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Meta-analysis, which combines the results of multiple studies, is an important analytical
method in genome-wide association studies. In genome-wide association studies
practice, studies employing meta-analysis may have overlapping data, which could
yield false positive results. Recent studies have proposed models to handle the issue of
overlapping data when testing the genetic main effect of single nucleotide polymorphism.
However, there is still no meta-analysis method for testing gene-environment interaction
when overlapping data exist. Inspired by the methods of testing the main effect of gene
with overlapping data, we proposed an overlapping meta-regulation method to address
the issue in testing the gene-environment interaction. We generalized the covariance
matrices of the regular meta-regression model by employing Lin’s and Han’s correlation
structures to incorporate the correlations introduced by the overlapping data. Based on
our proposed models, we further provided statistical significance tests of the gene-
environment interaction as well as joint effects of the gene main effect and the interaction.
Through simulations, we examined type I errors and statistical powers of our proposed
methods at different levels of data overlap among studies. We demonstrated that our
method well controls the type I error and simultaneously achieves statistical power
comparable with the method that removes overlapping samples a priori before the
meta-analysis, i.e., the splitting method. On the other hand, ignoring overlapping data
will inflate the type I error. Unlike the splitting method that requires individual-level
genotype and phenotype data, our proposed method for testing gene-environment
interaction handles the issue of overlapping data effectively and statistically efficiently at
the meta-analysis level.

Keywords: meta-regression, meta-analysis, gene-environment interaction, overlapping data, correlation matrix
INTRODUCTION

Numerous associations between human traits or diseases and single nucleotide polymorphisms
(SNPs) have been identified by genome-wide association studies (GWAS) (Manolio, 2010). Meta-
analysis combines the results from multiple studies to increase the effective sample size and
statistical power of the association test (Fleiss, 1993; Borenstein et al., 2009). It has played an
important role in finding the genetic architectures of complex traits and diseases.
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Many meta-analysis methods are used in GWAS (Eleftheria
and John, 2009). The fixed effect model is a commonly used
method. It assumes that there are the same effect sizes across
different studies. This method is effective if the heterogeneity
among studies is small (Pfeiffer et al., 2009). Other methods, such
as random effect models, are used in GWAS as well. They assume
that the effect sizes of the studies follow a probability distribution
due to the heterogeneity (Pereira et al., 2009). Recently, we
proposed a new random effect method for testing the
interaction between SNP and environment factor, which
provides a higher power than the fixed effect methods when
heterogeneity is large (Jin and Shi, 2019). The P-value based
method (Fisher, 1967) was widely used earlier and has been
abandoned because it does not include directions of effects under
test; thus, it cannot provide an overall estimation of the effect
size. The application of this method may lead to false positive
results (Evangelou and Ioannidis, 2013). The Z scores method
considers the direction of effect and its weight is estimated as the
square root of the sample size of each study (Evangelou and
Ioannidis, 2013). Bayesian methods (Kraft and Haiman, 2010)
depend on the assumption of the prior distribution of the
parameters and are usually computationally intensive. The
subset method (Morris, 2011; Wen and Stephens, 2014) is
similar to the fixed effect methods; however, it assumes that
the effect exists only in a subset of the studies. All these classical
methods assume that the studies have no overlapping samples,
thus helping maintain independence among the summary
statistics of the studies.

However, in GWAS practice, overlapping data between
studies may occur. This may be caused inadvertently or
intentionally by researchers. Spurious association may be
achieved if overlapping data exist and are ignored in the meta-
analysis (Lin and Sullivan, 2009; Han et al., 2016). Recently,
meta-analysis methods, such as the P-value based method
(Zaykin and Kozbur, 2010), subset method (Bhattacharjee
et al., 2012), Bayesian method (Wen, 2014), fixed effect
method (Lin and Sullivan, 2009), and random effect methods
(Han and Eskin, 2011; Han et al., 2016) have been proposed for
handling the overlapping data issue. All existing methods are for
testing the SNP main effect. Lin’s method (Lin and Sullivan,
2009) is proposed for combining the results of case-control
studies. It has been shown to yield higher and more robust
power than the splitting method that removes the overlapped
data in studies before calculating the study-level summary
statistics. Han’s method (Han et al., 2016) involves modeling
the covariance matrix of the estimated effects due to the
overlapping data in fixed or random effect models and
transforming the covariance matrix to be diagonal. The
transformed matrix can then be synthesized by regular
methods that assume independent data among studies.

