesis than any single result. These conclusions are
usually downplayed or overlooked in discussions of the re-
producibility crisis and their omission distorts the picture.
To appreciate the problem, we can re-examine the ar-

gument that the PPV of much neuroscience is also low
(Button et al., 2013). PPV is quantified as:

PPV ¼ 1� bð Þ pR½ � = 1� bð Þ pRð Þ1a½ Þ�;
where R represents the “pre-study odds” that a hypothe-
sis is correct, a is the p value, and 1-b is the power of the
statistical test used to evaluate it. R is approximated as
the anticipated number of true (T) hypotheses divided by
the total number of alternative hypotheses in play, true
plus false; i.e., R =T/(T1F). This argument depends heav-
ily on the concept of “pre-study odds.” In the example of
a “gene-screen” experiment (Ioannidis, 2005) that evalu-
ates 1000 genes, i.e., 1000 distinct “hypotheses” where
only one gene is expected to be the correct one (note that

these are not true hypotheses, but it is simplest to retain
the statisticians’ nomenclature here). R is ;1/1000, and
with a p value for each candidate gene of 0.05, PPV would
be quite low,;0.01, even if the tests have good statistical
power (�0.8). That is, the result would have ;1/100
chance of being replicated, apparently supporting the
conclusion that most science is false.
Fortunately, these concerns do not translate directly to

laboratory neuroscience work in which researchers are
testing actual explanatory hypotheses. Instead of confront-
ing hundreds of alternatives, in these cases, previous work
has reduced the number to a few genuine hypotheses. The
maximum number of realistic alternative explanations that I
found in reviewing The Journal of Neuroscience articles
was four and that was rare. Nonetheless, in such cases, R
and PPV would be relatively high. For example, with four al-
ternative hypotheses, R would be 1/4; i.e., ;250 times
greater than in the gene-screen case. Even with low statis-
tical power of ;0.2 and p value of 0.05, PPV would be
;0.5, meaning that, by the PPV argument, replication of
experimental science that tests four alternative hypotheses
should be ;50 times more likely than that of the open-
ended gene-screen example.
Furthermore, PPV is also inversely related to the p

value, a; the smaller the a, the larger the PPV. A realistic

Figure 3. Meta-analysis of the effect sizes observed in the primary tests of the main hypothesis of Cen et al. (2018; n=6; shown in
Fig. 1). I obtained effect sizes by measuring the published figures and calculated Cohen’s d values with an on-line calculator:
https://www.socscistatistics.com/effectsize/default3.aspx. Analysis and graphic display (screenshot) were done with ESCI (free at
https://thenewstatistics.com/itns/esci/). Top panel shows individual effect sizes (corrected, dunbiased) for the tendency of small sam-
ples to overestimate true effect sizes (see Cummings and Calin-Jageman, 2017; pp 176–177), Ns and degrees of freedom (df) of
samples compared, together with confidence intervals (CIs) of effect sizes and relative weights (generated by ESCI and based
mainly on sample size) that were assigned to each sample. Upper panel also shows mean effect size for random effects model and
CI for mean. Bottom panel shows individual means (squares) and CIs for dunbiased (square size is proportional to sample weight).
The large diamond at the very bottom is centered (vertical peak of diamond) at the mean effect size, while horizontal diamond
peaks indicate CI for the mean.
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Table 1: Analysis of The Journal of Neuroscience Research Articles

Start End Hyp-E Hyp-I Alt Hyp # Tests Support Reject Disc Ques Comp
32 50 X 6 X
51 59 X 2 5 X X
60 72 X 7 X X
74 92 X 7 X
93 107 X 6 X
108 119 X
120 136 X 7 X
137 148 X 3 8 X X
149 157 X 2 5 X X
158 172 X 2 8 X X
173 182 X 2 5 X
183 199 X 9 X
200 219 X
220 231 X
232 244 X 7 X
245 256 X 1 7 X X
263 277 X 1 7 X X
278 290 X
291 307 X 7 X
308 322 X 1 7 X X
322 334 X 7 X
335 346 X
347 362 X
363 378 X 6 X
379 397 X 1 8 X X
398 408 X
409 422 X 1 4 X
423 440 X 3 8 X X
441 451 X 2 9 X X
452 464 X 6 X
465 473 X 8 X
474 483 X 9 X
484 497 X 1 9 X X
498 502 X
518 529 X 8 X
530 543 X
548 554 X 1 8 X
555 574 X 9 X
575 585 X 8 X
586 594 X
595 612 X 1 3 X X
613 630 X 1 7 X X
631 647 X 8 X
648 658 X 6 X
659 678 X 3 5 X
679 690 X. 5 X
691 709 X
710 722 X
723 732 X 1 5 X X
733 744 X

