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How a single genome can give rise to distinct cell types remains a funda-
mental question in biology. Mammals are able to specify and maintain
hundreds of cell fates by selectively activating unique subsets of their
genome. This is achieved, in part, by enhancers—genetic elements that can
increase transcription of both nearby and distal genes. Enhancers can be
identified by their unique chromatin signature, including transcription
factor binding and the enrichment of specific histone post-translational
modifications, histone variants, and chromatin-associated cofactors. How
each of these chromatin features contributes to enhancer function remains
an area of intense study. In this review, we provide an overview of enhan-
cer-associated chromatin states, and the proteins and enzymes involved
in their establishment. We discuss recent insights into the effects of the
enhancer chromatin state on ongoing transcription versus their role in the
establishment of new transcription programmes, such as those that occur
developmentally. Finally, we highlight the role of enhancer chromatin in
new conceptual advances in gene regulation such as condensate formation.
1. Introduction
Enhancers are short (typically 100 bp to 1 kb) cis-regulatory elements that facili-
tate transcription of nearby genes. Enhancers were initially defined not by their
genomic features, but by their ability to enhance transcription irrespective of
distance, position and orientation relative to a target gene [1–4]. Enhancers are
a common feature of metazoan genomes far outnumbering protein-coding
genes, with estimates of over a million enhancers in the human genome [5].
The sheer numberof enhancers present in the genome suggests an incredible com-
plexity of combinatorial gene regulation. Indeed, studies over the years have
demonstrated that genes receive regulatory input from multiple enhancers
whose usage is regulated in space and time over the course of development [6].
Further, these elements drive spatio-temporal changes in gene expression
resulting in morphological divergence among closely related species [7–9].

Enhancers are thought to function by bridging components of the transcrip-
tion machinery to target protomers, facilitating transcriptional ‘bursting’ and
transcription elongation [10,11]. While enhancers tend to regulate nearby genes,
an enhancer can be located up to a megabase from its target gene, potentially
regulating any number of genes in between. A prevailing theory over the past
decade is that spatial, rather than linear, distance between enhancers and promo-
ters controls enhancer–promoter cooperativity, and this notion is supported by a
number of genomics and microscopy-based techniques [12]. However, location
in space is not sufficient to explain enhancer activity and specificity [13].
Additionally, functional reporter assays for enhancer activity reveal a complicated
logic between enhancers and promoters, suggesting that sequence determinants
also play a role in enhancer–promoter cooperativity [14,15]. Further, enhancers
themselves are known to function cooperatively in vivo and may have additive
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Figure 1. Features of enhancer chromatin. (a) An active enhancer bound by transcription factors (TF) and enriched in H2A.Z/H3.3 nucleosomes (blue), H3K4me1
(magenta) and H3K27ac (green). Histone methyltransferases MLL3/4 catalyse mono-methylation of H3K4, while acetyltransferases CBP/p300 acetylate both histones
and transcription factors. (b) Catalytic activities of MLL3/4 and p300 are dispensable for maintaining transcription in embryonic stem cells (green) but are required to
drive transcription upon stress response or differentiation. Created with BioRender.com.
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effects on their target genes [16], thus complicating interpret-
ation of functional studies attempting to couple a single
enhancer to its target promoter. Thus, greater experimental
insight is needed to refine predictive models of enhancer–pro-
moter interaction and function.

Excellent reviews have covered determinants of regulatory
element activity [17], how enhancer–promoter interactions are
established and maintained [12], and transcription factor func-
tion at enhancers [18]. Additionally, enhancers can be defined
by their chromatin features, including high DNA accessibility
and a unique chromatin signature including both histone
methylation and acetylation [19]. Here, we focus on the
molecular mechanisms that regulate the chromatin states at
enhancers and discuss recent studies regarding the impact of
these chromatin states on enhancer function. We also discuss
how enhancer chromatin may play a role in novel theories of
transcription such as the role of biomolecular condensates in
gene regulation.
2. Features of enhancer chromatin
Active cis-regulatory elements exhibit distinct chromatin
features, including relatively low nucleosome occupancy,
reflected by DNase hypersensitivity, and corresponding
engagement by transcription factors and transcriptional coacti-
vators (figure 1a). These regions are enriched with the histone
variants H3.3 and H2A.Z [20,21], both of which have been
associated with reduced nucleosome stability and dynamic
nucleosome exchange [22,23]. In addition, nucleosomes at
enhancers carry specific histone post-translational modifi-
cations, including histone H3 mono-methylated at Lys4
(H3K4me1) and histone H3 acetylated at Lys27 (H3K27ac)
[24]. This signature was originally identified by the ENCODE
project as a global feature of active enhancers and is often
used to systemically annotate these regions a priori in a wide
variety of biological contexts [5,25,26]. H3K27ac is also present
at active promoters, which can be distinguished from
enhancers at the chromatin level based on their high levels
of H3K4me3 compared with H3K4me1. In addition to
H3K27ac, a modification catalysed by the histone acetyltrans-
ferases p300 and cAMP response element-binding protein
(CREB) binding protein (CBP), regulatory elements carry a
high level of lysine acetylation on both H3 and H4, including
H3K9, H3K18, H3K64, H3K122, H4K5, H4K8 and H4K16
[27,28]. Enhancers are also marked by bidirectional tran-
scription, and the nature and function of these short and
short-lived enhancer RNAs (eRNAs) have been the subject of
intense study in recent years [29].
3. Histone variants and chromatin
accessibility