Meta-regression (MR) (Xu et al., 2013) is an efficient meta-
analysis method for testing SNP-environment interaction
assuming independent data among studies. In MR, subjects in
each study are divided into groups by the distribution of an
environment variable. Then, the SNP main effects, standard
errors, and the average environmental variables in each group
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are estimated using linear or logistic regressions. The SNP main
effects and environmental variables across all groups are then
collected and synthesized by MR. The overall main effect of the
SNP, the effect of SNP-environment interaction, and the
corresponding standard errors can be derived. The MR
method is also shown to be robust when confounding effects
exist (Shi and Nehorai, 2017).

Many complex diseases or traits are owing to the combination
of effects of genetic factors, environment factors, and gene-
environment interactions and involve in complex regulatory
networks (Chen et al., 2019; Chen et al., 2019). Consider
CDKN2A/B-rs10811661 as an example, which is associated
with dyslipidemia. Researchers used CC/CT genotypes with a
low-energy diet and a high frequency of exercise as the control
group to study the effect of the interaction between rs10811661
gene polymorphism and energy intake and exercise on the level
of blood lipid. The study found that the incidence of
hypercholesterolemia was approximately 2 times higher in the
TT genotype than in the control group and 1.5 times higher in
the CC/CT genotype than in the control group (Mehramiz et al.,
2018). The analysis of the genes and environment interactions
can provide new insight into complex traits or disease
mechanisms. However, a meta-analysis of SNP-environment
interaction method with overlapping data does not exist
currently. Data have to be split in studies such that every study
contributes non-overlapped samples, i.e., the so-called splitting
method. The splitting method requires the study-level genotype
and phenotype data, which is usually unavailable for the meta-
analysis. In addition, different ways of splitting samples may lead
to different results.

In this paper, inspired by Lin’s method (Lin and Sullivan,
2009) and Han’s decoupling method (Han et al., 2016) for testing
the SNP main effect, and based on MR, we propose the
overlapping MR (OMR) method, which is a fixed effect MR
model designed especially for handling overlapping data. The
remainder of this paper is organized as follows: In the materials
and methods section, we present the correlation matrices for the
OMR method and then the method for testing the SNP-
environment interaction. We also provide the relationship
between MR and OMR. In the Results section, we simulate
numerical examples and use them to examine the type I error
and power of our method and the splitting method. We also
show that the type I error is inflated with regular MR without
considering overlapping samples. In the discussion and
conclusion sections, we discuss the results and conclude
the paper.
MATERIALS AND METHODS

Based on Lin’s and Han’s correlation structures (Lin and
Sullivan, 2009; Han et al., 2016), we generalized regular MR
model for independent studies to consider studies with
correlated summary statistics due to overlapping data. To
describe our method clearly, we first briefly introduce the
regular MR method.
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Regular MR Method
Before the MR analysis, individuals in each study are first
stratified into several groups according to their environmental
measurements. The main effects of SNP at the group level can be
estimated via linear regression as follows:

Y = b0 + bGG + bEE + ϵ,

where Y is a quantitative phenotype, G is the code of the SNP,
and E is the environmental measurement.