745 754 X 1 4 X
755 768 X 5 X

Classification of research reports published in The Journal of Neuroscience, vol. 38, issues 1–3, 2018, identified by page range (n=52). An x denotes that the
paper was classified in this category. Categories were: Hyp-E: at least one hypothesis was fairly explicitly stated; Hyp-I: at least one hypothesis could be inferred
from the logical organization of the paper and its conclusions, but was not explicitly stated; Alt-Hyp: at least one alternative hypothesis in addition to the main
one was tested; # Tests: is an estimate of the number of experiments that critically tested the major (not subsidiary or other) hypothesis; Support: the tests were
consistent with the main hypothesis; Reject: at least some tests explicitly falsified at least one hypothesis; Disc: a largely “discovery science” report, not obvi-
ously hypothesis-based; Ques: experiments attempted to answer a series of questions, not unambiguously hypothesis-based; Comp: mainly a computational
modeling study, experimental data were largely material for model.
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calculation of PPV should reflect the aggregate probability
of getting the cluster of results. Naive joint probability
considerations, Fisher’s method, or a meta-analysis of ef-
fect sizes, all argue strongly that the aggregate probability
of obtaining a given group of p values will be much smaller
than any one p value. Taking these much smaller aggre-
gate probabilities into account gives much higher PPVs
for multiple-part hypothesis-testing experiments. For ex-
ample, Cen et al. (2018), as is very common, do not speci-
fy definite alternative hypotheses; they simply posit and
test their main hypothesis, so the implied alternative hy-
pothesis is that the main one is false; hence, R=1/2.
Applying p, 0.001, as suggested by both Fisher’s
method and meta-analysis, to Cen et al.’s main hypothe-
sis implies a PPV of 0.99, that is, according to the PPV ar-
gument, their primary conclusion regarding N-cadherin
and PKD1 on synapse formation should have a 99%
chance of being replicated.
Finally, we should note that these calculations incor-

porate the low statistical power reported by Button
et al. (2013), i.e., 0.2, whereas actual power in many
kinds of experiments may be higher. Cen et al. (2018)
did not report a pre-study power analysis, yet post
hoc power (as determined by Gp Power software) for
the six tests discussed earlier ranged from 0.69 to 0.91
(mean = 0.79), which, although much higher than the
earlier estimate, is still underestimated. Power depends
directly on effect size, which for the results reported by
Cen et al. (2018) ranged from 1.38 to 2.02, and the ver-
sion of Gp Power that I used does not accept effect
sizes.1.0. Thus, the higher levels of statistical power
achievable in certain experiments will also make their
predicted reliability dramatically higher than previously
calculated.

Discussion
To determine the validity and importance of a multifac-

eted, integrated study, it is necessary to examine the
study as a whole. Neuroscience has no widely accepted
method for putting together results of constituent experi-
ments and arriving at a global, rational assessment of the
whole. Since neuroscience relies heavily on scientific hy-
pothesis testing, I propose that it would benefit from a
quantitative way of assessing hypothesis-testing projects.
Such an approach would have a number of benefits. (1)
Typical papers are jammed full of experimental data, and
yet the underlying logic of the paper, including its hypoth-
eses and reasoning about them, is frequently left un-
stated. The use of combining methods would require
authors to outline their reasoning explicitly, which would
greatly improve the intelligibility of their papers, with con-
comitant savings of time and energy spent in deciphering
them. (2) The reliability of projects whose conclusions are
derived from several tests of a hypothesis cannot be
meaningfully determined by checking the reliability of one
test. The information provided by combining tests would
distinguish results expected to be more robust from those
likely to be less robust. (3) Criticisms raised by statisti-
cians regarding the reproducibility of neuroscience often
presuppose that major scientific conclusions are based

on single tests. The use of combining tests will delineate
the limits of this criticism.
Fisher’s method and similar meta-analytic devices are

well-established procedures for combining the results of
multiple studies of the “same” basic phenomenon or vari-
able; however, what constitutes the “same” is not rigidly
defined. “Meta-analysis is the quantitative integration of
results from more than one study on the same or similar
questions” (Cummings and Calin-Jageman, 2017; p. 222).
For instance, it is accepted practice to include studies
comprising entirely different populations of subjects and
even experimental conditions in a meta-analysis. If the
populations being tested are similar enough, then it is
considered that there is a single null hypothesis and a
fixed-effects meta-analysis is conducted; otherwise,
there is no unitary null-hypothesis, and a random-effects
meta-analysis is appropriate (Fig. 3; Borenstein et al.,
2007; Cummings and Calin-Jageman, 2017). Combining
techniques like those reviewed here have not, as far as I
know, expressly been used to evaluate single hypotheses,
perhaps because the need to do so has not previously
been recognized.
Meta-analytic studies can reveal the differences among