An accessible chromatin state is a defining feature of enhancers,
presumably required for transcription factor and coactivator
access to DNA that would normally be blocked by nucleosome
formation (with the exception of so-called pioneer transcription
factors, recently reviewed [30]). Nucleosomes at enhancers are
enriched with the H2A.Z and H3.3 histone variants which are
deposited at these regions by dedicated histone chaperones
and chromatin remodelling complexes [20,21,23,31,32],
although it must be noted that both H2A.Z and H3.3 also
play roles at heterochromatic regions under certain circum-
stances [20,33–37]. Both H2A.Z and H3.3 are reported to
contribute to reduced nucleosome stability, depending on the
composition of the nucleosome [22,38]. Because of this, it has
been hypothesized that the histone variant composition of the
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nucleosome may allow greater access to underlying DNA, thus
positively contributing to transcription factor binding. While
this seems to be the case for H2A.Z deposition, the relationship
between H3.3 deposition and chromatin accessibility is more
complicated, as discussed below.

3.1. H2A.Z
H2A.Z contains sequence differences from its replication-
coupled counterpart H2A that may explain differences in
nucleosome stability. Specifically, these two proteins differ
in their C-terminal L1 loops which form H2A–H2A contacts
within the nucleosome, resulting in steric occlusion in hetero-
typic H2A.Z-H2A containing nucleosomes that reduces
nucleosome stability [39]. H2A.Z also differs from H2A in
its C-terminal docking domain, effectively reducing nucleo-
somal contacts with the H3-H4 dimer [40]. Further, H2A.Z
undergoes step-wise deposition by the SWI/SNF chromatin
remodelling proteins, SRCAP and p400, followed by nucleo-
some eviction by the H2A.Z-specific chaperones, INO80 and
ANP32E, at actively transcribed regions [41–44]. Collectively,
both the distinct biophysical properties and the dynamic
remodelling of H2A.Z containing nucleosomes at regulatory
elements is hypothesized to provide an excellent ‘window
of opportunity’ for transcription factor binding. In support,
biophysical experiments demonstrate that H2A.Z nucleo-
somes experience greater diffusion resulting in increased
transcription factor binding to underlying DNA [45,46] and
that H2A.Z nucleosomes lower barriers for DNA engagement
by transcription machinery [47]. These in vitro observations
agree with observations made in the more complex environ-
ment of the nucleus, where studies demonstrate that H2A.Z
is required both for maintaining open chromatin states and
binding of the pluripotency transcription factor, Oct4,
during ESC self-renewal [36], and also for chromatin remo-
delling resulting in nucleosome eviction and subsequent
gene activation during ESC differentiation [48].

3.2. H3.3
In contrast to the considerable sequence differences between
H2A.Z and H2A, H3.3 differs from replication-coupled H3
by only a few amino acids and H3.3 containing nucleosomes
are essentially structurally identical to H3 containing nucleo-
somes [49]. Regardless, many studies show that regions
enriched with H3.3 undergo more dynamic nucleosome
exchange than other regions of the genome [50–56]. While
these results might suggest that H3.3 is required to maintain
chromatin accessibility at enhancers, nucleosome occupancy
at regulatory elements does not change and chromatin does
not become less accessible at enhancers in ESCs lacking
H3.3 [53,57]. It may be that the nature of complexes formed
on chromatin at sites of H3.3 deposition plays a greater role
in mediating chromatin accessibility than H3.3 itself. For
example, H3.3-enriched regions are highly enriched with
transcription factor binding and other transcriptional machin-
ery, including chromatin remodelling complexes [58–62].
H3.3 has long been known as a replacement histone variant
[63,64], and it is possible that H3.3 functions not to promote
nucleosome dynamics but is deposited at distinct regions as a
result of nucleosome eviction. In support, HIRA, the chaper-
one responsible for H3.3 deposition at regulatory elements,
is thought to be recruited to ‘naked’ RPA-coated DNA
and functions by a ‘gap-filling’ mechanism to promote
nucleosome occupancy [59,65]. Further, this hypothesis is in
agreement with the fact that, unlike H2A.Z, no dedicated
machinery responsible for H3.3 eviction has been identified
to date. Interestingly, one recent study demonstrates that
H3.3 can be recycled at regulatory elements by a specific
composition of the HIRA chaperone complex involving the
general H3-H4 chaperone, Asf1 [66,67], and thus may con-
tribute to the maintenance of chromatin post-translational
landscapes in this manner.