Assume that b̂ is the estimate of the SNP main effect, and b̂ ij 
is the estimate of the SNP main effect for the i-th study and the j-
th group where i= 1,2,…,n, j=1,2,…,ni, The symbol n is the
number of studies and ni denotes the number of groups in the i-
th study, and ê ij  denotes the standard error in the j-th group of
the i-th study. The mean environmental measurement in the j-th
group of the i-th study is Eij. a is the regression coefficient vector
of interest. The symbol X is the interest matrix and Xi is the
interest matrix for the i-th study. e is the standard error matrix
and the ei is the standard error matrix for i-th study. In MR, the
SNP effect is regressed on the environmental factor as follows:

b̂ = Xa + ϵ, (1)

where
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b̂ 1

b̂ 2

⋮

b̂ n

0BBBBB@

1CCCCCA, b̂ i =

b̂ i1

b̂ i2

⋮

b̂ ini

0BBBBBB@

1CCCCCCA,X =

X1

X2

⋮
Xn

0BBBB@
1CCCCA,Xi =

1 Ei1

1

⋮

Ei2

⋮
1 Eini

0BBBB@
1CCCCA,

ϵ =

ϵ1

ϵ2

⋮
ϵn

0BBBB@
1CCCCA, ϵi =

ϵi1

ϵi2

⋮
ϵini

0BBBB@
1CCCCA,a =

a1

a2

 !
,   S =

S1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ Sn

0BB@
1CCA,

Si =
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and ϵij eN(0, ê ij), i = 1, 2,…, n,   j = 1, 2,…, ni.
a and Cov(a) are estimated by (Xu et al., 2013; Shi and

Nehorai, 2017).

â = X0S−1X
� �−1X0S−1b̂

â 2 = 0, 1ð Þ â
Cov âð Þ = X0S−1X

� �−1
Cov âð Þ22= 0, 1ð Þ X0S−1X

� �−1 0

1

 ! (2)

Under the null hypothesis H0:a2=0, Wald statistic for testing
the SNP-environment interaction effect is â 2=Cov(â )22, which
follows a 1 degree of freedom (df) c2 distribution. Under the null
hypothesis of H0:a=0, the Wald statistic for testing joint effects of
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the SNP and the interaction is â
0
Cov(â )−1â , which follows a 2

df c2 distribution.
The model (1) can be specified as any nonlinear function of

the environmental variable as necessary. For example, to test
quadratic SNP-environment interaction, the model can be
formulated as

b̂ = XNaN + ϵN (3)

where
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The Wald statistic then follows a 2 df c2 distribution when
testing the two interaction effects simultaneously. The Wald
statistic follows a 3 df c2 distribution for testing the SNP main
and interactions jointly (Xu et al., 2013).

Overlapping MR Method
Inspired by the methods for testing the SNP main effect with
overlapping data (Lin and Sullivan, 2009), based on regular MR,
we propose the OMR model for testing the SNP-environment
interaction when data among studies are overlapped.

We consider the kernel process for modeling the correlations
due to the overlapping data. Following Lin’s recommendation,
the covariance matrix under the correlated studies can be
modeled as follows (Lin and Sullivan, 2009):

W = S1=2CS1=2, (4)

where C is the correlation matrix. The dimensions of this matrix
C are related to the number of studies and the group number of
each study. The details of the correlation matrix will be presented
in the next section.

Alternatively, the variance covariance matrix can be
generalized according to Han’s suggestion as follows (Han
et al., 2016):

W = diag e0 S1=2CS1=2
� �−1� �−1

(5)

where e is a vector of ones whose length is the sum of the number
of groups among all studies. After this modification, the
correlation matrix becomes a diagonal matrix. This matrix is
highly likely to be positive semi-definite and the analysis of the
positive semi-definite matrix is similar to the condition of case-
control studies (Han et al., 2016).

Lin’s variance covariance matrix is equivalent to Han’s (Han
et al., 2016). The variance covariance matrix based on Han’s
formula (5) is more flexible. However, it is more computationally
intensive. The method of Lin is simple in its mathematical form
and calculation. In cases analyzing with existing programs that
require studies to be independent, Han’s method can be applied.

Correlation Matrices
Lin and Sullivan (2009) developed a correlation matrix C for
incorporating correlations among summary statistics of studies
due to the overlapping data. The correlation of studies i and j is
given as follows:
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gij ≈ nij=
ffiffiffiffiffiffiffiffi
ninj

p
, (6)

where ni and nj are the numbers of studies i and jrespectively,
and nij is the number of overlapped individuals between the i-th
and j-th studies.