studies as well as quantify their similarities. Indeed, one
off-shoot of meta-analysis is “moderator analysis” to
track down sources of variability (“moderators”) among
the groups included in an analysis (Cummings and Calin-
Jageman, 2017, p. 230). Proposing and testing modera-
tors is essentially the same as putting forward and testing
hypotheses to account for differences. In this sense,
among others, the estimation approaches and hypothe-
sis-testing approaches clearly complement each other.
I suggest that Fishers’ method, meta-analyses of effect

sizes, or related procedures that concatenate results
within a multitest study would be a sensible way of as-
sessing the significance of many investigations. In prac-
tice, investigators could report both the p values from
constituent tests as well as an aggregated significance
value. This would reveal the variability among the results
and assist in the interpretation of the aggregate signifi-
cance value for the study. Should the aggregate test pa-
rameters themselves have a defined significance level
and, if so, what should that be? While ultimately the prob-
ability level for an aggregate test that a scientific commu-
nity recognizes as “significant” will be a matter of
convention, it might make sense to stipulate a relatively
stringent level, say�0.001 or even greater, for any param-
eter, e.g., pFM, that is chosen to represent a collection of
tests.
It is important that each prediction truly follow from the

hypothesis being investigated and that the experimental
results are genuinely independent of each other for the
simple combining tests that I have discussed. (More ad-
vanced analyses can deal with correlations among p val-
ues; Poole et al., 2016.) There is a major ancillary benefit
to this requirement. Ensuring that tests are independent
will require that investigators plan their experimental de-
signs carefully and be explicit about their reasoning in
their papers. These changes should improve both the sci-
entific studies and the clarity of the reports; it would be
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good policy in any case and the process can be as trans-
parent as journal reviewers and editors want it to be.
Besides encouraging investigators to organize and

present their work in more user-friendly terms, the wide-
spread adoption of combining methods could have addi-
tional benefits. For instance, it would steer attention away
from the “significance” of p values. Neither Fisher’s
method nor meta-analyses require a threshold p value for
inclusion of individual test outcomes. The results of every
test of a hypothesis should be taken into account no mat-
ter what its p value. This could significantly diminish the
unhealthy overemphasis on specific p values that has
given rise to publication bias and the “file drawer prob-
lem” in which statistically insignificant results are not
published.
Use of combining tests would also help filter out single,

significant-but-irreproducible results that can otherwise
stymie research progress. The “winner’s curse” (Button et
al., 2013), for example, happens when an unusual, highly
significant published result cannot be duplicated by fol-
low-up studies because, although highly significant, the
result was basically a statistical aberration. Emphasizing
the integrated nature of most scientific hypothesis-testing
studies will decrease the impact of an exceptional result
when it occurs as part of a group.
Of course, no changes in statistical procedures or rec-

ommendations for the conduct of research can guarantee
that science will be problem free. Methods for combining
test results are not a panacea and, in particular, will not
curb malpractice or cheating. Nevertheless, by fostering
thoughtful experimental design, hypothesis-based re-
search, explicit reasoning, and reporting of experimental
results, they can contribute to enhancing the reliability of
neuroscience research.
Recently, a large group of eminent statisticians (Benjamin

et al., 2018) has recommended that science “redefine” its
“a” (i.e., significance level), to p, 0.005 from p, 0.05.
These authors suggest that a steep decrease in p value
would reduce the number of “false positives” that can con-
tribute to irreproducible results obtained with more relaxed
significance levels. However, another equally large and emi-
nent group of statisticians (Lakens et al., 2018) disagrees
with this recommendation, enumerating drawbacks to a
much tighter significance level, including an increase in the
“false negative rate,” i.e., missing out on genuine discov-
eries. This second group argues that, instead of redefining
the a level, scientists should “justify” whatever a level they
choose and do away with the term “statistical significance”
altogether.
I suggest that there is third way: science might reserve

the more stringent significance level for a combined prob-
ability parameter, such as pFM. This would provide many
of the advantages of a low p value for summarizing overall
strength of conclusions without the disadvantages of an

extremely low p value for individual tests. A demanding
significance level for conclusions derived from multiple
tests of a single hypothesis would help screen out the
“false positives” resulting from single, atypical test results.
At the same time, a marginal or even presently “insignifi-
cant” result, would not be discounted if it were an integral
component of a focused group of tests of a hypothesis,
which would help guard against both the problem of
“false negatives” and an obsession with p values.
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