While H3.3 deposition does not appear to be required for
maintaining chromatin accessibility at active enhancers, it
does play a role in maintaining the post-translational modifi-
cation landscape at these regions. Specifically, H3.3 deposition
is required to maintain high levels of H3K27ac at active enhan-
cers and promoters in mESCs [57,62] and global levels of
H4K16ac in NSCs [68]. Interestingly, neither H3K4me1 at
enhancers nor H3K4me3 at promoters is affected by loss
of H3.3, in line with findings that H3K4me1 is upstream of
H3K27ac at enhancers (see below) [69,70]. The striking
interpretation of this result together with data discussed
above is that, once established, high levels of H3K27ac are not
required tomaintain chromatin accessibility at active enhancers
[57]. This interpretation is supported by a recent study demon-
strating little change in chromatin accessibility at enhancers in
cells treatedwith a chemical CBP/p300 bromodomain inhibitor
that results in global decreases inH3K27ac [71] and bya notable
study in which mutation of endogenous H3.3K27 to H3.3K27R
greatly reduced H3K27ac levels without a corresponding
decrease in chromatin accessibility at enhancers [72]. Of note,
we find that regions that maintain accessible chromatin when
H3K27ac levels are reduced are highly enriched with lineage-
specific transcription factors [73], suggesting that once
established, gene regulatory networks may be self-sustaining
without the need for high levels of histone acetylation [74].
4. Histone modifications and enhancer
activation

4.1. H3K4me1
H3K4methylation was first identified as a mark of active chro-
matin due to its enrichment in the transcriptionally active
Tetrahymenamacronuclei [75]. Studies in yeast andmammalian
cells revealed that H3K4 can be mono- di- or tri-methylated,
and that these marks were not interchangeable [76–78]. In a
landmark study, H3K4me1 was genomically linked to active
enhancers while H3K4me3 was found to be present at active
promoters [79]. While these signatures are now routinely
used to define regulatory elements, it is important to note
that (i) H3K4me1 covers broad regions and is enriched not
only at enhancers, but also at promoters and into the gene
body [80,81], and (ii) H3K4me3 can be detected at highly
active enhancers [82], in line with the model that multiple
rounds of transcription contribute to high levels of H3K4me3
at promoters [83].

H3K4 is methylated in mammalian cells by the MLL/
Set1 family containing six histone lysine methyltransferases
[84,85]. Four of these proteins, Set1a and Set1b (homologous
toDrosophila Set1) andMLL1 andMLL2 (homologous toDroso-
phila Trithorax [Trx]), are generally considered to facilitate
H3K4me3 at promoters under various contexts [86,87]. Studies
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in recent years demonstrate that the remaining familymembers,
MLL3 and MLL4 (homologous to Drosophila Trithorax-related
[Trr]) are responsible for themajority of H3K4me1 at enhancers
[88–90]. These findings have been confirmed in a number of
model systems, including adipogenesis, cardiac development,
lymphogenesis and activation of macrophages [90–93].

Generally, histone-modifying enzymes do not contain
sequence-specific DNA binding domains, so their association
with transcription factors should serve as a recruitment
mechanism for their placement on chromatin. As such, it is
not surprising that several studies report that transcription
factor binding promotes MLL recruitment and subsequent
H3K4me1 at enhancers [94–96]. Based on both developmental
and genetic studies, it is generally accepted that H3K4me1 is
upstream of H3K27ac at enhancers. Many developmental
enhancers show evidence of ‘priming’ or ‘poising’, in which
the region is enriched with H3K4me1 but not H3K27ac in
the absence of detectable transcription [97–102]. Further,
H3K4me1 often appears prior to H3K27ac during differen-
tiation [90,103,104] and inducible transcription [103,105].
H3K27ac levels are also reduced upon loss of MLL3/4 activity,
suggesting that H3K4me1 is upstream of H3K27ac at regu-
latory elements [69,70,89,90]. It is unclear how H3K4me1
primes enhancers for subsequent p300 activity. While reduced
CBP/p300 recruitment has been reported upon MLL3/4
deletion [106], poised developmental enhancers are both
enriched with H3K4me1 and bound by p300 without evidence
of its enzymatic activity [97,98]. Thus, additional studies are
needed to address the interplay between MLL3/4, p300, and
their respective activities at enhancers.