When considering the MR method, this correlation can be
modeled as follows:

gihjk ≈ nihjk=
ffiffiffiffiffiffiffiffiffiffiffi
nihnjk

p
, (7)

where   nih and njk are the sample sizes of the h-th group of study
i and the k-th group of study j, and nihjk is the number of
overlapping samples between them. In this correlation structure,
the block matrix that corresponds to each study is an identity
matrix; that is, the diagonal block matrices of the correlation
matrix are all identity matrices.

Hypothesis Testing
With the introduced correlation matrix, linear unbiased
estimates â and Cov(â ) can be found as follows (Becker and
Wu, 2007):

â = X0W−1X
� �−1X0W−1b̂

â 2 = 0, 1ð Þâ
Cov âð Þ = X0W−1X

� �−1
Cov âð Þ22= 0, 1ð ÞCov âð Þ

0

1

 ! (8)

Under the null hypothesis a2=0, the Wald statistic for testing
the SNP-environment interaction effect is given as follows:

SI = a 2
2=Cov âð Þ22 (9)

This statistic follows a 1 df c2distribution.
Under null distribution a=0 the Wald statistics for testing the

SNP and the interaction joint effects are given as follows:

SJ = â 2=Cov âð Þ (10)

which follows a 2 df c2 distribution.
OMR method can also be extended to test nonlinear SNP-

environment interaction for overlapping method. This process is
similar with model (1), the Wald statistic for the test of SNP-
environment interaction and quadratic SNP-environment
interaction follows a 2 df c2 distribution. The Wald statistic for
testing the SNP, SNP-environment interaction, and quadratic
SNP-environment interaction interactions jointly follows a 3 df
c2 distribution.

As can be seen, our models are generalized versions of the
regular MR. When the data of studies are independent,
correlation matrix C is an identity matrix, and the two
covariance matrices become

W = S
1
2CS

1
2 = S (11)

and

W = diag e0 S1=2CS1=2
� �−1� �−1

= S (12)

In this case, the covariance matrix is identical to that of the
regular MR.
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RESULTS

We evaluated the type I error to ensure that the false positive rate
is appropriately controlled by our proposed OMR method when
overlapping data exist, that is, whether the empirical type I error
rate is close to the specified level. We compared our method with
the splitting method and regular MR method, which did not
consider overlapping data. The power was then compared at
different levels of sample overlap. We considered two scenarios
where there were 100 and 400 overlapping subjects between
every two studies.

Simulation
The quantitative phenotype Ywas simulated as being related toG
and E, which were the genotypes of the SNP and environment
variables, respectively. The simulation model representing this
relationship is given as follows:

Y = bGG + bG�EG� E + bEE + ϵ

Here, the SNP was assumed to have an additive genetic effect;
the minor allele frequency was 0.3, and G was the code of SNP,
which was the number of minor alleles. We generated random
numbers by the runif function in R, then the values of G are
determined by which intervals the random numbers fall into, and
the intervals are determined by genotype frequency. Variable E
was normally distributed, E~N(0,1). 10% of the variation in Y
was explained by bEE. The fixed effects bG and bG×E varied in our
simulated datasets. The random error e was normally distributed
with zero mean and its variance was chosen such that phenotypic
variance is unit. The environment variable and error term were
generated by the rnorm function in R. In all our numerical
experiments, we considered meta-analyses of data from 2, 3, 4, 5,
and 6 studies, each of which had 1,000 unrelated individuals. In
each study, we simulated three variables: the phenotype Y,
environmental E, and genotype SNP. Across studies, there
were 100 or 400 overlapping samples between any two studies.
Under each simulation setup, data were generated with
1,000 replicates.