It is well-documented that histone post-translational modi-
fications can act as scaffolds to recruit chromatin-associated
proteins to specific genomic regions (figure 1a). While initial
studies identified mainly proteins whose recruitment to
chromatin was mediated via interaction of PHD domains
with H3K4me2 or H3K4me3 [107], there is evidence that
certain PHD domains can also recognize lower-order methyl-
ation or even unmethylated lysines [108]. In fact, ZMYND8
has been identified as a PHD domain-containing chromatin
factor at enhancers whose recruitment may be stabilized by
the presence of unmethylated or monomethylated H3K4
[109–111]. Recent evidence suggests that H3K4me1 may also
contribute to complex formation on chromatin through inter-
action with the PHD1–PHD2 domains of BAF45C, a member
of the BAF chromatin remodelling complex [112]. ESCs deleted
of MLL3/4 showed reduced BAF complex recruitment
to enhancers, with structural studies demonstrating that
the PHD1 domain of BAF45C recognizes H3K14ac and the
PHD2 domain recognizes H3K4. The binding pocket in
PHD2 can accommodate unmodified H3K4 or H3K4me1
while sterically disfavouring H3K4me2 or H3K4me3, however
mechanisms that promote selectively of H3K4me1 over unmo-
dified H3K4 remain unclear. In vitro, H3K4me1 nucleosomes
were better substrates for the BAF complex in a chromatin
remodelling assay compared with unmodified nucleosomes
or nucleosomes containing higher-order H3K4 methylation
(e.g. H3K4me2, H3K4me3) [112]. Further, H3K4me1 was
shown to be important for maintaining enhancer promoter
contacts in ESCs and for establishing new enhancer–promoter
contacts during differentiation [113], suggesting that the local
chromatinmodification state plays an important role in nucleo-
some positioning and 3-dimensional interactions between
regulatory elements.
Despite its abundance, and the mechanistic insights into
H3K4me1 described above [112,113], several recent studies
suggest that H3K4me1 is not necessary for maintaining
enhancer activity under steadystate conditions (figure 1b). Inter-
estingly, mutations that disrupt MLL3/4 catalytic activity
are generally less detrimental than loss of MLL3/4 protein,
suggesting that MLL3/4 may play a more important structural
role at enhancers rather than any requirement for its enzymatic
activity. For example, deletion or mutation of the catalytic SET
domains of MLL3 and MLL4 has minor effects on transcription
despite abolition of H3K4me1 from enhancers [69,70], and Trr
catalytic activity is dispensable for Drosophila development
[69]. However, deletion of MLL3/4 in embryonic stem cells
(ESCs) results in reduced Pol II occupancy and transcription at
both enhancers andgenes, and loss of trr inDrosophila is embryo-
nic lethal [69,70]. The implication of these results is thatMLL3/4
facilitates transcription independentlyof its catalytic activityand
through an as yet unknown structural function.

Why, then, has MLL3/4 catalytic activity and the
H3K4me1 mark persisted through evolution? Are there con-
texts in which it is necessary? Or does MLL3/4 play only a
structural role at enhancers? The chromatin state of enhancers
is dynamic, to ensure both proper development and tran-
scriptional response to environmental stimuli. It is therefore
possible that H3K4me1 is not required for proper differen-
tiation, but may be necessary for stress response [114]. It is
worth bearing in mind that MLL3/4 KO mESCs exhibit
differentiation defects [90,103] and that loss of MLL3/4 has
a greater impact on transitions between ground state and
naive pluripotency than loss of its catalytic activity [115].
While catalytic mutation of MLL4 causes embryonic lethality
in mice, mutation of the MLL4 active site destabilizes the
protein, making it difficult to identify the cause of lethality
[116]. Drosophila embryos expressing inactive Trr develop
normally at room temperature, but exhibit subtle develop-
mental defects at elevated temperatures [69]. Thus, while
MLL3/4 protein appears to be essential for maintaining
transcription, H3K4me1 may be required for a transcriptio-
nal response to acute stress, potentially by recruiting the
chromatin remodelling BAF complex and/or stabilizing
promoter–enhancer contacts [112,113].

It is also important to note that the key study regarding
developmental function of MLL3/4 catalytic activity was car-
ried out in Drosophila, a model organism that does not use
DNA methylation as a genomic regulatory mechanism. Inter-
estingly, H3K4 methylation prevents chromatin recognition by
DNMT3 L, a regulatory subunit associated with both de novo
methyltransferases DNMT3a and DNMT3b [117]. While there
have been reports of a role for LSD1 inH3K4me1demethylation
during developmental enhancer decommissioning [115,118],
several studies suggest that H3K4me1 is maintained at enhan-
cers that are used late in development, even after the
enhancer shows no signs of transcriptional activity [106,119].
Interestingly, enhancers typically show low levels of DNA
methylation [120–122], and such ‘vestigial’ enhancers are pro-
tected from DNA methylation even into adulthood and thus
serve as a ‘fossil record’ of gene activity [119,121,123]. The cellu-
lar logic behind this remains unclear, as these regions are more
susceptible to gene dysregulation after prolonged PRC2
deficiency [119]. Of note, this study focused on the intestinal
epithelium, one of the most rapidly self-renewing tissues in
the body with the ability to recover lost stem cells through
dedifferentiation of downstream lineages [124,125]. Perhaps
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maintaining a cellular record of developmental tissue-specific
enhancers promotes such regeneration.

4.2. H3K27ac
Lysine acetylation was first observed on histones more than
50 years ago [126]. Over the following decades, it was
revealed that hyperacetylated histones are abundant near
active genes, while heterochromatic regions are hypo-
acetylated. Early studies of histone acetylation suggested
that it facilitates DNA accessibility by neutralizing positively
charged lysines, thereby reducing their affinity to DNA
[127–131]. A direct link between histone acetylation and tran-
scription was established decades later in the 1990s, with the
purification of histone acetyltransferase A (HAT A), a homol-
ogue of the yeast transcriptional coactivator Gcn5p, from
Tetrahymena macronuclei [132]. This breakthrough led to an
explosion of interest in histone modifications, leading to the
identification of more than a dozen HATs that acetylate all
four histones in a variety of contexts [133]. Further, it is
now clear that in addition to the charge neutralization
model described above, lysine acetylation on histones acts
as a scaffold to recruit proteins containing bromodomains,
YEATS domains, and tandem PHD domains to chromatin,
and that many transcription-related proteins and complexes
contain such domains [134].

Active enhancers and promoters recruit p300 and CBP, two
closely related coactivators collectively termed CBP/p300 due
to their high degree of sequence similarity (figure 1a). p300 and
CBP are both large approximately 300 kDa proteins with
multiple DNA-binding and histone-interacting domains. Inter-
estingly, the CBP/p300 histone acetyltransferase (HAT)
domain lacks homology with that of other HAT families such
as the GNAT and MYST HAT families [135]. To date, p300
and CBP are the only HATs known to catalyse the H3K27ac
modification characteristic of active enhancers [135]. A recent
study demonstrates that p300 specificity for H3K27 is dictated
by interaction of its ZZ-type zinc finger domain with the first
six N-terminal amino acids of the H3 tail [136], which may
serve as a ‘molecular ruler’ to position the HAT domain at
H3K27. In addition to H3K27, CBP/p300 acetylate additional
lysines on histone proteins (e.g. H3K14, H3K18 and H3K23)
as well as a number of non-histone nuclear proteins, many
involved in transcriptional regulation [137]. p300 and CBP
are both expressed in all tissues and required for development
[138,139], but they are not interchangeable. They have distinct
specificities toward each substrate lysine in vitro [140,141], and
each HAT performs distinct tissue-specific roles [73,142–147].
Strikingly, while CBP and p300 exhibit near identity of amino
acid sequence in conserved domains, a much higher degree
of variability exists outside of these regions, in parts of the pro-
teins that are predicted to be unstructured. As these regions are
likely to engage in protein–protein interactions, it is intriguing
to speculate that they may engage different protein binding
partners that dictate differential CBP and p300 acetyltransfer-
ase activity in a cell-type-dependent manner.

Since the advent of genome-wide ChIP assays, H3K27ac
has emerged as the conventional signpost to identify putative
enhancers. Despite the predictive power of this modification,
its precise role in gene regulation has been difficult to pinpoint.
Enhancers and promoters are enriched in acetylation at several
lysine residues, and it remains unclear if andwhen a particular
acetylation mark, or combinations thereof, serve a specific
function. This challenge arises in part from the intractability
of histones to genetic manipulation. Mammalian histones are
encoded in multiple large repeating arrays [148], all of which
would need to be precisely mutated to perturb a particular
acetylation or set of acetylations. However, such elegant studies
have been performed inDrosophila, complementing deletion of
its single histone cluster with plasmid-based tandem transgene
copies to introduce histone mutations in the context of a multi-
cellular organism [149,150]. While, thus far, these studies have
mainly focused on the role of histone modification in gene
silencing, interesting inferences about gene activation have
been made in cases in which an amino acid can be associated
with either depending on the nature of the modification
(e.g. H3K27ac is associated with gene activation whereas
H3K27me3 is associated with gene silencing). For example,
several studies have used H3K27R mutants to study the func-
tion of polycomb activity, and indirectly, these studies infer
that gene activation can occur in the absence of H3K27ac
[149,151,152]. However, thesemutations were made in animals
expressing wild-type H3.3 (or in one case, an H3.3 mutation
was made in animals expressing wild-type H3), leaving open
the possibility that H3K27ac function is not specific to the
variant of H3 that is acetylated [57].