We divided 1,000 unrelated individuals in each study into five
groups according to the distribution of E, before meta-analyses.
In each group, we applied linear regression to estimate the main
effects bG, its corresponding error e, and the mean environment
variable E. Meta-analysis were performed with 2, 3, 4, 5, and
6 studies.

Type I Error
To obtain the type I error of the interaction test, the effect of the
SNP-environment interaction was set to be zero and the SNP
main effect explained 0.5% variance of the trait variance. The
empirical type I error of our method was calculated by
transforming the covariance matrix with overlapping data into
a diagonal matrix and then using regular MR. Under this
simulation, the test of empirical type I error of our method
followed a 1 df distribution. The empirical type I error of the
splitting method with two studies was estimated by removing
100 or 400 overlapping subjects of study 1, and the data in study
January 2020 | Volume 10 | Article 1400
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2 were left unchanged. The empirical type I error of the splitting
data method with 3, 4, 5, and 6 studies was estimated by
discarding 100 or 400 overlapped subjects from each study.
Figures 1A, B show the type I error rates of 2, 3, 4, 5, and 6
studies in the test of SNP-environment interaction with 100 and
400 overlapping subjects, respectively. We can see that both our
method and the splitting data method yielded type I error results
close to the specified 0.05 level. The regular MR method, which
did not consider overlapping data, yielded inflated type I error
rates. The greater the overlap, the more the inflation was.

To calculate the type I error rates of the joint test of the SNP
main effect and the interaction, we set both the SNP and the
SNP-environment interaction effects to be zeros. The Wald test
statistics followed a 2 df c2distribution. Figures 1C, D show the
type I errors of the joint test under the null hypotheses. We can
also see that the results of the two methods were around 0.05 as
well; thus, both our OMR method and splitting method treated
the overlapping data appropriately. The regular MR method in
Frontiers in Genetics | www.frontiersin.org 5
the joint test yielded a higher type I error than in the interaction
test because it included more information on overlapping data.

In real meta-analysis, sample sizes of studies vary and
percentages of overlapping may be different for studies. Here,
we set the sample sizes of the 6 studies as (1,000, 1,200, 1,400,
1,600, 1,800, 2,000). Let the effect of the SNP-environment
interaction to be zero and the SNP main effect explained 0.5%
of trait variance. Type I errors of testing the SNP-environment
interaction are shown in Figures 2A, B, which represent results
of testing the interaction with 100 and 400 overlapping
individuals in each study, respectively. Setting both the SNP
and the SNP-environment interaction effects to be zeros, we
conducted joint tests for SNP and SNP-environment interaction.
Figures 2C, D show type I errors of the joint test with 100 and
400 overlapping individuals, respectively. As the results in
Figure 1, OMR and the splitting method control type I errors
as expected, while inflated type I errors can be observed for the
regular MR.
FIGURE 1 | Type I error of testing SNP-environment interaction and jointly testing SNP main effect and the interaction. (A, B) are type I errors of the interaction test
with 100 and 400 overlapping data, respectively. (C, D) are type I errors of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is
type I errors of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is type I errors of OMR method with 2, 3, 4, 5, and 6 studies. Solid line
with filled triangles is type I errors of the regular MR with 2, 3, 4, 5, and 6 studies when overlapping data is ignored.
January 2020 | Volume 10 | Article 1400
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Power
To compare the statistical power of testing the SNP-environment
interaction, both SNP-environment and SNP effects explained
0.5% variance of the trait variance. In this simulation, statistical
significance was determined by the P values of the tests, which
were smaller than 0.05. The empirical power was obtained by
calculating the proportion of the significant results in 1,000
replicates. The P values were calculated using the Wald test
(9), which followed a 1 df c2 distribution. Figures 3A, B show the
power of the SNP-environment interaction with overlapping
data of 100 and 400, respectively. We can see that our method
yields similar results to those of the splitting method. Note that
our method does not require the study-level genotype or
phenotype data, which is its major advantage.