Several recent studies have called into question the conven-
tional wisdom about the necessity of H3K27ac for maintaining
steady state transcription. Loss of MLL3/4 catalytic activity in
ESCs results in a global reduction in H3K27ac levels, but has
modest effects on transcription (figure 1b) [69,70]. Similarly,
we and others have found that loss or mutation of H3.3 (both
H3.3K4A and H3.3K27R) reduces H3K27ac with little effect
on mESC self-renewal and transcription (figure 2b) [57,62,72].
It is important to note that H3K27ac is not completely abolished
in any of these experimental models and it is possible that
H3K27ac has not been reduced below its functional threshold,
particularly given the nutrient-rich environment of in vitro cul-
ture conditions. Also, it is also important to recognize that CBP/
p300 acetylate many lysines, both on histone and non-histone
proteins [137], and it is likely that it is this broad network of
acetylation that contributes to gene expression. However, it is
also possible that the chromatin-based mechanisms that pro-
mote gene activation are different than those that are required
to maintain ongoing transcription under steady state. As
noted above, regions that seem impervious to loss of H3K27ac
with respect to chromatin accessibility and transcriptional
output tend to be highly bound by cell-type-specific transcrip-
tion factors [73], and it is possible that this established state
obviates the need for high activity from coactivators and high
levels of acetylation [74,153]. Interestingly, while all of the
above studies used mESCs as a model, only two used differen-
tiation as a model to induce new transcription programmes. In
both cases, H3.3K4Amutant ESCs (that results in reduced H3.3
stability) and H3.3 KO mESCs showed delays or defects in the
ability to transcribe new genes [57,62], probably due in part to
an inability to install H3K27ac at latent enhancers [57]. These
data support a model in which high levels of H3K27ac are dis-
pensable for maintaining transcription but important for
responding to developmental stimuli.
5. Mechanisms of CBP/p300 activation
Given its role in developmental gene regulation, it is not sur-
prising CBP/p300 responds to local signalling environments
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and that its enzymatic activity can be modulated by kinase
activity and phosphorylation (figure 2a). For example, protein
kinase C (PKC)-mediated p300 Ser89 phosphorylation
inhibits p300 catalytic activity [154], while phosphorylation
by, Akt (S1384) and mTORC1 (4 Ser residues) stimulates
p300 activity in a variety of biological contexts [155–157].
While it is unclear what specific structural changes most of
these modifications induce, there is evidence that they pro-
mote allosteric activation of p300 through dissociation of
the HAT domain and the auto-inhibitory RING domain,
which blocks substrate access to the active site [157].
Phosphorylation of CBP/p300 regulates not only its catalytic
activity, but also its interactions with TFs and recruitment to
chromatin. For instance, the phosphorylation state of CBP
determines its mutually exclusive binding to p53 or NF-κB
[158]. Additionally, phosphorylation of CBP at Ser 436, a resi-
due with no equivalent in p300, regulates its recruitment to
Pit-1 and AP-1 response elements [159]. This unique phos-
phorylation suggests distinct modes of regulation for CBP
and p300, adding support to the hypothesis that CBP and
p300 are not always interchangeable.

Several recent studies demonstrate that, in addition to its
own phosphorylation, p300 is enzymatically activated in
response to the phosphorylation of other proteins present at
enhancers, thus both directly and indirectly responding to
signalling events that culminate on chromatin. For example,
one study found that phosphorylation-mediated dimerization
of transcription factors led to a rapid increase in p300 activity
towards histone substrates [160]. Previous studies have
shown that several regions of p300 are autoinhibitory,
for example the RING domain prevents effective substrate
access to the HAT domain [161]. In addition, the lysine-rich,
intrinsically disordered autoinhibitory loop (AIL) acts as a
‘pseudosubstrate’ that inhibits the acetylase activity of adjacent
p300 molecules in trans [162]. Interestingly, transcription factor
dimerization promotes p300 trans-autoacetylation of lysines in
the AIL, thus neutralizing this positively charged loop and
resulting in allosteric activation of the enzyme (figure 2c)
[160]. A similar mechanism of charge-based AIL displacement
was recently proposed to explain activation of CBP by nega-
tively charged eRNA [163]. Together with the studies
described above, these data suggest that p300 PTMs, both
acetylation and phosphorylation, may serve the common pur-
pose of facilitating allosteric changes that regulate access to the
p300 active site.