In the joint test of the SNP main effect and the SNP-
environment interaction effect, both SNP-environment and SNP
effects explained 0.5% variance of the trait variance. In this
Frontiers in Genetics | www.frontiersin.org 6
simulation, the P values were again calculated using the Wald test
(10) following a 2 df c2 distribution. Figures 3C, D show the powers
of the joint test with 100 and 400 overlapping samples, respectively.
We compared our method with the splitting method. These results
are similar to those from the SNP-environment interaction test;
however, the joint test yielded higher power than the interaction
test. This is because the joint test included more effects than the
SNP-environment interaction test (Kraft et al., 2007).

For studies with unequal sample sizes (1,000, 1,200, 1,400,
1,600, 1,800, 2,000), power of testing the SNP-environment
interaction and power of the joint test for the SNP and the
interaction are presented in Figure 4. Effects of the SNP and the
interaction are the same as those in previous example. We can
see that powers in Figure 4 demonstrate similar patterns as those
in Figure 3, whereas the former are in general larger than the
latter. This is because that total sample size employed in Figure 4
is larger than that in Figure 3.
FIGURE 2 | Type I error of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with 6 studies of 1,000, 1,200, 1,400, 1,600,
1,800, 2,000 individuals, respectively. (A, B) are type I errors of the interaction test with100 and 400 overlapping data, respectively. (C, D) are type I errors of the
joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is type I errors of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with
filled squares is type I errors of OMR method with 2, 3, 4, 5, and 6 studies. Solid line with filled triangles is type I errors of the regular MR with 2, 3, 4, 5, and 6
studies when overlapping data is ignored.
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In GWAS, it is a common phenomenon that effects of the
SNP and SNP-environment interaction may have different
directions. Here, we consider the scenario that both the SNP
and the interaction explained 0.5% variance of the trait variance
but the directions of their effects are opposite. As in the previous
example, we tested the SNP-environment interaction as well as
joint effects of the SNP and the interaction. Figures 5A, B show
powers of the interaction test with 100 and 400 overlapping
samples. Figures 5C, D present powers of joint test with 100 and
400 overlapping samples. Compared with the results in Figure 3,
whose effects of the SNP and interaction have the same direction,
we can see that the powers of the two tests are about the same in
the two scenarios.

Finally, we added simulation for nonlinear SNP-environment
interaction when testing the effect of SNP-environment interaction
and the joint effects of SNP and SNP-environment. Both the effect of
Frontiers in Genetics | www.frontiersin.org 7
SNP and the effect of SNP-environment interaction explained 0.5%
variance of the trait variance, the effect of nonlinear SNP-
environment interaction explained 0.05% variance of the trait
variance. We compared the model considering nonlinear SNP-
environment as in (Xu et al., 2013). with the model not
considering nonlinear SNP-environment. Figures 6A, B show the
results of this comparison with 100 and 400 overlapping individuals
for the test of interaction respectively, in each of the two figures, we
can see that the two lines we compared present similar results. From
Figures 6C, D we can see that the powers under the model
considering nonlinear SNP-environment are lower than that not
considering with 100 and 400 overlapping individuals for the joint
test respectively. That is because the column variables in X are not an
orthonormal basis when considering nonlinear interaction. The
nonlinear interaction enters the model as part of the SNP main
effect (Xu et al., 2013).
FIGURE 3 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction. (A, B) are statistical powers of the
interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical powers of the joint test with 100 and 400 overlapping data, respectively. Solid
line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6 studies. Solid line with filled squares is powers of the OMR method with 2, 3, 4, 5, and
6 studies.
January 2020 | Volume 10 | Article 1400
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DISCUSSION

SNP may indeed interact with E nonlinearly in real biological
process. In this case, regressing the main effect of SNP on E linearly
involved model mis-specification. On the other hand, such linear
regression can hopefully capture a portion of the main effect. In this
case, we can employ Hermite polynomials to the nonlinear
interaction model to avoid this phenomenon (Xu et al., 2013).