Several recent studies also demonstrate a link betweenH3.3
phosphorylation and p300 activity at enhancers [57,164]. Inter-
estingly, the N-terminal tails of canonical H3 andH3.3 differ by
onlyone amino acid.WhileH3.1 andH3.2 contain an alanine at
position 31, H3.3 has a unique and highly conserved serine that
has been reported to be phosphorylated by both checkpoint
kinase 1 (Chk1) and Aurora B [165–167]. A study from the
Almouzni lab demonstrates that a phosphomimetic mutant
of H3.3 at this position (H3.3S31D) results in increased
H3K27ac in cis in both human cell lines and Xenopus embryos
[164]. Our own work demonstrates that phosphorylation of
H3.3 Ser31 (H3.3S31ph) facilitates p300 activity not only
on phosphorylated tails, but also in trans on canonical H3 sub-
strates inmESCs (figure 2b) [57]. In ourmodel, H3.3 deposition
and signalling-mediated phosphorylation serves as a catalyst
to globally promote the enzymatic activity of p300 that is
already bound at enhancers. This observation could be
explained by several mechanisms, for example: (i) H3.3S31ph
may recruit a p300 activator or prevent the binding of an inhibi-
tor at enhancers; (ii) H3.3S31ph allosterically stimulates p300
activity, possibly by forming a stable interaction in a manner
analogous to stimulation by eRNA (although the negative
charge provided by H3.3S31ph is much less than that of an
eRNA, and to date, there is no structural evidence of stable
interaction between p300 and the H3 tail [168]); or (iii) phos-
phorylated H3.3 may be a more permissive substrate which,
upon acetylation, allows p300 to remain chromatin-bound
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via its bromodomain to acetylate adjacent canonical histones.
Interestingly, H3.3S31ph has previously been linked to gene
activation [169] and another recent study reported structural
evidence that H3.3S31ph promotes the histone methyltransfer-
ase activity of SETD2 towards H3K36 during macrophage
stimulation [170]. Taken together, these findings suggest that
one function of the highly conserved serine at position 31 on
H3.3 is to influence chromatin states at active regulatory
elements and genes.
/journal/rsob
Open
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6. Recognition of histone acetylation
As mentioned above, one likely function of enhancer
acetylation, both on histones and transcription factors, is to
serve as a scaffold for recruitment of transcription machinery
to chromatin. Acetylated lysines mainly on histone, but
also non-histone proteins, are recognized by bromodomains,
which are present in a diverse array of transcriptional coactiva-
tors [134]. These include HATs themselves (e.g. CBP/p300,
PCAF, GCN5 among others) which may have evolved to
reinforce their own products, ATP-dependent chromatin remo-
dellers (e.g. SWI/SNF complex members SMARCA4—also
known as BRG1—and SMARCA2—also known as BRM,
PBAF complex members polybromo 1 and BRD7, ISWI com-
plex member BPTF, the BAZ family of proteins), general
transcription factors (e.g. TAF1), and the bromodomain and
extraterminal domain (BET) family of proteins involved in pro-
ductive RNAPII elongation (e.g. BRD2, BRD4) (figure 1a).
Bromodomain-containing proteins are anchored to chromatin
through their association with acetylated lysine, and then in
turn act as scaffolding proteins to recruit additional transcrip-
tional machinery. For example, BET proteins through their
extra terminal (ET) domain recruit the positive elongation
factor b (P-TEFb) to promoters, resulting in cyclin-dependent
kinase 9 (CDK9) phosphorylation of RNAPII and pause release
[171–173]. The presence of bromodomains in proteins involved
in all stages of recruitment suggests that acetyllysine recog-
nition must play a critical role in these processes, and that
nucleation of these complexes at enhancers and promoters
[174–176] results in a feed-forward loop that stabilizes tran-
scription. In fact, the act of transcription may in turn further
stabilize these complexes, as recent reports demonstrate that
eRNAs can both stimulate CBP activity and H3K27ac and
stabilize subsequent binding by BRD4 [163,177].

In addition to bromodomains, both tandem plant homeo-
domain (PHD) zinc fingers and Yaf9, ENL, AF9, Taf14, Sas5
(YEATS) domains have recently emerged as additional classes
of lysine acetylation readers [178–180]. While the tandem
PHD domains also recognize unmodified lysines and are
thus unlikely to be involved in complex recruitment to chro-
matin, the YEATS domain-containing proteins are bonafide
acyl-lysine readers and are associated with chromatin-remo-
delling complexes or transcription-associated complexes
and mainly linked to transcription elongation [178]. Interest-
ingly, the YEATS domain binding pocket is slightly larger
than that of the bromodomain and is able to accommodate
longer chain acylations compared with acetylation [180–
183]. In fact, since its discovery as an H3K9ac reader, the
YEATS domain has been found to bind to crotonylated
lysines with higher affinity than acetylated lysines [181,182].
Like acetylation, higher-order acylations such as crotonyla-
tion are enriched at regulatory elements such as enhancers
and promoters [184]. While crotonylation has been linked
to changes in transcription related to cellular metabolism
[185,186], the direct role of higher-order acylations in
enhancer regulation remains to be discovered.
7. Role of enhancer chromatin in phase
separation of transcription machinery

Although there are thousands of enhancers in any given cell
type with signatures of active chromatin, a subset of enhan-
cers display particularly high density of transcription factor
binding, are highly enriched with cofactors such as CBP/
p300, resulting in high levels of H3K27ac, and are bound
by high levels of chromatin regulators such as MED1
[187,188]. These regions, often composed of many individual
enhancers and called super-enhancers (SEs), are in close con-
tact with the promoter of the gene they regulate [189,190] and
are thought to play important roles in cell-type-specific pro-
cesses and have been implicated in both development and
disease [187,188,191,192]. There is mounting evidence that
such enhancers and promoters may undergo liquid–liquid
phase separation (LLPS), forming ‘biomolecular condensates’
with high concentrations of transcription machinery [193]
(figure 3a). Such structures are hypothesized to form hubs
where multiple enhancers and promoters converge resulting
in a high frequency of transcription with low variation [194].