The sample sizes of studies vary in real meta-analysis. As
explained in the reference (Manning et al., 2011), there are 561
individuals in the FamHS Study, 1,661 in the HealthABC Study,
2,854 in the CHS Study, 8,367 in the ARIC Study, 6,023 in the
FHS Study, which gives a total sample size of 19,946. For
methodological evaluations, the authors of (Manning et al.,
2011) chose to simulate five studies each of 1,000 individuals.
In our work, we also adopted a relatively moderate sample size
1,000 to verify the effectiveness of our method. In the revised
Frontiers in Genetics | www.frontiersin.org 8
manuscript, we conducted additional simulations to have studies
with different sample sizes to evaluate the sensitivity to the
unbalanced sample sizes among studies.

When testing the SNP main effect, the splitting method for
case-control studies was reported to yield a lower power than Lin’s
method, which is because the studies share common controls (Lin
and Sullivan, 2009). Splitting these studies such that every subject
contributes only once leads to a dramatic decrease in the effective
sample size. Our simulation examples based on cohort studies
yielded slightly less power than the splitting method because the
overlapping structure in our examples differed from that in the
case-control studies. The splitting method in the cohort studies
drops less data than in case-control studies, so the power loss due
to splitting the data is smaller.

Our method is based on the MR in which one divides the
studies into several groups according to the environmental
variable. Thus, when calculating the correlation matrix, we
FIGURE 4 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with 6 studies of 1,000, 1,200, 1,400,
1,600, 1,800, 2,000 individuals, respectively. (A, B) are statistical powers of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are statistical
powers of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6 studies. Solid
line with filled squares is powers of the OMR method with 2, 3, 4, 5, and 6 studies.
January 2020 | Volume 10 | Article 1400

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Jin and Shi Method for Overlapping Data
must consider both the number of overlapping data among
studies and the number of overlapping data among groups.
When the overlaps among groups are unavailable and the data
overlap is independent of the environment variable, the overlaps
between two groups can be estimated by the overlaps between
their studies and the sample proportions of the groups in the two
studies. In either case, our method does not require individual-
level data as the splitting method does.

To the best of our knowledge, there is still no meta-analysis
method for testing SNP-environment interaction with overlapping
data among studies. Our OMR method was generalized from
regular MR. When evaluating our proposed OMR method, we
compared our method with the splitting method and regular MR.
Figure 1 indicates that regularMR yielded inflated type I error rates;
the more the amount of overlapping data, the higher the amount of
inflation. On the other hand, our OMRmethod controlled the type I
error rates appropriately. Therefore, regular MR is unsuitable for
studies that have overlapping data.
Frontiers in Genetics | www.frontiersin.org 9
CONCLUSION

In this paper, we generalized the regular MR model to OMR by
incorporating correlations among studies due to the overlapping
data. We proposed a test for the SNP-environment interaction as
well as a joint test for the SNP and the interaction under the
OMR framework. The two test were compared with the splitting
method in terms of their type I error rate and statistical power.
Through simulation, we demonstrated that our method yielded
comparative power with respect to the splitting method and the
type I error rate of the regular MR is inflated when overlapping
data are ignored. We also evaluated our OMR method with
unequal sample sizes among studies, opposite directions of the
SNP effect and the interaction effect, and assessed the robustness
of our method when nonlinear interaction effect exists. Our
method does not require individual-level genotype and
phenotype data, which overcomes the major limitation of the
splitting method. In GWAS practice, our OMR method can be
FIGURE 5 | Statistical power of testing SNP-environment interaction and jointly testing SNP main effect and the interaction with opposite directions for the effects of
the SNP and the SNP-environment interaction. (A, B) are statistical powers of the interaction test with 100 and 400 overlapping data, respectively. (C, D) are
statistical powers of the joint test with 100 and 400 overlapping data, respectively. Solid line with crosses is powers of the splitting method with 2, 3, 4, 5, and 6
studies. Solid line with filled squares is powers of the OMR method with 2, 3, 4, 5, and 6 studies.
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used to control false positive results when the studies with
overlapping individuals are included in the meta-analysis, thus
improve the probability of finding genuine associations.
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