Biomolecular condensates are thought to form through
weak, multivalent, and dynamic interactions that can be
facilitated by intrinsically disordered regions (IDRs) in pro-
teins. Such IDRs are common in the activation domains of
transcription factors as well as coactivators such as MED1
and BRD4, and these regions have been shown to promote
LLPS in vitro and condensate formation in cells [195–198].
In this model, genomic specificity of condensate formation
must be driven by some region with the ability to recognize
specific DNA sequences, and indeed, most TFs contain
such a DNA binding domain. In fact, high densities of TF
binding sites, such as those found at SEs, are thought to
promote condensate formation, suggesting that a combi-
nation of structured and dynamic interactions may drive
phase separation in cells [197] (figure 3a).

In addition to IDR-based non-traditional protein–protein
interactions, structurally based weak multivalent interactions
may contribute to the formation of nuclear condensates.
Interestingly, linked domains resulting in multivalent engage-
ment are a common feature of chromatin-associated proteins
and complexes [199]. For example, BAF180 (also known as
polybromo), a member of the PBAF chromatin remodelling
complex, contains six bromodomains, and the core complex
members of the NURF chromatin remodelling complex con-
tain at least 10 domains that engage with chromatin. Based
on these observations, one logical hypothesis is that the chro-
matin landscape at enhancers contributes to condensate
formation at these regions by promoting a local environment
enriched with high concentrations of weakly associated pro-
teins. Interestingly, a recent study found that recombinant
chromatin itself exhibits condensate properties in vitro in
the absence of cofactors enriched in IDRs, and that this prop-
erty requires the unstructured histone tails that protrude from
the nucleosome core [200]. Strikingly, the authors found
that acetylation by p300 prevents phase separation, while
addition of multi-bromodomain proteins to acetylated
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chromatin generates a distinct condensate which fails to
fuse with condensates containing unmodified chromatin,
again supporting the idea that multivalent interactions are
important for this process (figure 3b).

Ultimately, what is the purpose of condensate formation at
cell-type-specific enhancers? A number of studies demonstrate
that RNAPII assembles at condensates in cells [201–203], and
the prevailing model is that this local accumulation of likely
hundreds of copies of RNAPII allows seamless production of
transcripts from important genes [10,11,202,204,205]. Interest-
ingly, RNAPII must exit the condensate for productive
elongation, and this process is regulated by phosphorylation
of its highly repetitive and disordered C-terminal domain
(CTD), effectively resulting in partitioning of RNAPII from
one condensate to another [206–209].
8. Concluding remarks
In the past decade, major advances in DNA sequencing
technology and computational tools have made it possible
to identify a wide variety of epigenomic features genome-
wide. However, identifying the function of each feature
remains a challenge due to widespread cross-talk between
histone variants, modifications and nucleosome depletion.
For example, loss of either MLL3/4 activity or H3.3 depo-
sition reduces H3K27ac levels without any clear effect of
H3.3 on MLL3/4 activity. Together with the observation
that targeted recruitment of dCas9-p300 to silent enhancers
and promoters is sufficient for gene activation [210], these
data suggest that H3K27ac may be downstream of other
enhancer features such as open chromatin, transcription
factor binding and methylation of H3K4. Interestingly,
mounting evidence suggests that H3K4me1 and H3K27ac,
the canonical PTMs associated with active enhancers, are dis-
pensable for proper genome function in certain cellular or
organismal contexts [57,69,70]. These observations raise the
possibility that certain histone modifications may be
incidental products of enzymes which perform necessary
modifications on other chromatin factors. An important
recent study found that CBP/p300 acetylates more than 200
transcription factors and cofactors [137] and, so far, few of
these modifications have been investigated. Understanding
the biological significance, if any, of these modifications will
provide insights into unexplored roles of CBP/p300.

Emerging technologies will no doubt remain key to under-
standing enhancer biology. Novel imaging techniques will
reveal the spatio-temporal dynamics of enhancer–promoter
interactions in living cells, allowing greater understanding of
how and when proximity is required developmentally
[211,212]. Improved genomic approaches allowing resolution
at the single-cell level coupledwith elegant genetic andpharma-
cological perturbation techniques will increase our
understanding of how and when chromatin states are estab-
lished and decommissioned developmentally [213,214]. New
protocols to perform multiple ‘omics’ experiments at the
single cell level will result in greater understanding of the
relationship between chromatin states and transcriptional
output [215,216]. Concepts such as phase separation will pro-
vide a theoretical framework for integrating many new and
old observations of the physical properties of proteins involved
in transcription regulation [194].Despite the great importanceof
such technological and theoretical advances, there is still much
to be learned of the contribution of chromatin states to enhancer
function using the tools of genetics, biochemistry andmolecular
biology. Using both novel and traditional methods, we expect
many such important discoveries to be made in years to come.
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